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Abstract: The rise of ride-hailing services has brought growing safety concerns, espe-

cially incidents of verbal harassment during trips. While prior research has focused 

mainly on visual-based violence detection, this study addresses the underexplored 

area of real-time speech-based harassment detection. We present a multimodal safety 

framework that integrates OpenAI's Whisper for speech transcription with a fi-

ne-tuned DistilBERT model for toxicity classification, trained on the Jigsaw Toxic 

Comment Classification dataset. Our system achieves an impressive 93.8% accuracy, 

surpassing current state-of-the-art methods in toxic speech detection. While real-time 

capability is demonstrated through system design and latency evaluation, large-scale 

field trials remain future work. Designed for real-time processing, the framework 

enables proactive safety monitoring, making it ideal for ride-hailing and similar dy-

namic urban environments. This work contributes to the field by effectively combin-

ing automatic speech recognition and natural language processing for real-world 

safety applications. By bridging the gap between static datasets and live environ-

ments, our approach offers a practical, scalable, and impactful solution for enhancing 

passenger safety through real-time verbal abuse detection. 

Keywords: Ride-hailing safety; Real-time violence detection; Speech-based analysis; 

Toxic comment classification; DistilBERT. 

 

1. Introduction 

The rapid proliferation of ride-hailing services has revolutionized urban transportation, offering convenience 

and accessibility to millions of users worldwide. However, this growth has also exposed significant safety 

concerns, particularly related to incidents of harassment, verbal abuse, and violence during trips. Our prior 

work on visual-based violence detection using YOLOv8 and TSM-ResNet50 successfully demonstrated the ef-

ficacy of computer vision in identifying physical aggression inside vehicles [1]. This previous research was not 

intended as a comprehensive solution but rather as a foundational step toward enhancing passenger safety. 

Recognizing that many threats manifest verbally before escalating into physical violence, the current study 

expands on this foundation by addressing the crucial gap of real-time detection of verbal harassment through 

speech-based analysis. Thus, our work aims to provide a more complete, multimodal safety framework for 

ride-hailing services that covers both visible violence and covert verbal abuse. Our system captures audio input 

via a microphone, transcribes it using OpenAI’s Whisper, a robust speech recognition model based on trans-

former architecture, and then applies a fine-tuned transformer-based NLP model (DistilBERT) trained on the 

Jigsaw Toxic Comment Classification dataset [‎2]. This integration enables the real-time detection of verbal 

threats or harassment, triggering automated alerts or evidence recording without the need for hu-

man intervention. 
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Although our primary application involves ride-hailing speech, no publicly available dataset exists in this do-

main. Constructing a new dataset would require large-scale audio collection, transcription, and annotation, 

raising significant privacy, ethical, and scale challenges. For this reason, we selected the Jigsaw dataset, a 

widely used and well-annotated toxicity resource. While not ride-hailing–specific, its extensive coverage of 

harassment patterns (insults, threats, hate speech) provides a strong and transferable foundation for training. 

This makes it a practical choice for initial model development, even as we recognize the need for future do-

main-specific datasets. 

Though various text classification datasets exist, many lack the contextual diversity relevant to in-vehicle in-

teractions. For instance, the Hate Speech and Offensive Language Dataset [‎3] is primarily sourced from Twitter 

and lacks conversational context, while Davidson et al.'s Toxic Comment Dataset [‎4] focuses on racial or polit-

ical hate speech and misses subtler forms of aggression. The Jigsaw dataset [‎2] provides over 150,000 annotated 

samples covering multiple toxicity subtypes—including toxic, severe_toxic, obscene, threat, insult, and identi-

ty_hate—offering fine-grained abuse categorization. For this study, these categories were consolidated into a 

single binary toxic label, making the dataset well-suited for developing and evaluating real-time toxic comment 

detection systems. 

Previous studies on speech- and text-based aggression detection have faced limitations like reliance on offline 

datasets or absence of real-time processing. MacAvaney et al. [‎5] developed a multi-view SVM for hate speech 

detection on static Twitter datasets but explicitly noted its inability to process streaming audio or run on edge 

devices. Wiegand et al. [‎6] examined transformer-based hate speech detection on social media text but did not 

integrate speech recognition. Zhang et al. [‎7] proposed a BERT-based toxic speech classifier limited to written 

chat, without real-time spoken input. These gaps underscore the need for an end-to-end, live speech harass-

ment detection system for practical deployment. 

Our study fills this gap by continuously analyzing live microphone input with fast transcription and trans-

former classification. This real-time capability makes the system suitable for proactive safety monitoring in 

ride-hailing vehicles, public transport, and other mobile environments. 

2. Related Work 

Artificial Intelligence (AI) has demonstrated transformative impact across sectors such as finance, education, 

and healthcare, where it has been applied to fraud detection [‎8], adaptive learning [‎9], and diagnostics [‎10]. 

Within this broader AI landscape, Natural Language Processing (NLP) has emerged as a key subfield, enabling 

systems to understand and process human language. NLP has been widely adopted in sentiment analysis [‎11], 

fake news detection [‎12], and mental health monitoring [‎13], with transformer-based models like BERT and 

DistilBERT achieving high accuracy on text classification tasks. In parallel, speech recognition technologies 

have advanced through models like DeepSpeech [‎14] and attention-based voice activity detectors [‎15], power-

ing real-time transcription, voice assistants, and emotion recognition systems. These applications highlight the 

growing capability of NLP to operate reliably in dynamic, real-world environments, laying the groundwork for 

safety-critical systems like the one proposed in this study. Recent studies have specifically addressed toxicity in 

spoken language, with [‎16] developing novel methods for detecting toxic speech patterns in real-world audio 

data. Multilingual approaches like [‎17] have evaluated hate speech detection across diverse languages, while 

[‎18] applied knowledge distillation to optimize toxicity classification efficiency. Practical implementations such 

as [‎19] demonstrate how intelligent systems can mitigate verbal harassment in dynamic environments, though 

challenges remain in dataset consistency as highlighted by [‎20]'s critical analysis of hate speech annotation 

frameworks. These applications highlight the growing capability of NLP to operate reliably in dynamic, re-

al-world environments, laying the groundwork for safety-critical systems like the one proposed in this study. 

3. Methodology 

3.1. Dataset Preparation 

This study leverages the Jigsaw Toxic Comment Classification Challenge dataset [‎2] , which contains over 

150,000 Wikipedia talk page comments annotated for six distinct categories of toxicity: toxic, severe_toxic, ob-
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scene, threat, insult, and identity_hate. Each comment may belong to multiple categories, making the original 

problem a multi-label classification task. 

For the purpose of this study, we redefined the task as a binary classification problem, aiming to distinguish 

between toxic and non-toxic content. To achieve this, a new binary target label, toxic, was derived by aggre-

gating the six original toxicity columns using a logical OR operation. This unified label marks a comment as 

toxic (1) if it belongs to any of the six categories, and non-toxic (0) otherwise. 

After removing unnecessary columns and cleaning the dataset, we obtained a total of 159,571 valid comments, 

of which 16,225 (≈10.17%) were labeled as toxic and 143,346 (≈89.83%) as non-toxic—highlighting a significant 

class imbalanceTo address this, we experimented with several balancing strategies, including SMOTE and re-

lated oversampling techniques. However, these approaches either failed to improve performance or in some 

cases degraded it, likely due to the synthetic generation of non-contextual samples. In contrast, random un-

dersampling proved most effective, as it reduced the imbalance while maintaining stable classification results. 

Based on this outcome, we constructed a partially balanced dataset by selecting 18,775 non-toxic comments 

alongside the 16,225 toxic comments, resulting in a final dataset of 35,000 samples. 

This balanced dataset was then used for model development, supporting real-time toxic comment classification. 

The preprocessing pipeline included standard text normalization and tokenization using DistilBERT’s to-

kenizer, with a maximum input length of 512 tokens to retain contextual integrity. This strategy allowed us to 

focus on the general presence of toxicity, rather than its specific subtypes, while ensuring computational effi-

ciency and effectiveness in real-time applications. 

3.2. Model Architecture and Implementation Approach 

3.2.1. Model Architecture 

For our toxic comment classification task, we adopted DistilBERT, as shown in Figure 1 [‎21], a distilled version 

of the original BERT model. DistilBERT was introduced by Sanh et al. as a smaller, faster, and more efficient 

transformer model while retaining much of BERT's performance [‎22]. The key concept behind DistilBERT is 

knowledge distillation, where a compact student model (DistilBERT) learns from a larger teacher model (BERT) 

to mimic its performance [‎22][‎23]. DistilBERT reduces the number of transformer layers from 12 to 6, eliminates 

token-type embeddings and the next sentence prediction (NSP) objective, and shrinks the hidden dimension 

size—all while preserving around 97% of BERT’s original performance [‎22]. It maintains the transformer en-

coder structure based on multi-head self-attention followed by feed-forward neural networks, allowing it to 

capture long-range dependencies and semantic relationships in text effectively [‎24]. To enhance accessibility, 

we extended the system with Whisper, an automatic speech recognition (ASR) model developed by OpenAI. 

Whisper is based on an encoder-decoder transformer architecture and trained on a large-scale, multilingual, 

and multitask dataset [‎25][‎26]. In our system, the user speaks into a microphone, and Whisper transcribes the 

speech into text. This transcription is then forwarded to the DistilBERT-based classifier for toxicity prediction, 

enabling real-time toxic comment detection from spoken input. 
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Figure 1. Comparison between BERT and DistilBERT architectures, highlighting the reduced complexity and faster inference of 

DistilBERT, which makes it more suitable for real-time mobile applications. 

3.2.2 Implementation Approach 

The implementation leverages the Hugging Face transformers and datasets libraries for efficient model training 

and data handling. We fine-tuned the pretrained distilbert-base-uncased model using the AutoModelForSe-

quenceClassification class, configuring it for binary classification, where the model predicts whether a comment 

is toxic (1) or clean (0). The original multi-label toxicity annotations from the Jigsaw dataset were consolidated 

into a single binary label to simplify the classification task and enable real-time responsiveness. 

The dataset was loaded and split into training and evaluation sets using an 80/20 ratio. Each comment was to-

kenized using the AutoTokenizer with padding and truncation applied to a maximum length of 512 tokens. The 

model outputs logits, which are passed through a softmax function to obtain class probabilities, and the class 

with the highest probability is selected as the predicted label. 

We used Hugging Face’s Trainer API, which simplified training by managing the optimization loop, evaluation 

scheduling, logging, and checkpointing. The model was trained for 5 epochs with a batch size of 16, applying 

weight decay for regularization. Evaluation was conducted at the end of each epoch using accuracy, precision, 

recall, and F1-score, which are well-suited for assessing binary classification performance and handling class 

imbalance. 

For speech input, the system records 5 seconds of audio using the sounddevice library. The audio is normalized 

and transcribed using the Whisper base model. The resulting text is then tokenized and passed through the 

fine-tuned DistilBERT classifier. The output logits are converted to class probabilities using softmax, and the 

toxic class probability is evaluated against a 0.5 threshold. The final verdict is printed in real time, indicating 

whether the input speech was toxic or clean. 

This pipeline demonstrates a practical and interactive approach to toxic content moderation, integrating natural 

language processing and speech recognition in a seamless user experience. 

3.3 Evaluation Metrics 

To assess classification performance, we employed four standard metrics, each providing complementary in-

sights into model behavior: 

1. Precision [‎27]: Quantifies the reliability of positive predictions by measuring the proportion of true posi-

tives among all predicted positives. 
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2. Recall (Sensitivity) [‎27]: Measures the model’s ability to identify all relevant instances by calculating the 

proportion of true positives detected among all actual positives. 

       ( )   
  

     
 (2) 

3. Accuracy [‎27]: Represents the overall correctness of predictions across both positive and negative classes. 

          
     

           
 (3) 

4. F1-Score [‎28]: Harmonizes precision and recall into a single metric, particularly valuable for imbalanced 

data. 

            
   

   
  (4) 

4. Results 

This section presents the experimental evaluation of the proposed system, focusing on toxic content de-

tection using the DistilBERT transformer model. The results highlight the model's performance across 

multiple evaluation metrics, including accuracy, precision, recall, and F1-score, demonstrating its effec-

tiveness in identifying harmful content in text-based interactions. Performance trends over training 

epochs are also discussed to assess generalization and overfitting. 

4.1 DistilBERT Results 

4.1.1 Performance Metrics 

DistilBERT demonstrated strong performance in toxic content classification. Table 1 summarizes the 

model's performance across both the validation and test sets after training for 5 epochs. The model 

maintained consistent accuracy, precision, recall, and F1-score, reflecting its effectiveness and generaliza-

tion ability. 

 

Table 1. DistilBERT Performance on Validation and Test Sets 

Metric Validation Set Test Set 

Loss 0.4834 0.1723 

Accuracy 0.9356 0.9376 

Precision 0.9303 0.9215 

Recall 0.9334 0.9486 

F1-Score 0.9319 0.9348 

These results confirm that the model performs robustly on unseen data, achieving high recall and precision, 

which are crucial for minimizing both false negatives and false positives in toxic content detection tasks. 

4.1.2 Graphical Analysis 

To further understand the model’s classification behavior, three important evaluation graphs were plotted: the 

Confusion Matrix, ROC Curve, and Precision-Recall Curve. 

 Confusion Matrix 

The confusion matrix provides insights into how well the classifier differentiates between classes as shown in 

Figure 2. 
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Figure 2. Confusion matrix of the proposed system on the test set, showing the distribution of true positives, true negatives, false 

positives, and false negatives for toxicity classification. 

The high number of true positives and true negatives, with relatively few misclassifications, indicates that the 

model performs reliably and is balanced in detecting both toxic and non-toxic content. 

 The ROC curve 

The ROC curve, which plots the True Positive Rate against the False Positive Rate, shows an AUC of 0.99 — a 

near-perfect score. This demonstrates the model’s exceptional ability to distinguish between toxic and non-toxic 

content. 

 

Figure 3. ROC curve of the proposed model, illustrating the trade-off between true positive rate and false positive rate, with a high 

AUC indicating strong performance. 

With an AUC of 0.99, the ROC curve confirms the model's high accuracy in separating toxic from non-toxic 

comments, making it a reliable choice for binary text classification. 

 The Precision-Recall curve 
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The Precision-Recall curve illustrates the balance between precision and recall across different thresholds. This 

type of curve is particularly informative when dealing with imbalanced datasets, as it focuses on the perfor-

mance related to the positive class (in this case, toxic comments). 

 

Figure 4. Precision–Recall curve of the proposed model, emphasizing its ability to maintain high precision and recall even in the 

presence of imbalanced data. 

The smooth shape of the curve indicates that the model sustains high precision while also achieving strong 

recall. This confirms its effectiveness in correctly identifying toxic content without generating excessive false 

positives — a crucial quality in real-world moderation tasks where class imbalance is often present. 

4.2 Sample of the Classification Results 

This subsection showcases real-world examples of the model's predictions to demonstrate its behavior in di-

verse contexts. Each example includes the recognized speech input, raw model output logits, class probabilities, 

predicted toxicity score, and the final verdict. These samples highlight the model’s sensitivity to aggressive or 

harmful language, as well as its ability to correctly classify neutral or polite speech. 

For instance, in Figure 5, the phrase “Your car smells like shit!” received a toxicity probability of 99.95%, leading 

to a correct classification as toxic. Similarly, in Figure 6 and Figure 7, highly offensive or threatening phrases 

like “You picked the worst road idiots!” and “Shut up or I will drop you off here.” were also flagged as toxic, 

with probabilities above 99%, confirming the model's robustness in handling harmful speech. 

 

Figure 5. Example of an explicitly toxic comment (“Your car smells like shit!”) transcribed by Whisper and classified by the system 

with 99.95% toxicity probability, demonstrating effective detection of profanity. 
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Figure 6. Example of explicit toxicity (“You picked the worst road idiots!”) transcribed by Whisper and identified with 99.95% 

toxicity probability, showing reliable handling of direct insults. 

 

Figure 7. Example of a threatening statement (“Shut up or I will drop you off here.”) transcribed by Whisper and classified with 

99.83% toxicity probability, highlighting sensitivity to safety-critical language. 

On the other hand, the model demonstrated strong precision in recognizing non-toxic utterances. As shown in 

Figure 8, the phrase “Hello, what's in the best road for you today?” received a toxicity score of just 0.15%, and 

was correctly classified as clean. Likewise, statements like “Accept card payments only please” in Figure 9 were 

also correctly identified as non-toxic. 

 

Figure 8. Example of a clean, non-toxic comment (“Hello, what’s in the best road for you today?”) transcribed by Whisper and 

classified with only 0.15% toxicity probability, showing robustness to polite speech. 
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Figure 9. Another example of clean input (“Accept card payments only please.”) transcribed by Whisper and classified with 0.07% 

toxicity probability, reinforcing reliability on neutral requests. 

Interestingly, borderline cases like “You are the third cancellation today.” in Figure 10 were labeled as toxic 

with a 75.4% probability. To clarify how such intermediate scores are interpreted, we propose a tiered response 

system for deployment. Utterances with very high toxicity probabilities (≥90%) would trigger immediate alerts 

or interventions, whereas moderate scores (50–90%) would be logged or flagged as soft warnings rather than 

treated as definitive harassment. This tiered framework directly addresses the real-world cost of false positives 

by ensuring that uncertain cases do not trigger disruptive actions, while still preserving valuable evidence for 

review. This showcases the model’s cautious approach to language that might carry implicit aggression or 

dissatisfaction, even when profanity is not present. 

 

Figure 10. Example of a borderline case (“You are the third cancellation today.”) transcribed by Whisper and assigned 75.40% 

toxicity probability. Under the proposed tiered response framework, this would be flagged as a soft warning rather than a critical 

incident, illustrating nuanced handling of implicit aggression. 

These examples collectively demonstrate the model's capacity to differentiate between direct toxic language, 

neutral content, and nuanced statements that may carry latent hostility, making it suitable for real-time content 

moderation in dynamic environments like ride-sharing or in-vehicle systems. 

4.3 Comparative Analysis 

To evaluate the effectiveness of our model, we compare its performance with results reported in similar studies: 

Zaheri et al. (Southern Methodist University) [‎29], who evaluated Naïve Bayes and LSTM models for toxic 

comment classification; Kurita et al. (Carnegie Mellon University) [‎30], who explored robustness in toxic con-

tent classification using Logistic Regression, FastText, ELMo, BERT, and their proposed CDAE model under 

different noise conditions; and Magzoub (University of Twente) [‎31], who assessed CNN, LSTM, and SVM 

models for binary and multi-class toxic comment classification on Discord data. The following Table 2 presents 

a comparative overview of the performance metrics across these studies and our proposed model: 
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Table 2. Performance comparison of our model with state-of-the-art approaches in toxic comment classification 

Model Accuracy Precision Recall F1-Score 

Our DistilBERT Model 0.938 0.922 0.949 0.935 

Zaheri et al. [‎29] - LSTM - 0.81 0.66 0.73 

Zaheri et al. [‎29] - NB - 0.94 0.48 0.64 

Kurita et al. [‎30] - BERT (None/None) - - 0.914 0.685 

Kurita et al. [‎30] - FastText (None/None) - - 0.902 0.674 

Magzoub [‎31] - CNN Binary 0.904 0.506 0.891 0.645 

Magzoub [‎31] - SVM Binary 0.928 0.596 0.812 0.687 

In terms of precision-recall trade-off, our model achieves a superior balance with a precision of 0.922 and recall 

of 0.949, outperforming all baseline models, including BERT (precision: N/A, recall: 0.914) from Kurita et al. [‎30] 

and SVM Binary (precision: 0.596, recall: 0.812) from Magzoub [‎31]. Notably, our F1-score of 0.935 demonstrates 

stronger harmonic mean performance compared to Zaheri et al.’s [‎29] LSTM (0.73), Kurita et al.’s [‎30] best BERT 

configuration (0.685), and Magzoub’s [‎31] SVM (0.687). Furthermore, our accuracy (0.938) exceeds the highest 

reported accuracy in Magzoub [‎31] (0.928 with SVM Binary) while maintaining robustness across other metrics. 

These results highlight the efficacy of our method in toxic content classification, particularly in achieving high 

recall without compromising precision—a critical requirement for real-world moderation systems. 

5. Discussion 

The results of this study highlight the effectiveness of combining speech recognition (Whisper) and NLP 

(DistilBERT) for real-time verbal harassment detection in ride-hailing scenarios. Our model outperformed ex-

isting approaches, such as LSTM, Naïve Bayes, and even standard BERT, in terms of accuracy, precision, recall, 

and F1-score. This success can be attributed to the fine-tuning of DistilBERT on a consolidated binary toxicity 

label, which simplified the classification task while maintaining contextual integrity. One notable strength of 

our system is its ability to handle nuanced and borderline cases, such as implicit aggression without profanity, 

as demonstrated by the 75.4% toxicity probability for the comment, "You are the third cancellation today." This 

sensitivity is crucial for real-world applications where subtle verbal cues may precede escalation. However, the 

system's cautious approach could also lead to false positives, which may require further refinement to balance 

sensitivity and specificity. In practical deployment, these borderline classifications could be managed using 

adaptive thresholds, where repeated borderline utterances gradually escalate in severity, or by incorporating a 

human-in-the-loop review process for ambiguous cases. Such measures ensure that uncertain predictions do 

not immediately trigger disruptive interventions, while still preserving evidence for oversight. 

The integration of Whisper for real-time transcription ensures seamless processing of spoken input, addressing 

a key limitation of prior work that relied on static text datasets. This makes our solution practical for deploy-

ment in mobile environments. Nonetheless, challenges remain, such as handling multilingual contexts and 

noisy audio conditions, which could be explored in future research. Comparisons with state-of-the-art models 

underscore the superiority of our approach, particularly in achieving high recall without sacrificing precision. 

This balance is critical for safety applications, where missing a genuine threat (false negative) is more conse-

quential than a false alert. By combining high recall with operational safeguards for managing borderline cases, 

the system can maintain sensitivity to potential risks while limiting the practical cost of false positives. 

The system’s performance was evaluated using the Jigsaw dataset, which is based on Wikipedia comments and 

is one of the largest publicly available resources for toxicity detection. Although this dataset is not ride-hailing–

specific, it was selected because of its extensive annotation quality, large scale, and wide coverage of harass-

ment patterns (including insults, threats, and aggressive language). To better align it with the ride-hailing safety 

context, we applied undersampling to balance the classes and consolidated the multiple toxicity labels into a 

single binary label (toxic vs. non-toxic). This preprocessing simplified the task while retaining the richness of 

the toxic language patterns. We acknowledge, however, that a domain gap remains between written online 

comments and spoken in-vehicle interactions, and future research should focus on bridging this gap through 

domain-specific data collection and adaptation.  
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5.1 Ethical Considerations and Privacy Compliance 

Beyond technical performance, the deployment of a continuous audio monitoring system raises important eth-

ical and privacy considerations. Any real-world implementation must ensure explicit user consent and trans-

parency, allowing riders and drivers to opt in to the monitoring feature. To safeguard privacy, we propose a 

limited retention policy: audio is securely stored only if an incident is reported and deleted within 24 hours 

otherwise. In both cases, recordings would be anonymized and protected by secure storage protocols to prevent 

misuse. These measures are consistent with principles from privacy frameworks such as GDPR and are essen-

tial to balance the safety benefits of real-time monitoring with respect for user autonomy and data protection. 

6. Conclusions 

This study introduces an effective real-time speech-based violence detection system designed to enhance safety 

in ride-hailing services. By integrating Whisper for speech transcription and a fine-tuned DistilBERT model for 

toxicity classification, the system demonstrates strong performance and practical applicability. Notably, it sur-

passes traditional and widely used models—including LSTM, Naïve Bayes, and standard BERT—highlighting 

the advantages of using a lightweight transformer model fine-tuned for binary toxicity detection. Beyond its 

accuracy, the system can identify both overt and subtle forms of verbal harassment, making it especially suita-

ble for dynamic and sensitive environments. Looking ahead, future work includes expanding support for mul-

tilingual input, addressing dialect variability, and improving robustness in noisy conditions. At present, the 

classifier remains restricted to English due to the use of the Jigsaw dataset, and extending the system to other 

languages will require multilingual or cross-lingual training resources. A key limitation of this work is the ab-

sence of domain adaptation and in-field validation. Future efforts should focus on bridging the gap between 

written online comments and spoken in-vehicle conversations through domain adaptation, crowdsourcing of 

ride-hailing speech data, or partnerships with ride-hailing providers to obtain anonymized, consent-based da-

tasets. Overall, this work advances real-time safety monitoring by bridging the gap between research models 

and real-world deployment. 
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