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1. Introduction 

 

The development of mixture models has important applications on a lot of applied fields. 

The mixture model has been expansively studied by numerous authors to provide a more 

comprehensive overview of numerical methods, discussions and applications we looked at 

some features of a finite mixture of a life-cycle model. In addition, hypotheses examining 

that number of modules have been explored. This paper focuses on deriving and estimating 

nonlinear discriminant functions from WPMD using a common shape criterion based on 

different sampling schemes [1]. Finite mixtures of distributions have been used as models 

throughout the history of modern statistics. The mixing of two populations is typically 

associated with two main difficulties. The first problem is to estimate the parameters of both 
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     This paper introduces the Weibull population mean distribution 

(WPMD), providing a method for the maximum likelihood estimates 

(MLEs) of the parameters in a finite mixture of Weibull population mean 

distributions. The methodology is investigated through both mixture and 

classified procedures. Measurement of nonlinear discriminant function 

estimates based on different sample sizes. that it presentation is examined 

by simulation experiments. The experiments result in estimating a nonlinear 

discriminant function using the maximum likelihood approach, based on 

mixture data obtained from a combination of the basic groups are proposed 

that the rate of errors can be greatly reduced for groups that are typically 

separated. Overall, the performance of the hybrid discriminant procedure 

(assessed in terms of overall probability) is good compared to the full 

classification approach. 
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populations using unclassified data. Another issue with the mixture model is the estimation 

of a discriminant function from unclassified data and the analysis of its performance [2]. 

Studies in this area have been under taken by O’Neill [3] and Ganasalingam and Mclachlan 

[4,5]. In all these studies the underlying population are assumed to be normal. Amoh [6] 

estimated a discriminant function from a mixture of two inverse Gaussian distributions 

when sample size is small. Mahmoud and Moustafa [7] have estimated a discriminant 

function from a mixture of two gamma distributions when the sample size is small. Ahmad 

[8] has studied small-sample results for a nonlinear discriminant function estimated from a 

mixture of two Burr type-XII distributions. Also, Ahmad and Abd-Elrahman [9] have 

studied a nonlinear discriminant function estimated from a mixture of two Weibull 

distributions. Mahmoud and Moustafa [10] have studied the errors of misclassification 

associated with the gamma distribution. Ahmad [11] has studied the efficiency of a 

nonlinear discriminant function based on unclassified initial samples from a mixture of two 

Burr type-XII distributions. Moustafa and Ramadan [12] have estimated a discriminant 

function from a mixture of two Gompertz distributions when the sample size is small. 

Recently, Ahmad et al. [13] have estimated a discriminant function from a mixture of two 

Gumbel distributions when the sample size is small. In response to these limitations, 

researchers began to explore alternative component distributions. Abd-Elrahman [14] 

introduces a novel statistical distribution, the Weibull population mean distribution WPMD, 

as a flexible alternative to existing models. The WPMD is characterized by its ability to 

accommodate various shapes of the hazard rate function, including increasing, decreasing, 

and bathtub shaped. This flexibility makes it suitable for modeling a wide range of real-

world phenomena, particularly in fields such as reliability engineering and survival analysis. 

We will refer to the Weibull population mean distribution as WPMD. To derive the WPMD, 

the probability density function (PDF) of the Weibull distribution is multiplied by the factor 

  
  

  
        , resulting in the following expression for the PDF of the WPMD: 

          (
 

 
) (

 

 
)
    

  (
 

 
)
 

                                                                     (1.1) 

where θ and λ are the scale and shape parameters, respectively. 

 

2. MLEs of the Parameters 

 

Suppose that  is a common parameter. Then, the probability density function of a 

mixture of two components of ),( iWPMD  is given by 

                                                                                                                                      (2.1)     

where   S(x)=                       
               (  ) =     

        
  

  

          ,   i = 1 , 2 

and ( 1,0  qp ) are the mixing proportions satisfy that 1 qp . 
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Let nxxxx ...,,, 21  be a random sample of size n drawn from the mixture, given by 

(2.1). Then, the likelihood function generated by the random sample is given by 

                        



n

j

jj xSxHxpL
1

211 ),()(),,,(                                                         

(2.2)            

where H(    ) =        (    ) +         (    ),          j =1,2,…,n                                   

     

   The natural logarithm of equation (2.2) is  

           



n

j

jj xSxHL
1

* )(ln)(ln .                                                                          (2.3)       

Differentiating (2.3) with respect to the parameters p,            and  partially and equating 

to zero gives 
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The amount ijw  represents the chance that the observation leaves the module and is able 

to be conveyed. . 
)(

)(1

1

j

j

j
xH

xpg
w  ,  jj ww 12 1 .  

Therefore  

   = 
 

                     
                                                                                                     (2.7) 

Where   a=  
     

  
       ,   b= Ln(

 

 
) – 2 Ln

    

  
              

we solve the nonlinear system of (2.4), (2.5), (2.6), we contract 

pˆ = 
 

 
 ∑     

     )                                                                                                         (2.8) 
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 Where ijŵ  be an estimated value of ijw  and be gotten by substituting a , b in (2.7) with 

MLEs,  ̂  ̂. The equations that are nonlinear (2.4), (2.5), (2.6) you can solve the nonlinear 

equations (2. 4), (2. 5), and (2.6) in an iterative manner, using methods like the 

expectation-maximization algorithm introduced by Dempster et al. (1977). In this study, 

my research involves using the Quasi-Newton method to directly address the nonlinear 

system. This approach expands on the secant method for groups of equations that are 

nonlinear, especially through a method called Broyden's method, (see, Broyden (1965)). In 

this approach, the Jacobian matrix used in Newton's method is replaced by an estimated 

version that gets updated with every iteration [15]. 

3. Optimal Discriminant Function 

 

Let two WPMD populations i , i=1,2 .The function for nonlinear discrimination    

                                                                                                                                  (3.1)                              

where a  , b  were definite in (2.5). The likelihood of an individual, as determined by the 

posterior probability x of unidentified source has originated from 1 is given by  

   1

11 )(exp1)Pr(


 xNLx O . 

we can categorize x  in 1 if 0)(1 xNL O , and in 2 if 0)(1 xNL O . At the 

parameters of the populations 1 and 2 were all recognized, we achieve optimal

)(1 xNL O  given by (3.1). 

 

4. Estimation Discriminant Function 

 

Overall, the characteristics of the populations are still not known. We utilize the existing 

data to make estimates for both the parameters and the discriminant functions. Our goal is 

to focus on these kinds of data: 

(i) Classified sample "c": This occurs at information is got by taking samples from a 

combination of two populations, with the source of each observation recognized post-

sampling. 

(ii) Mixed sample "m":  At this point, all observations in the available data go unnoticed. 

 

 4.1. Classified sample case 

  Let      original explanations existing from i , where i is ),( iWPMD ,  i=1,2. 

  The estimated nonlinear discriminant function can be expressed as 

                     a~     b
~

      ,                                                                                            (4.1) 

where a~ and b
~

are obtained from (2.7) by replacing the parameters 21,, p and   by 

their MLEs based on classified sample 21,,~ 


p and 
~
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 p~
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                                                                                                                             (4.2) 
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                                                                                                            (4.3) 


~

= 
 

∑ ∑          
  

  
    

  

  
    

   
 
          

                                                                             (4.4) 

where 21 nnn  ,  2,1i . 

 4.2. Mixed sample case 

The initial explanations should all originate from the combination itself. (2.1) i 2,1, i

The nonlinear discriminant function derived from this mixed sample is expressed as 

follows: 

                a~     b
~

                                                                                                        (4 .5 )
 

since â  , b̂  are MLE’s achieved through substituting the parameters 21,, p  and 

with the solution of the nonlinear system (2.4), (2.5) , (2.6), 21,,ˆ 


p and ̂  in (2.7). 

 

5. Definition of Errors of Misclassification   

 

Assume we have an observation x  that belongs to one of two WPMD populations 

2,1,  ii . The conditional probabilities of misclassifying x  by the nonlinear    

discriminant function mcojxNL j ,,,)(1   can be expressed as follows  

     ,]0Pr[]0)(Pr[ 1111  x
x

b
axxNLE jj     if   21   . 

Hence 

     ),,(1 11  jj FE   and ),,( 22  jj FE  ,                                        

where j  has the values 
a

b

a

b

a

b

ˆ

ˆ
,~

~

,


, for ,,, mcoj   respectively, and 

),,(  ijF  be  cumulative distribution function ) CDF(  of WPMD. The corresponding 

total probability of misclassification is given by     

      jjj EqEpE 21  .                                                                                                 (5.1) 

 

6. Simulation Experiments and Results 

 

We performed a series of simulation experiments to investigate the performance of 

)(xNLm  relative to )(xNLC and )(xNLO for samples. We used the acceptance-rejection 

method to generate random variables from WPMD. 

 

Theorem: (see, Rubinstein(1981)) Suppose X be a random variable distributed with the 

PDF Ixxf X ),(  , which is represented as  



Omar M. Ahmed et al.   

 

409 

 

       ,)()()( xhxgCxf X   

where 1)(0,1  xgC  and )(xh is also a PDF let U and Y be distributed as )1,0(u  

and )(yh  respectively. Then       

        ).())(( xfYgUxf XY 
 

 

Now consider, 

                                             (
  

  
)  (

  

  
)
        

    (
  

  
)
  

)()( xhxgC
 

where, C ,     g(x) =                             
 h(x) = 

  

      
  

  

          . 

Generate 1U  from )1,0(u  using RNUN routine from IMSL . 

Generate Y from h(x) from IMSL 

If  )(1 YgU  , deliver Y as the variable generated from  ),( WPMD . 

Go to Step 1. 

 

 The simulation experiments are used to examine how MLEs perform for the mixed 

samples: 

                                      0.22  , ,0.5,0.3,0.1=λ 5.0,25.0p  and different 

samples 30n  , 50n  and 100=n . 

 

The samples are created using the following process: 

-Generate 2U  from )1,0(u  using RNUN routine from IMSL. 

- If  pU 2  ,  then ),( 1 WPMDX   otherwise ),( 2 WPMDX 
 

 

This process is repeated n times, which leads to      findings from the first part and       

from the another part. This produces a combined sample of size 21 nnn  . 

 

In Table1 the average values from the mixed samples and the parameters from the 

classified samples are estimated, corresponding square errors, and biases are contrasted. In 

general, the MLEs obtained from classified samples were found to perform better than 

those obtained from mixture , particularly when    is substantial and n was on the rise. 

 

      

In Table2 the likelihood of misclassifying cases related to three different discrimination 

methods is assessed. 
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In Table3 display the differences in misclassification errors me , Ce  with Oe and the 

standard deviations for me , Ce  ( in parentheses) and their relative percentage biases for  

5.0,25.0p . The initial entry located in every cell below cmjeB j ,,)(  be the 

value of the absolute bias from Oe standardized by the standard deviation )( jSD of  ,je
 

 given by   cmj
SD

ee
eB

j

Oj

j ,,)( 


 . 

 

The second entry is the value absolute bias from Oe standardized by  ,Oe
 

 given by 
O

Oj

j
e

ee
eB


)( . On the other hand, B  represents the percentage bias to 

me from Ce  standardized by ,Ce   given by    
C

Cm

e

ee
B


 . 

 

 From Table 2 (a, b) We observe that the misclassification errors are not good. At λ ,

21  d  is small. We discovered the impact of the mistakes on the performance of 

the classified samples Ce standardized by Oe and SD  are better than the presentation of 

the mistakes in the mixture samples me .Usually when 25.0p , The pair of categories 

processes' combined performance is better than  when 5.0p . As the size of samples 

goes up from. 30n  to 100=n , each estimation for the two sets of parameters being 

analyzed improves. 

 

 

The following tables summarizes the key results. 
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Table1 : Estimated means and mean square errors and biases    , 25.0p , 5.0
2
 . 

 

Estimated means, 

mean square errors, 

biases. 

 

Actual values of 

the parameters 

Mixture  Classified 

 ˆˆ
21


P   

~~
21


P  1 

 
n  

.3501   .7240    2.4026    .9760 

.0297   .1405    1.0306    .0193 

.0921   .2069      .3634    .0151  

 

.3831   .7701    2.3018   2.9379 

.0447   .1505      .4140   1.4321 

.1311   .2481      .2828     .0441 

 

.3211   .6203    2.0393   5.2071 

.0346   .0641      .5222   5.5611 

.0581   .1242      .0198     .3081 

.2402   .5398   2.4051   1.0019 

.0069   .1290     .7601     .0291 

.0114   .0431     .3513     .0019 

  

.2440   .5902   2.1421   3.3918 

.0047   .1075     .5572   3.3100 

.0120   .0701     .1293     .5402  

 

.2321   .5543   2.1748   5.1621 

.0050   .1072     .6245   1.7381 

.0064   .0631     .2746     .2247 

 

2.0         1   

 

 

 

            3 

 

 

 

         5      

 

30 

.3491   .5404    2.4113     .8761 

.0245   .0472    1.7434     .0031 

.1081   .1305      .5123     .0124 

 

.3217   .6156    2.3385   2.9061 

.0349   .0588    1.0788     .2312 

.0828   .1306      .3366     .0935 

 

.3078   .6602    1.8149   4.7285 

.0244   .0623      .3061   2.0171 

.0579   .1504      .0870     .1827 

.2439   .5517   2.1045   1.0254 

.0017   .0694     .2114     .0091 

.0049   .0562     .1062     .0167  

 

.2461   .5291   2.1415   2.8716 

.0041   .0801     .1752     .2441 

.0077   .0373     .1327     .1171  

 

.2354   .4851   2.1030   5.0657 

.0023   .0451     .1501   2.2763 

.0035   .0044     .1044     .0765 

 

2.0         1   

 

 

 

            3 

 

 

 

         5      

 

 55 

.2676   .5413   2.3081   1.0164 

.0017   .0776     .2107     .0069 

.0047   .0512     .1057     .0175  

 

.2578   .5382   2.1337   2.8827 

.0035   .0813     .1862     .2542 

.0078   .0382     .1337     .1172  

 

.2374   .4757   2.1030   5.0667 

.0024   .0465     .1546   2.2863 

.0029   .0042     .1020     .0668 

 

.2421   .5354   2.0318   1.0166 

.0015   .0387     .1271     .0047 

.0011   .0456     .0528     .0186 

 

.2604   .5343   2.1480   3.0216 

.0015   .0362     .1304     .1280 

.0019   .0311     .1470     .0148 

 

.2361   .5031   2.0710   5.2643 

.0016   .0262     .1291   2.5417 

.0012   .0006     .0621     .3361  

 

2.0         1   

 

 

 

            3 

 

 

 

         5      

 

100 
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Note: In Table 1, the first row shows the estimated means, the second row represents the 

estimated mean square errors, and the third row displays the estimated biases. 

 

 

Table2 :- Individual probabilities of misclassification.,  5.02     

 

 

 

 

 

 

 

 

classification procedures Actual values of the 

parameters 
optimal  classified mixture 

e o2
 e o1

 e c2
 e c1

 e m2
 e m1

 1p 
n 

 

.7968 

.5624 

 

.7968 

.5624 

 

8778. 

6666. 

.1232 

.3354 

 

.1203 

.3209 

 

.1142 

.3351 

 

.7998 

.2899 

 

.9182 

.8001 

 

.9125 

.8021 

.1021 

.5911 

 

.0629 

.1934 

 

.0487 

2997. 

.6652 

.6172 

 

.6263 

.6579 

 

.6947 

.6256 

.3104 

.3217 

 

.3513 

8968. 

 

.3016 

3615. 

.25    2.0      1.0 

 .5  

 

.25                3.0 

.5 

 

.25                5.0 

.5 

  30 

.7968 

.5624 

 

.7968 

.5624 

 

.7968 

.5624 

 

.1232 

.3354 

 

.1203 

.3209 

 

.1142 

.3351 

 

.7861 

.4982 

 

.7962 

.4931 

 

.7983 

.5807 

.1239 

.3806 

 

.1135 

.3218 

 

.1153 

.2807 

.6423 

.5918 

 

.6758 

.6973 

 

.7256 

.3984 

.2782 

.2971 

 

.2301 

.2622 

 

.1868 

.4921 

.25    2.0      1.0 

 .5 

 

.25               3.0 

 .5 

 

.25               5.0 

 .5 

  55 

.7968 

.5624 

 

.7968 

.5624 

 

.7968 

.5624 

 

.1232 

.3354 

 

.1203 

.3209 

 

.1142 

.3351 

 

.7854 

.4879 

 

.8209 

.5771 

 

.8098 

.5337 

.1241 

.3116 

 

.0761 

.2967 

 

.0792 

.2814 

.6582 

.4497 

 

.6904 

.4829 

 

.6658 

.4709 

.2209 

.3752 

 

.1983 

.3828 

 

.2017 

.3291 

.25    2.0      1.0 

 .5 

 

.25                3.0 

.5 

 

.25               5.0 

.5 

100 
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Table 3:-  Total probabilities of misclassification and percentage standardized biases, 

   25.0p  ,  .5.02    

 

 

 

 

 

 

 

 

relative bias to classification procedures Actual values of 

the parameters completely 

classified 

optimal  optimal  completely 

classified 

mixture  

B )( ceB )( meB e o
 e C

 e m
 1 

n 

7.7310 

 

 

11.5151 

 

 

  8.3678 

2.1088 

6.5231 

 

4.9216 

18.2257 

 

3.7152 

13.6917 

5.5115 

13.1889 

 

6.1224 

16.6344 

 

3.8851 

10.5621 

.5763 

 

 

.5746 

 

 

.5758 

.7071 

(.0779) 

 

.7261 

(.0631) 

 

.6261 

(.0696) 

.5322 

(.1011) 

 

 .5207 

(.1209) 

 

 .6382 

(.1207) 

 

 

 

  2.0        1.0 

 

 

               3.0 

 

 

               5.0 

 

30 

5.5466 

 

 

  4.4016 

 

 

  3.2336 

2.5773 

11.9972 

 

.2751 

1.1231 

 

1.4532 

  4.9982 

6.4521 

17.8612 

 

2.7650 

6.6231 

 

.7414 

  1.0123 

.5763 

 

 

.5746 

 

 

.5758 

.6544 

(.0287) 

 

.6816 

(.0457) 

 

.7008 

(.0403) 

.5295 

(.1102) 

 

.5519 

(.1117) 

 

.5930 

(.1242) 

  2.0        1.0 

 

 

               3.0 

 

 

               5.0 

 

55 

2.9877 

 

 

6.8154 

 

 

  6.2617 

.6253 

2.3987 

 

1.1023 

8.1207 

 

1.8501 

  8.7219 

3.3762 

9.99151 

 

4.9837 

14.0126 

 

4.1215 

11.7101 

.5763 

 

 

.5746 

 

 

.5758 

.5949 

(.0213) 

 

.6059 

(.0258) 

 

.6087 

 (.0279) 

.5522 

(.1077) 

 

.5400 

(.1034) 

 

.5455 

(.1122) 

 

  2.0        1.0 

 

 

               3.0 

 

 

               5.0 

 

100 
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7. Conclusion  

 

This study utilizes the maximum likelihood method to derive MLEs of WPMD 

parameters from both mixed and classified datasets. These MLEs are subsequently 

applied to estimate the corresponding nonlinear discriminant function for both types of 

samples. The approximate nonlinear discriminant function's performance is assessed and 

benchmarked against the optimal discriminant function through a series of Monte Carlo 

simulations, with evaluation metrics based on mean squared error (MSE) and total 

likelihood. The results indicate that the hybrid discrimination scheme outperforms the 

fully segmented method. Overall, leveraging total probability, we find that the mixed 

discriminant way demonstrates more favorable performance compared to the fully 

classified approach.  
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