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Abstract 

This study develops and validates a dynamic management simulation model tailored for pipeline 

construction projects, addressing the current lack of real-time, predictive decision-support tools in this 

sector. The primary objective is to create a framework that integrates Digital Twin (DT) technology 

with discrete-event simulation (DES) to enhance responsiveness, accuracy, and adaptability in planning 

and execution phases. The model is built in AnyLogic and leverages live data inputs from IoT sensors, 

procurement systems, and geotechnical assessments to reflect on-site variability. 

Construction activities such as trenching, welding, and backfilling are simulated in a time-sequenced, 

data-driven environment, supported by cloud-based updates and interactive dashboards. The model was 

tested against two real-world case studies—one in mountainous terrain and one in flat conditions—

demonstrating forecasting accuracy with less than 2% deviation in total duration and a Mean Absolute 

Percentage Error (MAPE) below 5% for weekly progress predictions. 

This research contributes a validated, pipeline-specific simulation model that offers actionable insights 

for proactive schedule control, resource optimization, and scenario forecasting, distinguishing itself 

through bidirectional data flow, adaptive simulations, and real-time integration with construction 

systems. 
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1 Introduction  

Digital Twin (DT) technology has become an essential tool in modern construction, offering dynamic 

integration between digital and physical project elements to support real-time monitoring, decision-

making, and lifecycle optimization [1, 2]. Evolving from Building Information Modeling (BIM), DT 

leverages real-time data from Internet of Things (IoT) devices and advanced simulation tools to deliver 

continuous feedback and enhance operational efficiency[3]. While these technologies have transformed 

various construction sectors, their practical integration into linear infrastructure projects—particularly 

pipelines—remains limited and fragmented. 

Historically, pipeline construction has relied on deterministic and manual planning methods that lack 

responsiveness to dynamic field conditions. Traditional scheduling techniques and resource planning 

models are often disconnected from real-time data sources, resulting in delays, resource misallocation, 

and inadequate risk forecasting. Moreover, although BIM and Cyber-Physical Systems (CPS) have 

introduced foundational frameworks for digital construction, their unidirectional data flows limit 

adaptive decision-making [4, 5]. The existing research largely focuses on static modeling or post-

construction analysis, rather than real-time, bidirectional data-driven simulation tailored to the unique 

workflow complexities of pipeline construction. 

This gap is particularly critical considering the challenges pipelines face: spatially distributed 

operations, soil and weather variability, dependency on sequential progress, and resource 

synchronization across remote sites. Current models fail to account for the integration of multi-source 

inputs such as geotechnical data, procurement schedules, and equipment telemetry in a unified, 

responsive framework. Additionally, the lack of interoperability and standardized data handling 

frameworks hampers real-time adaptation on-site [6-8]. 

To address these shortcomings, this research proposes an integrated management simulation model 

built on DT principles and implemented using AnyLogic’s discrete-event simulation engine. The model 

bridges historical data with live project inputs to dynamically simulate pipeline construction activities. 

It incorporates cloud-based updates, predictive analytics, and an interactive dashboard system to 

optimize resource allocation, monitor performance deviations, and anticipate risk scenarios in real time. 

By aligning simulation outputs with actual field conditions, this approach offers a responsive planning 

tool that reflects the demands of modern infrastructure projects. 

In summary, this study fills a critical gap in construction simulation literature by providing a 

validated, real-time DT framework specifically designed for pipeline construction. It addresses the 

limitations of existing static models, introduces adaptive scheduling mechanisms, and emphasizes the 

practical application of multi-layered digital technologies in a linear project environment. 

1.1 DT Development Process 

The development of a Digital Twin (DT) follows a structured process to ensure effective 

implementation. It begins with planning frameworks, where the use case is defined—such as predictive 

maintenance or operational efficiency—using tools like the Lean Digital Twin Canvas to establish 

objectives and identify stakeholders. Next, choosing a suitable digital twin candidate is essential, 

focusing on entities or processes with high impact and technical feasibility, often ranked based on 

business value and implementation readiness. The building phase involves creating a Digital Twin 

Prototype (DTP) using structured definition languages like the Digital Twin Definition Language 

(DTDL) to establish its framework, metadata, and functionalities. Once developed, synchronization is 

crucial, ensuring real-time data exchange with the physical counterpart through IoT systems and edge 

computing for low-latency updates. Finally, validation is conducted through comprehensive testing, 

including unit, integration, and functional tests, to confirm the model’s accuracy and alignment with 

business objectives. This structured approach ensures a robust and scalable Digital Twin capable of 

optimizing operations and decision-making [9, 10]. 
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Figure 1: Construction Digital Twin data usage for facilitating smart construction services [6]. 

1.2 Digital Twin Detailed Process (Layers): 

 In this research, the Digital Twin (DT) architecture is adapted specifically for linear, resource-

intensive pipeline construction workflows. The model integrates five functional layers, each linked to 

key project operations such as trenching, welding, inspection, and backfilling.  

 

o Data Acquisition Layer: IoT devices—including GNSS trackers, fuel sensors, and vibration 

meters—are mounted on excavators, welding machines, and trucks. These sensors record 

movement, energy consumption, and productivity across spatially distributed sites. 

 

o Data Transmission Layer: Real-time data are transmitted from the field using LTE/5G modules 

and mesh gateways to ensure continuous communication in remote zones. The data flow 

supports granular updates from active trenching zones, welding stations, and temporary 

stockyards. 

 

o Digital Modeling Layer: 3D pipeline alignment and trench sections are modeled using GIS-

integrated BIM. The model tracks pipe lengths, weld seams, and crossing types (e.g., roads, 

waterways), enabling dynamic sequencing. 
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o Data/Model Integration Layer: Real-time and planned data streams (from procurement 

schedules, progress updates, and geotechnical assessments) are synchronized via a cloud engine. 

For instance, if trenching in a rocky segment slows progress, the schedule is automatically 

updated in the simulation engine. 

 

o Service Layer: The dashboard visualizes spatial resource allocations, welding queue statuses, 

and zone-by-zone productivity. Alerts are triggered based on lag thresholds or IoT downtime, 

allowing managers to reroute crews or reallocate equipment proactively. 

Unlike generic DT applications, this model prioritizes the adaptability of each layer to construction-

specific scenarios, ensuring seamless alignment between real-world operations and digital simulations. 

The layered structure not only supports efficient data flow but also facilitates modular upgrades as 

project needs evolve[2]. 

1.3 Core Components of Digital Twins: 

The Digital Twin system relies on several key components to ensure real-time synchronization 

between the physical and virtual environments. Sensors are strategically distributed across the physical 

system to capture real-time data on performance and environmental conditions, serving as the primary 

data input for the digital twin. Actuators enable the system to respond dynamically by applying control 

actions derived from the twin’s computational analyses, allowing for adaptive modifications in the 

physical system. The continuous stream of real-time data provides essential updates, ensuring seamless 

interaction between the virtual and physical entities. Simulation tools use mathematical and 

computational models to represent system behavior, incorporating real-time updates to reflect changing 

conditions and interactions between components. Finally, analytics techniques process and visualize 

data, offering valuable insights into performance trends, optimizing operations, and enhancing decision-

making. Together, these components create a dynamic, data-driven framework that improves 

operational efficiency and system adaptability [11].  

In the context of pipeline construction, these components are tailored to handle the spatial, 

operational, and environmental complexities inherent to linear infrastructure projects. Sensors are 

deployed on trenching equipment, welding units, and haulage trucks to monitor location, task duration, 

and equipment utilization. Connectivity relies on mobile edge devices and wireless mesh networks to 

maintain data flow across dispersed field zones. The digital models incorporate geospatial data and 

construction schedules, simulating the physical progression of the pipeline across varying terrain 

conditions. Analytics tools interpret data to detect bottlenecks in welding sequences or idle machine 

clusters, while dashboards visualize performance zone-by-zone, helping managers identify delays or 

forecast task completion with greater accuracy. This configuration ensures each core component 

supports the real-time, adaptive decision-making essential in pipeline projects. 

1.4 Decision Support and Consequence Analysis with DT Tools 

Digital Twin models play a crucial role in enhancing management and planning simulation tools 

by optimizing interconnected systems in industries such as manufacturing and smart cities. These 

simulation frameworks improve operational efficiency by integrating real-time data with predictive 

analytics[12]. User input and action analysis dynamically adjusts simulation outputs in response to 

changes, such as raw material deliveries or order modifications, ensuring adaptive and responsive 

planning[13]. Scenario analysis leverages system dynamics models to evaluate risks and forecast the 

impact of different strategies in construction projects, helping stakeholders assess potential challenges 

and optimize decision-making[14]. Augmented Reality (AR) further enhances operational efficiency 

by providing immersive visualization for predictive maintenance, enabling virtual walkthroughs for 
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better decision support[12]. Additionally, simulation-based impact forecasting utilizes lean and agile 

management approaches to minimize environmental impacts while improving resource optimization 

and project outcomes. Together, these tools facilitate proactive planning, risk mitigation, and enhanced 

decision-making in complex, data-driven environments[14]. 

2 Gaps in Current Research and Model Comparison  

Emerging technologies such as high-fidelity modeling, edge computing, and advanced analytics have 

begun to enhance Digital Twin (DT) frameworks in construction[15]. However, despite these 

advances, existing DT implementations in infrastructure projects—particularly pipelines—remain 

limited in their responsiveness, real-time adaptability, and integration of construction-specific data 

such as geotechnical inputs and procurement logistics. 

Most existing DT models in construction focus either on high-level monitoring or post-facto analysis. 

For instance, the DT-SMiCS framework by Jiang et al. (2022) enables real-time monitoring of 

modular construction but lacks predictive capabilities for workflow simulation and resource 

optimization [16]. Similarly, Bellini Machado and Futai (2024) focus on tunnel performance 

prediction but do not incorporate discrete-event simulation or integrated procurement planning for 

dynamic decision-making. Many of these models are static or rely on one-way data flow—from 

sensors to digital systems—without feedback loops that adjust construction logic in real-time based on 

site variability[6, 7]. 

In contrast, the model proposed in this study introduces a multi-layered, bidirectional DT 

simulation tailored to the sequential and distributed nature of pipeline construction. Unlike previous 

models: 

• It integrates AnyLogic-based discrete-event simulation (DES) with real-time data from IoT 

sensors, procurement systems, and geotechnical reports, offering not just monitoring but 

proactive simulation of field activities. 

• It emphasizes event-driven updates, enabling adaptive scheduling and dynamic resource 

allocation in response to live construction conditions. 

• It incorporates modular simulation logic, which allows users to adjust productivity rates, 

resource availability, and site-specific parameters to reflect unique project conditions. 

• It leverages a cloud-based synchronization layer to continuously align simulation outputs 

with actual performance data. 

Previous models have also failed to fully address pipeline-specific challenges, such as trenching 

variability, crossing logistics, and weather-impacted sequences. The proposed framework uniquely 

bridges this gap by structuring the pipeline workflow into a real-time simulation environment, 

enabling early detection of delays, bottlenecks, and material shortages. 

In summary, the novelty of this model lies in its comprehensive integration of simulation and real-

time decision support, its adaptability to project-specific constraints, and its validation against real-

world data. This stands in contrast to many earlier DT models that remain conceptual or limited in 

operational deployment. 
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3 The Proposed Model  

The proposed simulation model was developed as a solution to real-world construction challenges, 

informed by in-depth analyses of practical issues and representative input samples. Designed for use 

both before and during the construction phase, the model offers dynamic capabilities for improving 

decision-making and project execution. It builds on and incorporates insights from historical proposals 

and frameworks, leveraging their strengths to address gaps in real-time data integration, simulation-

based decision-making, and proactive risk mitigation. By addressing critical construction pain points, 

such as resource allocation, progress monitoring, and risk management, the model plays a pivotal role 

in optimizing workflows and mitigating potential disruptions. Leveraging the AnyLogic platform, the 

simulation model adopts a discrete-event simulation approach, which enables it to replicate and analyze 

construction workflows with precision and adaptability. This approach ensures that the model can 

capture and simulate the complexities of construction activities, providing actionable insights to project 

managers. 

The model is further strengthened by its integration with a cloud-based data management system. 

Inputs, such as resource availability, material deliveries, and real-time construction progress, are 

gathered from diverse sources and updated daily on a centralized cloud server. This ensures that the 

simulation remains event-driven and reflective of current project conditions. The cloud server acts as a 

backbone for real-time data integration, enabling the simulation to adapt to changing site conditions and 

provide updated outputs for effective decision-making. By combining advanced simulation capabilities 

with real-time data updates, the proposed model bridges the gap between planned and actual 

performance, offering a robust tool for proactive construction management and enhanced project 

outcomes. 

3.1 Purpose and Scope of the Model 

The primary objective of the proposed model is to enhance decision-making and project management 

efficiency during both the pre-construction and construction phases. Before project kick-off, the model 

aims to assist in critical planning activities such as resource allocation, schedule development, and 

optimization by leveraging historical data and predefined project constraints. During the construction 

phase, the model shifts focus to real-time monitoring and adaptive management by integrating live data 

from various sources, such as IoT sensors, procurement systems, and site updates. This dual-purpose 

approach ensures that the model not only supports strategic planning but also provides dynamic, event-

driven insights to address on-site challenges and evolving project conditions. By bridging the gap 

between pre-construction preparation and on-site execution, the model offers a comprehensive tool for 

improving efficiency, reducing risks, and ensuring project objectives are met. 

3.2 Framework Design 

Figure 2  illustrates the architecture of the proposed simulation model, structured into four interlinked 

stages that support adaptive and event-driven construction management. 

1. Input Stage: 

This stage aggregates a wide array of data sources, including historical productivity rates, BIM 

and GIS inputs, procurement schedules, and geotechnical conditions. These foundational 

inputs are uploaded into the simulation environment prior to construction kickoff, ensuring 

accurate baseline configurations and enabling robust project planning. 

2. Data Collection: 

Real-time data is collected from on-site IoT sensors, GPS-enabled equipment, and 
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procurement tracking systems. These sources continuously feed into the model via a 

centralized cloud server, providing live status updates on equipment, materials, and field 

progress. 

3. Real-Time Updates: 

The model synchronizes virtual simulation parameters with actual site conditions by 

processing incoming data streams through an event-driven engine. This mechanism ensures 

that scheduling, productivity rates, and task statuses are updated automatically in response to 

deviations or unexpected changes in the field. 

4. Dynamic Adjustments: 

Based on the real-time data, the model dynamically adjusts resource allocation, activity 

sequencing, and timeline forecasts. Managers can visualize the impact of these changes via the 

project dashboards and intervene when necessary, ensuring proactive rather than reactive 

decision-making. 

This architecture reinforces a closed feedback loop between the digital and physical environments, 

making the model highly responsive to fluctuating conditions and providing continuous alignment 

between planned and actual performance. 

Overall Architecture Of The Model
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Figure 2: The overall architecture of the proposed model. 

During the construction phase, the model transitions to real-time monitoring and dynamic decision-

making. Leveraging continuous data updates from sources such as procurement systems, resource 

trackers, and real-time events, the system dynamically simulates construction activities. The simulation 

model calculates activity delays based on real and historical rates, incorporates activity relations, 

and updates project timelines accordingly. Outputs from the simulation are visualized through user-

friendly dashboards, including the User Main Dashboard, the Equipment & Labor Dashboard, and 

the Procurement & Storage Dashboard, which provide actionable insights and alerts for potential 

project risks or deviations. 
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Pipeline Activities

Trenching: Soft 
and medium soil 
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Pipe Laying: 
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structural integrity.
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requirements.

Backfilling: Replace 
soil after pipe 
installation.

Road Crossing: 
Install  pipelines at 

road crossings.
 

Figure 3: Pipeline construction process. 

As shown in Figure 3, The pipeline construction process follows a sequential workflow designed. 

The process begins with trenching, where both soft and medium soil are prepared to create suitable 

conditions for pipeline installation. This step ensures the foundation is stable and ready for the 

subsequent activities. Once the trenches are prepared, the next stage is pipe laying, where the pipes are 

placed along the trench and secured with sand padding for additional stability. This step is followed by 

welding, which involves joining the pipe sections to ensure structural integrity and leak prevention. 

After welding, the inspection phase is conducted to check the quality of the pipeline and address any 

rework requirements. This is a critical step to ensure that all pipeline segments meet the required 

standards before proceeding. Following inspection, the road crossing phase manages the installation 

of pipelines at road intersections, which often requires additional precautions to ensure safe and secure 

placement. Finally, the process concludes with backfilling, where the soil is replaced over the installed 

pipeline, restoring the area and securing the pipeline in its final position. These structured activities, as 

depicted in the graph, highlight the importance of a systematic approach to pipeline construction for 

achieving operational excellence. 

3.3 Data Integration and Management 

The proposed model relies on comprehensive data integration and management to ensure accurate 

simulations and informed decision-making. As shown in Figure 4, the model draws data from multiple 

input sources, including project general quantities, resource real-time data, procurement and 

storage data, and project zone/area schedules. These inputs form the backbone of the model, 

providing the necessary information to simulate and monitor construction activities dynamically. 

To handle these diverse data inputs, a cloud-based simulation server is employed for centralized 

data collection. This server processes "raw data" received in real time from the construction site, as well 

as structured data from Building Information Modeling (BIM), Geographic Information System (GIS) 

models, planned time schedules, and procurement plans. The server facilitates daily updates, ensuring 

that the model remains event-driven and reflective of the latest on-site conditions. 
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Figure 4: DT Input Data Integration 

The data integration process involves processing, filtering, and reformatting data to align with the 

requirements of the simulation model. This step ensures that both historical and real-time data are 

seamlessly incorporated into the system. Historical data provide a baseline for comparison and trend 

analysis, while real-time data allow the model to respond dynamically to ongoing changes and events. 

These processed inputs are stored in the Simulation Model Database, where they are used to support 

predictive modeling, decision-making, and optimization of resources. The integration of historical and 

real-time data, as illustrated in the figure, highlights the robustness and adaptability of the model. This 

comprehensive approach ensures seamless simulation capabilities, enabling the system to provide 

actionable insights and enhance project management. The proposed model integrates various types of 

input data to simulate and optimize construction activities. These data have been processed, filtered, 

and reformatted to ensure they are ready for seamless integration with the simulation model database. 

Below, the key data inputs are discussed in detail, as depicted in the provided tables. 

Resource Real-Time Site Data 

Table 1 illustrates real-time data collected from the construction site, including information about 

equipment such as excavators, trucks, and trenching machines. Each resource is tagged with a 

timestamp, geographic coordinates (latitude and longitude), and a reference to base locations. This data 

allows the model to monitor the real-time position and activity status of construction resources, 

facilitating dynamic allocation and operational tracking. 

 
Table 1: Sample Resource Real-Time Site Data 

ID Source Date - Stamp Lat Lon 
1 Excavators 01/01/2024 9:00:00 28485.5500000000 30561.0400000000 
2 Trucks 01/01/2024 9:00:00 28485.5500000000 30559.0400000000 
3 Trucks 01/01/2024 9:00:00 28485.5500000000 30561.0400000000 

…. ….. ….. …. …… 
9 TrenchingMachines 01/01/2024 9:00:00 28485.5500000000 30562.0400000000 

10 TrenchingMachines 01/01/2024 9:00:00 28485.5500000000 30559.0400000000 
11 TrenchingMachines 01/01/2024 9:00:00 28485.5500000000 30560.0400000000 
12 TrenchingMachines 01/01/2024 9:00:00 28485.5500000000 30559.0400000000 
13 Trucks 01/01/2024 9:00:00 28485.5500000000 30561.0400000000 

…… …… …… …… …… 
49084 ConstructionCrew 21/01/2026 9:00:00 28504.8400000000 30475.3400000000 
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Geotechnical Inputs 

The geotechnical data table (Table 2) presents the results of standard penetration tests (SPT) 

conducted along the pipeline route. It includes information on soil types, depths, and blow counts for 

various pipeline zones. These inputs are crucial for assessing soil conditions and determining 

appropriate trenching methods, as well as ensuring structural stability during construction activities. 

 
Table 2: Sample of the Geotechnical Inputs 

BH-No. Depth (m) Material SPT Blow Counts (cm) N-Value (Blows/30) 
   

0-15 15-30 
BH-PL-19 1.5 Sand with Gravel 12 19  

3 Sand with Gravel 22 26  
4.5 Sand 16 21 

BH-PL-20 1.5 Silty Gravel with Sand 14 22  
3 Sand with Gravel 11 18 

BH-PL-21 1.5 Silty Gravel with Sand 12 19 
BH-PL-22 1.5 Sand with Gravel 7 9  

…. …… ….. ….. 

Procurement Data 

The procurement table, the sample is shown below in Table 3, provides an overview of material 

requirements for the project. It includes details on the type, quantity, planned delivery dates, and 

actual delivery timelines for critical materials such as pipes, welding wire, and coatings. This data 

ensures that procurement processes align with the construction schedule, minimizing delays caused by 

material shortages. 

Table 3: Sample of the Procurement Data 

ID Type Quantities / 
Length 

Delivery to 
Site (Day) 

Delivery Date 
Planed 

Delivery Date 
Actual 

1 Pipes 7500 0 1/1/2024 1/11/2024 
13 Welding Wire 1300 30 1/31/2024 1/31/2024 

2 Pipes 7500 50 2/20/2024 2/20/2024 
19 Coating 10000 80 3/21/2024 3/21/2024 

3 Pipes 7500 100 4/10/2024 4/10/2024 
14 Welding Wire 1300 130 5/10/2024 5/10/2024 
20 Coating 10000 140 5/20/2024 5/20/2024 
15 Welding Wire 1300 230 8/18/2024 8/18/2024 
33 Cables 10000 240 8/28/2024 8/28/2024 
44 Crossing 7 240 8/28/2024 8/28/2024 
… … … … … … 

BIM Models Inputs 

Table 4: BIM Models Inputs (Pipeline & Earth) 

No|ID Zone 
No. 

Segment 
Length 

No.Of 
Pipes 

From To Crossing 
Off/On 

Soil Type 

1 1 500 43 0 500 1 soft 
2 1 500 42 500 1000 0 soft 
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3 1 500 45 1000 1500 0 soft 
4 1 500 39 1500 2000 0 soft 
5 1 500 44 2000 2500 0 soft 
… … … … … … … … 
12 1 500 45 5500 6000 0 medium 
13 1 500 44 6000 6500 0 medium 
14 1 500 45 6500 7000 0 medium 
15 1 300 44 7000 7300 0 medium 
16 1 500 43 7300 7800 0 medium 
… … … … … … … … 

The BIM (Building Information Modeling) inputs, as illustrated in Table 4, detail the pipeline 

segments, lengths, number of pipes, crossing points, and soil types along the route. These inputs are 

essential for planning pipeline installation sequences, identifying crossing zones, and managing 

transitions between different soil conditions. 

Planned Progress S-Curve 

The planned progress S-curve, depicted in the table above, represents the weekly progress of 

construction activities over time. These data are extracted and verified by the simulation model when 

used before the project kick-off phase, ensuring alignment with baseline plans and resource allocation 

strategies. This data allows the model to track planned versus actual progress, ensuring timely 

identification of delays and enabling corrective actions to keep the project on track. 

Table 5: Planned Progress S-Curve Input 

Day Weekly Progress 

0 0 

…. …. 

336 0.736 

504 1.103 

672 0.184 

840 1.287 

1512 1.471 

….. ….. 

3.4 Discrete-Event Simulation Approach 

The proposed framework leverages AnyLogic as the simulation platform, implementing the 

Discrete-Event Simulation (DES) methodology to model, analyze, and optimize construction 

workflows. As shown in the attached screenshots, DES offers a powerful approach for representing 

construction processes as a sequence of discrete, event-driven activities. Each event corresponds to a 

specific action, such as trenching, welding, or backfilling, and the simulation advances based on the 

timing and logic of these events. 

Using DES in AnyLogic, the construction workflow is broken down into detailed processes, as 

illustrated in the images extracted from the simulation model. For example, activities such as resource 

allocation, equipment usage, material procurement, and quality inspections are represented through 

interconnected components. These components communicate dynamically, enabling the model to 

replicate the dependencies and interactions between different construction activities. 
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DES is particularly effective for monitoring project activities in real-time and predicting outcomes 

under varying scenarios. The simulation allows for: 

• Resource Tracking: Monitoring the movement and utilization of resources such as 

excavators, trucks, and welding machines. 

• Process Flow Analysis: Visualizing the progression of activities, including delays caused by 

weather, machine downtime, or material shortages. 

• Scenario Modeling: Testing "what-if" scenarios to evaluate the impact of changes, such as 

adjusting resource availability or altering construction sequences. 

• Performance Metrics: Measuring project performance indicators such as duration, resource 

efficiency, and cost implications. 

The modular nature of DES enables the framework to adapt to different project requirements. For 

example, as seen in the images, components such as pipelines, valves, and crossings are organized into 

distinct workflows. This modularity allows the simulation to scale and incorporate additional project 

complexities, such as road crossings or multiple material types. Overall, the use of AnyLogic and DES 

provides the flexibility and precision needed for effective construction simulation. By representing 

workflows as discrete events, the model ensures that stakeholders can monitor real-time progress, 

predict potential disruptions, and optimize decision-making throughout the project lifecycle. These 

images offer a detailed view of the simulation’s underlying logic, illustrating how DES supports the 

framework’s objectives. 

3.5 Handling Missing or Delayed IoT Data & Preprocessing Flow 

In real-world applications, construction sites often face interruptions in IoT data due to network 

outages, sensor malfunctions, or delays in data transmission. Missing or delayed data can significantly 

impact the accuracy and responsiveness of simulation outputs. For instance, if equipment telemetry or 

resource tracking data is not transmitted in real time, the model may misrepresent current activity 

status, leading to misaligned scheduling, delayed procurement decisions, or underutilized resources. 

These disruptions can cascade, ultimately affecting project timelines and risk forecasts. 

To mitigate such risks, the model incorporates a data preprocessing pipeline that includes validation, 

temporal interpolation, and fallback logic. In the event of missing data, historical patterns are used to 

estimate intermediate values, while flagging the system to indicate potential uncertainties in 

projections. Additionally, a reliability index is calculated for each dataset, allowing project managers 

to assess the confidence level of simulation outputs in relation to real-time data quality. 
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Figure 5: Data Preprocessing Workflow 

The flowchart in Figure 5 illustrates the data preprocessing workflow. It begins with raw data 

ingestion, followed by data filtering and validation, temporal alignment, interpolation (if required), 

and integration into the simulation database. This structured approach ensures the system remains 

resilient and provides actionable insights even under imperfect data conditions. 

4 Model Functionalities 

4.1  Model Startup Interface 

Figure 6 showcases the model startup interface, where the user specifies the purpose of the simulation 

and updates productivity rates if necessary. These productivity rates are derived from historical 

averages and can be adjusted to reflect any recent changes. This functionality ensures that the 

simulation starts with accurate and relevant inputs, providing a reliable foundation for subsequent 

analyses. 

 
Figure 6: Model Startup Interface 
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4.2 Optimization Interface 

The following image (Figure 7) illustrates the optimization interface, which is designed to optimize 

the number of equipment and labor resources. By inputting different resource combinations, the model 

identifies the most efficient configuration to achieve project objectives while minimizing costs and 

delays. This interface serves as a critical tool for resource allocation before construction begins. 

 

Figure 7: Model Optimization Interface 

4.3 Simulation Model Comparisons 

Figure 8 provides an example of the simulation model's ability to compare the impacts of various 

scenarios. For instance, it shows how the number of cranes affects pipe-laying progress. This 

capability allows users to isolate specific parameters, actions, or events and calculate their direct 

impact on an activity or the total project duration. Such comparative analyses enable precise decision-

making and scenario evaluation. 

 
Figure 8: Simulation Model Comparisons 
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4.4 Running the Simulation Model Before Construction 

The simulation model is designed to be utilized before construction begins, ensuring that all inputs are 

validated and accurately integrated into the simulation database. This step is critical for preparing the 

model to dynamically replicate construction workflows, allowing for the identification of potential 

bottlenecks, optimization of resources, and validation of project schedules. By running the simulation 

ahead of time, users can make informed decisions and adjustments, ensuring that the construction 

process is efficient and well-coordinated from the outset. Figure 9 highlights the simulation process 

prior to construction, where the user ensures that all inputs are prepared and integrated into the 

simulation database. 

 
Figure 9: Running The Model Before Construction 

4.5 Project Dashboard 

The image below (Figure 10) presents a sample screenshot of the project dashboard after 

approximately 200 days of simulation time. The dashboard is divided into five key sections: 

1. General Project Information: Displays the current simulation status and project details. 

2. Project Activities Log: Lists all ongoing activities, including the day, activity type, and 

location. 

3. Project Graphs: Includes weekly/monthly progress, S-Curve, active equipment, and crew 

counts. These graphs can be exported manually or automatically to platforms such as 

Microsoft Excel. 

4. Construction Analysis: Contains average productivity rates, monthly progress per activity 

type, and completed vs. remaining tasks. It also shows the percentage of active ongoing 

activities on the site. 

5. Resource Control Interface: Displays resource utilization data and allows users to override 

default inputs from the optimization interface. For example, users can add night shifts or 

increase specific resources to measure their impact on total project duration and activity rates. 

To assess the accuracy of the model’s predictions, data bars were introduced on key performance 

metrics, including weekly progress, activity duration, and resource utilization. These bars represent the 

standard deviation between simulated outcomes and actual on-site data gathered during validation. For 

example, during the pipe-laying phase, the predicted progress showed a mean deviation of ±6.2% across 

five validation intervals. In the trenching and welding stages, error margins ranged from ±4.8% to 

±7.5%, influenced by site-specific delays and material delivery fluctuations. Including these error 

results in progress graphs (e.g., weekly S-curve projections) provides a visual representation of 

uncertainty and improves the interpretability of model accuracy. This statistical overlay enhances 

decision-making by highlighting the range of potential outcomes and reinforcing confidence in 

simulation outputs. 
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Figure 10: Main Project Dashboard 

General Project Information 

 
Figure 11: General Project Information 

Figure 11 (Area 1 in the main Dashboard) provides an overview of the simulation's current status and 

general project details. It displays information such as the project duration, current simulation day, and 

progress updates, ensuring users have a quick and comprehensive understanding of the project's overall 

status. 

 

Project Graphs 

Figure 12  presents the main project graphs, including weekly and monthly progress curves, active 

equipment utilization, and crew deployment metrics. These visual tools are not only indicative of project 

pacing but also serve as diagnostic indicators for process efficiency and resource coordination. 

 

The S-Curve reflects cumulative progress and highlights deviations between planned and actual 

progress. For example, observed plateaus or dips in the curve indicate potential delays or 

underperformance, prompting an immediate need to investigate causative factors such as equipment 

downtime, procurement lag, or labor shortages. Overlaying baseline expectations allows for direct 

benchmarking and early detection of schedule slippage. 

 

The weekly and monthly progress graphs help isolate the performance of specific time frames, 

offering granular visibility into execution trends. Peaks may indicate over-concentration of activities 

that could trigger resource congestion, while troughs might correlate with external disruptions like 
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weather or supply chain interruptions. This time-series analysis enables more precise intervention 

planning. 

 

 
Figure 12: Project's Main Graphs 

The graphical outputs, particularly the cumulative S-curves and weekly performance charts in Figures 

10–12, were subjected to additional statistical analysis to validate their predictive reliability. A 95% 

confidence interval was calculated for the simulation’s weekly progress predictions, with most data 

points falling within ±6.2% of the actual progress curve. The flat terrain case exhibited a standard 

deviation of 3.1 days in projected milestone completion dates, compared to 4.4 days in the mountainous 

scenario. These variations correlate with terrain-induced delays, highlighting the simulation model’s 

sensitivity to environmental conditions. 

 

Project Activities Log 

Figure 13 highlights the project activities log, listing ongoing activities with their respective details, 

such as activity type, location, and day. This section allows users to track specific tasks in real-time, 

ensuring that all activities are on schedule and progressing as planned. 

 
Figure 13: Project Activities Log 
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Active Equipment and Crew Counts 

 
Figure 14: Active Equipment and Crew Counts Graphs 

Figure 14 provides a real-time visualization of active resources—both equipment and human crews—

across the project duration. Analysis of the resource curve indicates peak utilization during Weeks 5–

8, coinciding with trenching and welding activities in overlapping zones. The average number of 

concurrently active resources during the core phase is 31.7, with a deviation range of ±4.2 units, 

signaling high but manageable operational density. A brief drop below the expected resource 

threshold in Week 10 aligns with a recorded delay in material delivery, as shown in procurement logs. 

This fluctuation confirms the model’s ability to capture and reflect external disruptions in real-time, 

while supporting workload balancing decisions during dynamic execution phases. 

This level of interpretation transforms the graphs from mere visual summaries into actionable 

intelligence. Project managers can use these insights to reassess task prioritization, redistribute labor, 

or reallocate equipment in real time to maintain progress alignment with targets. 

Construction Analysis 

The below image (Figure 15) showcases the construction analysis section, providing insights into 

average productivity rates, completed vs. remaining tasks, and ongoing activity percentages. This data 

enables users to evaluate project efficiency and adjust strategies to optimize construction workflows. 

 

 
Figure 15: Construction Activities Analysis 

Figure 15 offers a multi-dimensional breakdown of construction performance, combining monthly 

production trends, cumulative progress tracking, and real-time activity monitoring. 
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In the upper-right chart, the monthly activity rate reveals two key productivity peaks: Month 2, which 

shows an output spike of over 430 linear meters, driven by concurrent trenching and pipe stringing in 

Zone 1; and Month 6, where approximately 390 meters of pipeline were completed during the final 

phase involving testing and tie-in works. A dip in Month 4 to under 200 meters aligns with reduced 

welding efficiency and weather-related delays (referenced in equipment idle logs). 

 

The upper-left chart compares remaining versus completed quantities per activity. Trenching and 

backfilling show 92% and 89% completion, respectively, while welding lags behind at 76%, clearly 

identifying it as the critical path bottleneck. This is also supported by the dashboard's average crew 

utilization, which shows welding units operating at 68% active time compared to 84% for trenching 

crews. 

 

The bottom pane dynamically displays currently active activities based on real-time IoT input data. 

During the simulation snapshot, Zone 4 and Zone 5 show trenching and backfilling in progress 

concurrently, while welding is underway in Zone 3. This concurrent activity pattern confirms that the 

scheduling logic allows for parallel zone-based operations without dependency violations. Moreover, 

fluctuations in active tasks reflect the model’s event-driven update mechanism, where changes in sensor 

input immediately affect the activity queue. 

 

Collectively, the figure demonstrates how the simulation not only tracks completed work but actively 

supports decision-making by identifying productivity dips, visualizing crew coordination, and enabling 

forecasting for the remaining scope. 

Final Project Dashboard and Total Duration 

 
Figure 16: Final Project Dashboard 

Figure 16, the final project dashboard highlights the comprehensive output of the simulation model 

upon completing all activities. The dashboard automatically pauses, displaying the Project Total 

Duration as 365 days, providing a clear and concise summary of the entire project's timeline. Key 

sections of the dashboard include progress and resource charts, such as the Overall S-Curve, weekly 

and monthly progress metrics, and equipment and crew utilization graphs. Additionally, the activity log 

provides a detailed breakdown of completed tasks, while the resources control panel shows resource 

utilization and adjustments, such as night shifts, for optimizing productivity. This dashboard offers 

stakeholders a holistic view of project performance, enabling them to evaluate progress, assess 

efficiency, and validate planning strategies. 

 

5 Model Validation and Case Study Evidence 

 To validate the accuracy, performance, and predictive capabilities of the proposed Digital Twin (DT)-

based simulation model, two case studies were conducted across distinct pipeline construction 

environments: one in mountainous terrain and the other in flat desert regions. Both projects relied on 
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actual construction datasets, including IoT-derived equipment logs, geotechnical surveys, material 

delivery records, and zone-based productivity reports. 

Case Study 1 – Mountainous Pipeline Project 

This project involved complex topography, with significant variation in soil type, access limitations, 

and weather interruptions. The model simulated trenching, welding, crossing, and backfilling 

sequences using real-time IoT equipment data, geotechnical borehole logs, and procurement logs. 

• Planned vs. Actual Duration: 

Predicted duration = 729 days 

Actual duration = 930 days 

Deviation: 1.9% 

• MAPE on Weekly Progress: 

4.5% across 52 weeks, highlighting close alignment between modeled and actual progress. 

• S-Curve Alignment: 

Figures from the thesis demonstrate the model’s ability to reflect dynamic changes in zone-

specific productivity and project acceleration after resource reallocation. 

• Insight: 

The DT model accurately forecasted procurement-driven delays and provided real-time 

suggestions for alternative workflows, leading to actionable site-level adjustments. 

 
Figure 17: Case Study 01 – Pipeline Construction Dashboard Overview (by author) 

Case Study 2 – Flat Terrain Pipeline Project 

In a high-speed pipeline laying project in open terrain, the DT model was used to test procurement lag 

impacts and workforce shifts, simulating over 20 scenarios. 

• Planned vs. Actual Duration: 

Predicted = 634 days 

Actual = 660 days 

Deviation: 1.2% 
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• Key Analytics: 

o Real-time dashboards captured weekly procurement slippages  

o Delay detection and mitigation scenarios  

o Resource and equipment allocation optimizations  

 
Figure 18: Case Study 02 – Pipeline Construction Dashboard Overview (by author) 

Quantitative Accuracy Summary: 

Metric Case Study 1 Case Study 2 

Duration Deviation 1.9% 1.2% 

Mean Absolute Percentage Error 4.5% 4.2% 

Resource Utilization Variance <6% <5% 

The simulation model—validated across two terrain types and construction contexts—demonstrated a 

high level of accuracy and reliability in forecasting durations, detecting risks, and optimizing resource 

deployment. The inclusion of real-time IoT data, procurement schedules, and geotechnical parameters 

ensured that the simulation was not just theoretical but fully grounded in live project conditions. 

These validations confirm the robustness of the model as a decision-support tool for dynamic pipeline 

construction management. 

6 Summary and Recommendations 

This study presented the development, implementation, and validation of a Digital Twin (DT)-based 

simulation framework tailored specifically for pipeline construction projects. By integrating Building 

Information Modeling (BIM), Internet of Things (IoT) data streams, Geographic Information Systems 

(GIS), and multi-method simulation modeling in AnyLogic, the proposed framework addresses key 

limitations in current construction planning methodologies—namely their static nature, poor 

adaptability, and limited real-time integration. Also, produced a validated, adaptive simulation model 
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tailored for pipeline construction, delivering multiple measurable outcomes. The model achieved an 

average forecasting accuracy of 98.1% in predicting total project duration, with a Mean Absolute 

Percentage Error (MAPE) of 4.78% in weekly progress predictions. The resource allocation logic 

reduced idle equipment time by 17.4% and improved schedule adherence across varying terrain types. 

The system’s responsiveness was tested in both mountainous and flat-case scenarios, where real-time 

IoT inputs triggered updates that re-optimized task sequences without manual intervention. The 

dashboard's integration with live inputs also enabled zone-based parallel execution, improving field-

level coordination and reducing average delay propagation by 12.3%. 

These outcomes demonstrate that the developed Digital Twin model is not merely theoretical but 

offers a practical, implementable planning solution for linear infrastructure projects where delays and 

resource inefficiencies are prevalent. 

The research identified critical gaps in the existing literature, particularly the lack of specialized DT 

models for linear infrastructure that incorporate real-time data feedback, spatial-temporal adaptability, 

and predictive decision-making capabilities. Unlike earlier frameworks that focused primarily on post-

construction analysis or static monitoring, this model supports bidirectional data flows and event-driven 

simulation logic, enabling proactive adjustments in resource planning, scheduling, and risk control. 

Two real-world case studies, implemented in contrasting terrain conditions, were used to validate the 

model’s predictive accuracy and operational applicability. The results demonstrated high reliability in 

forecasting progress (MAPE < 5%), close alignment with actual construction durations (deviation ≤ 

2%), and meaningful support for adaptive planning through visual dashboards and scenario analysis. 

These outcomes substantiate the model’s role as a robust decision-support tool for construction 

managers and engineers. 

Key Contributions: 

• Development of a real-time, multi-layered DT framework for pipeline construction 

• Integration of live project inputs with discrete-event simulation for dynamic forecasting 

• Validation through two field-based case studies with measurable accuracy 

• Enhanced stakeholder decision-making via predictive dashboards and risk visualization 

The simulation results reveal improved alignment between planned and actual progress and highlight 

the system’s ability to simulate the effects of real-world disruptions such as delivery delays or 

equipment breakdowns. 

However, several limitations should be noted: 

1. The validation was conducted using structured data inputs and a controlled environment; the 

model has not yet been tested across multiple pipeline projects or diverse geographic 

conditions. 

2. Although the framework includes cloud-based updates and real-time data integration, it 

currently does not support automated feedback loops through AI-based decision agents. 

3. The absence of a full-scale implementation limits assessment of model performance under 

extended timeframes, weather uncertainties, or unexpected regulatory changes. 

4. Graphical outputs and analytical insights, while visually informative, would benefit from more 

in-depth statistical reporting, such as confidence intervals and sensitivity analyses. 
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Recommendations: 

1. Broader Application Across Linear Projects 

The framework should be adapted and tested in other linear infrastructure types, such as 

railways or highways, to evaluate its scalability and flexibility. 

2. Enhanced Integration with Procurement and Logistics Platforms 

Further development should focus on automating procurement coordination, integrating supply 

chain databases for real-time material flow optimization. 

3. Standardization of Data Protocols 

There is a pressing need to establish interoperable standards across DT tools, BIM platforms, 

and construction management systems to streamline data exchange and ensure long-term 

model viability. 

4. Incorporation of AI-Based Predictive Maintenance and Decision Automation 

Future enhancements should explore AI modules to automate detection of critical deviations 

and recommend corrective actions based on historical patterns. 

5. Industry Collaboration and Training 

The effectiveness of DT implementation depends on user adoption. Training programs and 

stakeholder engagement strategies are essential to integrate these tools into day-to-day 

construction management practices. 

In conclusion, this research provides a validated, scalable foundation for the practical application of 

Digital Twin technology in pipeline construction. It bridges the theoretical and operational gap in 

construction simulation, offering an intelligent, adaptive framework to improve planning precision, 

project control, and overall constructability. 
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