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Abstract:

We introduce a novel direct integral pseudospectral (IPS) method for addressing a class of infinite-horizon optimal control
problems (IHOCs) with continuous time. This approach transforms IHOCs into finite-horizon optimal control problems (FHOCs)
in integral form through specific parametric mappings, which are then discretized into finite-dimensional nonlinear programming
problems (NLPs) using rational collocations based on Jacobi polynomials and Jacobi-Gauss-Radau (JGR) nodes. Our method
extends previous work that utilized Gegenbauer polynomials by employing the more general and flexible Jacobi polynomial
family, which offers additional degrees of freedom through its two parameters α and β . We provide a comprehensive analysis
of the interplay between parametric mappings, barycentric rational collocations based on Jacobi polynomials and JGR points,
and the convergence properties of the collocated solutions. The paper presents a rigorous examination of the method’s error
bounds and convergence characteristics, along with a stability analysis based on the Lebesgue constant for JGR-based rational
interpolation. We validate our theoretical findings through two illustrative examples, including a practical application to spacecraft
attitude maneuvers. Our results demonstrate that the proposed collocation method, when combined with an efficient NLP solver
(MATLAB’s fmincon solver), converges exponentially to near-optimal approximations for coarse collocation mesh grid sizes.
Furthermore, we show that certain parameter combinations with α ̸= β yield more accurate solutions than those achievable with
Gegenbauer, Legendre, or Chebyshev polynomials. The study also reveals that standard direct spectral/pseudospectral (PS) and
IPS methods based on classical polynomials of Jacobi type and specific parametric mappings typically diverge as the number of
collocation points increases when computations are performed using floating-point arithmetic.
Keywords: Integration matrix, Jacobi Polynomial, Jacobi-Gauss-Radau, Optimal Control, Pseudospectral.

1 Introduction

Direct PS methods have become a highly influential
numerical approach for solving CTOCPs in recent
decades, transforming these problems into standard
optimization problems that can be efficiently solved using
conventional optimization techniques. By approximating
solutions with global polynomials, such as Jacobi or
Legendre polynomials, evaluated at specific collocation
points, PS methods use the properties of orthogonal
polynomials to discretize continuous dynamics, achieving
high accuracy and efficiency for smooth problems. A key
strength of these methods is their ability to attain
exponential convergence rates for sufficiently smooth
solutions, even when using relatively coarse mesh grids.

The development of PS methods can be traced back to
the pioneering works of Orszag [1] and Patterson and
Orszag [2] in the early 1970s, establishing them as a
cornerstone technology for solving partial differential
equations. Over subsequent decades, these methods have
been continuously refined and extended to address
increasingly complex problems across various scientific
domains. The evolution of PS methods has been
particularly notable in aerospace applications, where they
have demonstrated remarkable practical utility. A
landmark achievement occurred in 2006-2007 when the
International Space Station executed two large-angle
maneuvers without propellant consumption by following
an attitude trajectory developed using PS OC theory,
resulting in substantial cost savings for NASA [3].
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Acronym Meaning Acronym Meaning

AEJ Absolute Objective Function Value Error CTOCP Continuous-Time Optimal Control Problem
FHOC Finite-Horizon Optimal Control Problem FHOCI Finite-Horizon Optimal Control Problem in Integral Form
FOCP Fractional Optimal Control Problem fval Approximate Cost Function Value
GGR Gegenbauer-Gauss-Radau IHOC Infinite-Horizon Optimal Control Problem
IPS Integral Pseudospectral JGR Jacobi-Gauss-Radau
JGR-IPS Jacobi-Gauss-Radau Integral Pseudospectral JGR-IPS1 JGR-IPS with parametric mapping T (α,β )

1,L

JGR-IPS12 JGR-IPS with either parametric mapping T (α,β )
1,L or T (α,β )

2,L JGR-IPS2 JGR-IPS with parametric mapping T (α,β )
2,L

LG Legendre Gauss LGR Legendre Gauss Radau
LQR Linear Quadratic Regulator MAEx,u Maximum Absolute Error of the State and Control Variables
MRE Maximum Absolute Residual Computed at the Collocation Points NLP Nonlinear Programming Problem
OC Optimal Control PS Pseudospectral
SQP Sequential Quadratic Programming SR Switched Rational
TPBVP Two-Point Boundary Value Problem

Table 1: List of acronyms and their meanings.

The trend since 2007 shows a continued maturation of PS
methods, moving from theoretical development to wider
practical implementation across various complex
problems, often in combination with other advanced
optimization and computational techniques. The ability to
achieve highly accurate solutions with relatively sparse
discretization points and the development of robust mesh
refinement and error estimation techniques contribute to
their ongoing success [4,5,6,7].

PS methods share a close relationship with spectral
methods but differ in their approach to solution
representation. While spectral methods typically employ
global orthogonal basis polynomials, PS methods utilize
interpolation to extend solutions based on values at grid
points. This nodal representation offers significant
advantages, as solution values become immediately
available at collocation points once discretization is
implemented. Several comprehensive resources provide
detailed expositions of spectral and PS methods,
including the works by Fornberg [8], Hesthaven et al. [9],
and Canuto et al. [10,11].

A closely related class of methods, known as IPS
methods or PS integration methods, offers an effective
alternative to traditional PS approaches. These methods
require reformulation of the dynamical system equations
into their integral form before the collocation phase,
thereby avoiding precision degradation typically
associated with numerical differentiation procedures. The
spectral approach for approximating integral forms of
ordinary differential equations was initially proposed in
the 1960s by Clenshaw [12] and El-Gendi [13] in the
spectral and physical spaces, respectively. This approach
has been further developed in subsequent research [14,15,
16,17,18,19].

Among the various classes of CTOCPs, IHOCs and
OC problems defined over sufficiently long time domains
have attracted significant attention due to their
wide-ranging applications in finance, engineering,
management science, medicine, aerospace, and other
fields [20,21,22,23,24,25,26,27]. IHOCs, which seek to
minimize a cost functional over an unbounded time

domain, present unique challenges due to the need to
capture long-term behavior and ensure numerical stability
in the presence of diverging time scales. These difficulties
necessitate specialized techniques, such as the parametric
mappings and JGR collocation schemes developed in this
work, to transform the infinite horizon into a finite
domain suitable for PS approximation. Despite the
abundance of direct PS approaches for solving FHOCs in
the literature, relatively few publications have addressed
IHOCs using this class of methods. Notable contributions
include our previous work [28] using Gegenbauer
polynomials, as well as approaches employing LG and
LGR PS techniques [37,38,39], collocation at flipped
LGR points [40], and the transformed Legendre spectral
method [41].

1.1 Relationship to Our Previous Work Using
Gegenbauer Polynomials

The present study builds upon and extends the framework
introduced in our previous work [28], where we
developed a direct IPS method for solving IHOCs using
Gegenbauer polynomials. While we adopt a similar
overall approach to problem transformation and
discretization, our work introduces several significant
advancements and differs in multiple important aspects.

In [28], we demonstrated that direct IPS methods
based on Gegenbauer polynomials can effectively solve
certain classes of IHOCs. We established theoretical
foundations for the convergence properties of these
methods and identified limitations related to the
divergence of approximations for large mesh sizes. That
work focused exclusively on Gegenbauer polynomials
with parameter λ > −0.5, which includes Chebyshev
polynomials of the first kind (λ = 0) and Legendre
polynomials (λ = 0.5) as special cases. Our current
research extends this foundation in several key directions:

1.We generalize the polynomial basis from Gegenbauer
to Jacobi polynomials, which introduces an additional
degree of freedom through the two-parameter family
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(α and β ). This generalization encompasses
Gegenbauer polynomials as the special case where
α = β = λ − 0.5, but also enables exploration of
asymmetric weight functions when α ̸= β . This
broader parameter space allows for more flexible
adaptation to specific problem characteristics.

2.We expand the parameter range considerably,
allowing both α and β to vary within the
recommended range (−1,2]. This interval is wider
than the recommended range of [0.5,1] for λ in our
previous work [28] when the SR interpolation
algorithm is adopted—although the feasible range for
recommended λ values falls within (−1/2,2] for a
standard barycentric rational interpolation algorithm.
This expanded parameter space enables more refined
tuning of the approximation properties to match
specific problem characteristics.

3.Our investigation reveals that certain parameter
combinations with α ̸= β can yield more accurate
approximations than those achievable with
Gegenbauer polynomials (where α = β ). This finding
represents a novel contribution that was not explored
in the previous work and significantly expands the
toolkit available for solving IHOCs with high
precision.

4.We implement a simplified computational approach
that eliminates the need for the switching technique
used in [28] for computing barycentric weights. Our
analysis demonstrates that for many parameter
combinations within the Jacobi family, the standard
formula performs adequately without requiring the
more complex switching approach.

5.We investigate a practical application concerning
attitude maneuvers of an asymmetric rigid-body
spacecraft, demonstrating the real-world utility of our
approach. This application example provides valuable
insights into the practical performance of
Jacobi-based IPS methods in aerospace control
problems.

Jacobi polynomials have been widely utilized in
solving various OC problems. To mention a few, [29]
introduced a generalized PS method for OC problems,
employing roots of derivatives of Jacobi polynomials for
collocation. [42] developed differential and integral
fractional PS methods for FOCPs using Jacobi
polynomials. [54] proposed a shifted Jacobi PS method
for solving nonlinear IHOCs. [43] applied a Jacobi–Gauss
PS discretization to an OC problem governed by a
two-sided space-fractional diffusion equation. [44]
presented a multiple-interval PS scheme using Jacobi
polynomials for collocation at shifted flipped JGR points
to address nonlinear OC problems with time-varying
delays. [45] employed a Jacobi spectral collocation
method for FOCPs.

We investigate in our work whether superior precision
and convergence rates can be achieved using Jacobi
polynomials, even though PS approaches for solving

IHOCs typically employ Legendre or Gegenbauer
polynomials. The Jacobi polynomial family offers several
compelling advantages for IHOC discretizations:

1.Jacobi polynomials offer a generalized framework in
the sense that they encompass Gegenbauer
polynomials (which include Chebyshev and Legendre
polynomials) as special cases within their larger
family. Consequently, all theoretical and experimental
findings regarding Jacobi polynomials naturally
extend to these more specialized polynomial types.

2.Jacobi polynomials offer more parameter flexibility.
Since Gegenbauer, Chebyshev, and Legendre
polynomials are subsets of Jacobi polynomials, we
can implement any of these polynomial types by
simply selecting appropriate values for the Jacobi
parameters α and β . For instance, setting
α = β = −1/2 yields Chebyshev polynomials,
α = β = 0 produces Legendre polynomials, and
α = β = λ − 0.5 generates Gegenbauer polynomials
with parameter λ . This provides considerable
flexibility within a unified computational framework.

3.Jacobi polynomials offer broad applicability as they
have demonstrated effectiveness in solving various
mathematical problems, including ordinary
differential equations, partial differential equations,
integral equations, fractional differential equations,
and OC problems [29,30,31,32,33,34,35,36].

4.Jacobi polynomials can provide improved
approximation capabilities because the two-parameter
nature of Jacobi polynomials allows for more refined
tuning of the approximation properties to match
specific problem characteristics, potentially yielding
improved accuracy compared to single-parameter
polynomial families.

Our contributions in this paper can be summarized as
follows:

1.We demonstrate that Jacobi PS methods often
converge exponentially to near-exact solutions using
relatively small mesh grids, but typically diverge for
fine meshes under certain parametric maps, extending
the findings in [28] to the more general Jacobi
polynomial family.

2.We show that certain Jacobi polynomials with α ̸= β

yield more accurate solutions than Gegenbauer,
Legendre, and Chebyshev polynomials, providing a
broader spectrum of high-accuracy approximation
options.

3.The use of Jacobi polynomials provides greater
flexibility in parameter selection, allowing α and β to
lie within the interval (−1,2], compared to the more
restricted parameter range for Gegenbauer
polynomials where λ is limited to the recommended
range [0.5,1] for optimal performance of the SR
interpolation algorithm.

4.We investigate a practical application concerning
attitude maneuvers of an asymmetric rigid-body
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spacecraft, demonstrating the real-world utility of our
approach.

An intriguing question we explore is how to optimally
select the Jacobi polynomial parameters α and β for
collocation purposes. For sufficiently smooth functions,
appropriate choices of α and β can yield excellent
approximations with higher accuracy than those provided
by Chebyshev, Legendre, and Gegenbauer polynomials
using relatively coarse mesh grids, while suboptimal
choices may significantly degrade the accuracy of the
numerical method.

Remark 11. We acknowledge that the SR interpolation
algorithm of our previous work [28] often produces
slightly higher accuracies compared to the current work
under similar parameter settings because: (i) it
introduces stable formulas for GGR-based rational
interpolation, reducing cancellation errors near the right
boundary of the transformed finite time domain, and (ii) it
uses ε ≈ 0.1 to switch between weight formulas,
improving numerical stability for fine meshes. Integrating
the current work with the SR interpolation algorithm
would surely outperform our former work [28] due to the
added degree of freedom provided by the Jacobi
polynomial indices compared with Gegenbauer
polynomials, allowing for the selection of optimal
parameters from a much larger parameter space.
However, the selection of ε ≈ 0.1 is based on extensive
numerical experiments conducted for candidate ε values
between 0 and 1, with no theoretical justification
provided. In fact, this choice was based on comprehensive
experiments that compared errors in computing
barycentric weights for mesh sizes n = 10(10)100 and
Gegenbauer index range λ = −0.49,−0.4(0.1)2, using
MATLAB in double-precision floating-point arithmetic.
Extending the SR interpolation algorithm to the current
work based on a similar set of experiments would require
comparing errors in computing barycentric weights for
n = 10(10)100 and α,β = −0.49,−0.4(0.1)2, which is
computationally expensive and exhaustive. Therefore,
extending the SR interpolation algorithm to the current
work is not feasible at the moment, as it requires
substantial computational processing capabilities to test
all possible parameter combinations, which we currently
do not possess. We hope to overcome this challenge in the
near future.

The remainder of this paper is organized as follows:
Section 2 establishes the notation used throughout the
paper. Section 3 formulates the problem under
investigation. In Section 4, we describe the two
parametric maps used to transform the IHOC into a
FHOCI. Section 5 outlines the discretization scheme for
the FHOCI, including the construction of the integration
matrices and the NLP formulation. Section 6 presents a
numerical analysis of the proposed method, examining
the barycentric rational interpolation based on Jacobi
polynomials and JGR points, and investigating the

convergence properties of the collocated solutions.
Section 7 provides numerical examples to validate the
theoretical findings. Finally, Section 8 offers concluding
remarks and suggestions for future research directions.

2 Notation

Before proceeding with the mathematical formulation of
the problem, we establish the notation that will be used
consistently throughout this paper. This standardized
notation framework facilitates clear communication of the
mathematical concepts, algorithms, and theoretical results
presented in subsequent sections. We adopt conventional
mathematical notation where possible, with specific
adaptations for the Jacobi polynomial framework and
IHOCs.

In this paper, we denote vectors by bold italicized
lowercase letters (e.g., xxx, uuu) and matrices by bold
uppercase letters (e.g., A). The set of real numbers is
represented by R. For a function f , we use f (n) to denote
its nth derivative. The Jacobi polynomial of degree n with
parameters α and β is denoted by J(α,β )

n . The norm of a
function f over an interval [a,b] is represented by
∥ f∥[a,b]. We use the notation i = 0(1)n to indicate that the
index i ranges from 0 to n with increments of 1.

With this notation established, we now turn to the
formal definition of the IHOC under investigation.

3 Problem Statement

Having established our notation, we now present the
formal definition of the IHOC under investigation. This
class of problems arises in various applications including
economics, engineering, and aerospace systems where
control actions must be determined over an unbounded
time horizon. The mathematical formulation provided
here serves as the foundation for the development of our
Jacobi-based IPS method.

We consider the following IHOC:

min
xxx,uuu

J =
∫

∞

0
g(xxx(t),uuu(t))dt, (3.1a)

subject to ẋxx(t) = fff (xxx(t),uuu(t)), t ∈ [0,∞), (3.1b)
xxx(0) = xxx0, (3.1c)

where xxx(t) ∈ Rnx represents the state vector, uuu(t) ∈ Rnu is
the control vector, g : Rnx ×Rnu → R is the running cost
function, fff : Rnx × Rnu → Rnx defines the system
dynamics, and xxx0 ∈ Rnx is the initial state vector. The
objective is to determine the optimal state and control
trajectories that minimize the cost functional J while
satisfying the system dynamics and constraints.

This formulation presents significant computational
challenges due to the infinite integration domain in the
cost functional and the unbounded time interval for the
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constraints. To address these challenges, we will
transform the IHOC into a FHOCI using appropriate
parametric mappings, as described in the following
section.

4 Transformation of the IHOC

A fundamental challenge in solving IHOCs is the
unbounded domain of integration. To overcome this
difficulty, we employ parametric mappings that transform
the original IHOC into a FHOCI. This transformation is a
critical step that enables the application of our
Jacobi-based IPS method. While similar transformations
have been used with Gegenbauer polynomials in previous
work [28], our approach extends these techniques to the
more general Jacobi polynomial framework.

We shall use the two specific parametric mappings,
T (α,β )

1,L and T (α,β )
2,L , defined as follows:

T (α,β )
1,L (τ) =

L(1+ τ)

1− τ
, τ ∈ [−1,1), (4.1a)

T (α,β )
2,L (τ) = L ln

2
1− τ

, τ ∈ [−1,1), (4.1b)

where L > 0 is a scaling parameter that can be adjusted to
optimize the performance of the numerical method. These
mappings transform the infinite interval [0,∞) to the finite
interval [−1,1), allowing us to reformulate the IHOC as a
problem over a bounded domain. The notations T (α,β )

1,L

and T (α,β )
2,L used for the parametric mappings in Eqs.

(4.1a) and (4.1b) indicate their association with the Jacobi
polynomial parameters α and β employed in the
collocation scheme. Specifically, these mappings are
evaluated at the JGR points, which are defined based on α

and β . The mappings themselves do not directly depend
on these parameters, and the superscript is used to reflect
their role within the JGR-based collocation framework.

Figures 1 and 2 display the mesh-like surfaces of both
parametric mappings for multiple values of L, n, α , and β .
These figures show that the parametric maps:

1.increase as α decreases while holding n, L, and β

fixed;
2.increase as L increases while holding other parameters

fixed.

Figures 3 and 4 demonstrate that the parametric maps
increase as β increases while holding n, L, and α fixed.
Additionally, near τ = 1, as L and β increase (with other
variables held constant), T (α,β )

1,L grows significantly faster

than T (α,β )
2,L , which increases at a slower rate. Also, in

general, as α increases (with other variables held
constant), T (α,β )

1,L decreases significantly faster than

T (α,β )
2,L , which decreases at a slower rate.

Using the change of variable t = T (τ), where T
represents either T (α,β )

1,L or T (α,β )
2,L , we define the

transformed state and control variables as:

x̃xx(τ) = xxx(T (τ)), τ ∈ [−1,1), (4.2a)
ũuu(τ) = uuu(T (τ)), τ ∈ [−1,1). (4.2b)

With these transformations, the IHOC described by
Eqs. (3.1a)-(3.1c) can be reformulated as:

min
x̃xx,ũuu

J̃ =
∫ 1

−1
T ′(τ)g(x̃xx(τ), ũuu(τ))dτ, (4.3a)

subject to
dx̃xx(τ)

dτ
= T ′(τ) fff (x̃xx(τ), ũuu(τ)), τ ∈ [−1,1),

(4.3b)

x̃xx(−1) = xxx0, (4.3c)

where T ′(τ) denotes the derivative of the mapping
function with respect to τ . The derivatives of our
parametric mappings are given by:(

T (α,β )
1,L

)′
(τ) =

2L
(1− τ)2 , τ ∈ [−1,1), (4.4a)(

T (α,β )
2,L

)′
(τ) =

L
1− τ

, τ ∈ [−1,1). (4.4b)

To facilitate the application of our Jacobi-based IPS
method, we further reformulate the problem in integral
form. By integrating Eq. (4.3b) from −1 to τ , we obtain:

x̃xx(τ) = xxx0 +
∫

τ

−1
T ′(s) fff (x̃xx(s), ũuu(s))ds, τ ∈ [−1,1).

(4.5)
This integral formulation offers several advantages

over the differential form, particularly in avoiding the
precision degradation typically associated with numerical
differentiation procedures. The resulting FHOCI,
described by Eqs. (4.3a), (4.5), and (4.3c), serves as the
basis for our discretization scheme, which will be
presented in the following section. The choice of Jacobi
polynomials for the discretization provides greater
flexibility compared to the Gegenbauer polynomials used
in [28], as the two parameters α and β can be
independently adjusted to optimize the numerical
performance for specific problem characteristics.

5 Numerical Solution of the IHOC

Building upon the transformation established in the
previous section, we now develop a discretization scheme
for the resulting FHOCI. This approach employs the
properties of Jacobi polynomials and JGR nodes to
construct an efficient numerical solution method. The
discretization process involves several key components,
including the construction of integration matrices and the
formulation of a NLP.
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Figure 1: Grid-like surfaces of the parametric map T (α,β )
1,L plotted above the planar region specified by the discrete set

Ωn = {(τi,L) : L = 0.5(0.5)10, i = 0(1)n} using the parameters’ ranges n ∈ {10,15,20}, α ∈ {−0.9,0,0.5}, and β ∈
{−0.7,−0.3,0.2}, with a logarithmic scale on the z-axis.

5.1 Collocation Points and Barycentric
Interpolation

We begin by selecting a set of collocation points based on
the JGR quadrature nodes. These points are particularly
well-suited for our problem as they include the left
endpoint of the interval [−1,1) while clustering points
near the right endpoint, which corresponds to t → ∞ in
the original problem. The nodes of the JGR nodes set
Sn = {τ0,τ1, . . . ,τn} are defined as
−1 = τ0 < τ1 < τ2 < .. . < τn < 1, where τi, i = 1(1)n are
the roots of the scaled Jacobi polynomial
J

(α,β )
n+1 (τ) = (1+ τ)J(α,β+1)

n (τ). Jacobi polynomials can
be generated by the following recurrence relation [46]:

J(α,β )
n+1 (τ) =

(
a(α,β )

n τ −b(α,β )
n

)
J(α,β )

n (τ)− c(α,β )
n J(α,β )

n−1 (τ)

(5.1)
for n ≥ 1, starting with J(α,β )

0 (τ) = 1 and

J(α,β )
1 (τ) = 0.5(α +β +2)τ +0.5(α −β ), where

a(α,β )
n =

(2n+α +β +1)(2n+α +β +2)
2(n+1)(n+α +β +1)

, (5.2)

b(α,β )
n =

(
β 2 −α2

)
(2n+α +β +1)

2(n+1)(n+α +β +1)(2n+α +β )
, (5.3)

c(α,β )
n =

(n+α)(n+β )(2n+α +β +2)
(n+1)(n+α +β +1)(2n+α +β )

. (5.4)

The orthonormal Jacobi basis polynomials are given by
φ
(α,β )
j (τ) = J(α,β )

j (τ)/
√

λ j, where

λ j =
2α+β+1Γ ( j+α +1)Γ (β + j+1)
(2 j+α +β +1) j!Γ ( j+β +α +1)

, j = 0(1)n.

(5.5)
Their discrete orthonormality relationship is given by:

n

∑
j=0

ϖ j φ
(α,β )
s (τ j)φ

(α,β )
k (τ j) = δsk, s,k = 0(1)n, (5.6)

where ϖ j, j = 0(1)n, are the corresponding Christoffel
numbers of the JGR quadrature formula on the domain
[−1,1] defined by:

ϖ0 =
2α+β+1(β +1)Γ 2(β +1)n!Γ (n+α +1)

Γ (n+β +2)Γ (n+α +β +2)
, (5.7a)

ϖ j =
ϑ

α,β+1
n−1

(1− τ j)(1+ τ j)
2
[

d
dx

(
J(α,β+1)

n (τ j)
)]2 , j = 1(1)n,

(5.7b)

with

ϑ
α,β
n =

2α+β+1Γ (n+α +2)Γ (n+β +2)
(n+1)!Γ (n+α +β +2)

. (5.7c)

For the interpolation of functions at the JGR nodes,
we employ barycentric rational interpolation, which
offers superior numerical stability compared to standard
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Figure 2: Grid-like surfaces of the parametric map T (α,β )
2,L plotted above the planar region specified by the discrete

set Ωn = {(τi,L) : L = 0.5(0.5)10, i = 0(1)n} using the parameters’ ranges n ∈ {10,15,20},α = −0.9,0,0.5, and
β =−0.7,−0.3,0.2.

polynomial interpolation. The Lagrange interpolation
polynomials in barycentric form are given by:

Ln,i(τ) =
ξi/(τ − τi)

n

∑
j=0

(ξ j/(τ − τ j))

, i = 0(1)n, (5.8)

where the barycentric weights ξi, i = 0, . . . ,n, are given by:

ξi =
1

∏
n
i̸= j (τ j − τi)

, i = 0(1)n; (5.9)

cf. [47]. For JGR nodes, the barycentric weights can be
computed more efficiently using the following explicit
formulas:

ξ0 =−
√

2(β +1)ϖ0, (5.10a)

ξi = (−1)i−1
√
(1− τi)ϖi, i = 1(1)n, (5.10b)

where ϖi are the corresponding Christoffel numbers; cf.
[48, Theorem 3.6].

Unlike the approach in [28], which employed a
switching technique for computing barycentric weights
across various ranges of Gegenbauer parameters, our
analysis reveals that for many parameter combinations
within the Jacobi family, the standard formula performs
adequately without requiring the more complex switching
approach. This simplification represents one of the
practical advantages of our Jacobi-based method.

5.2 Construction of Integration Matrices

To discretize the integral constraints in Eq. (4.5), we
construct integration matrices that approximate the
definite integrals using the JGR nodes. Let
f ∈Cn+1[−1,1) be approximated by its interpolant Pn f at
the JGR nodes:

f (τ)≈ Pn f (τ) =
n

∑
k=0

fkLn,k(τ), τ ∈ [−1,1), (5.11)

where fk = f (τk) for k = 0,1, . . . ,n. The integral of f from
−1 to τ j can then be approximated as:

∫
τ j

−1
f (τ)dτ ≈

n

∑
k=0

Q j,k fk, j = 0,1, . . . ,n, (5.12)

where Q j,k are the elements of the integration matrix Q,
defined by:

Q j,k =
∫

τ j

−1
Ln,k(τ)dτ, j,k = 0,1, . . . ,n

=


0, j = 0, k = 0(1)n,
(τ j +1)

2

N

∑
k=0

ϖ̄kLn,k (τ̄k;−1,τ j), j = 1(1)n,k = 0(1)n,

(5.13)
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Figure 3: Grid-like surfaces of the parametric map T (α,β )
1,L plotted above the planar region specified by the discrete set

Ωn = {(τi,L) : L = 0.5(0.5)10, i = 0(1)n} using the parameters’ ranges n ∈ {10,15,20}, α = −0.7,−0.3,0.2, and β =
−0.9,0,1.5.

where {τ̄k, ϖ̄k}N
k=0 represent the set of weights and nodes

in the LG quadrature, respectively:

ϖ̄k =
2(

1− τ̄2
k

)(
L′

N+1 (τ̄k)
)2 , k = 0(1)N, (5.14)

and L′
N+1 indicates the derivative of the (N + 1)st-degree

Legendre polynomial LN+1 [28]. The efficient
computation of the integration matrix using the properties
of Jacobi polynomials often results in a well-conditioned
matrix that accurately approximates the integral
operations required for our discretization through
matrix-vector multiplications:∫

τ j

−1
f (τ)dτ ≈ Q fff , j = 0(1)n, (5.15)

where fff = [ f0, f1, . . . , fn]
t .

5.3 Discretization of the FHOCI

Using the integration matrix Q and collocation at the
JGR nodes, we discretize the FHOCI described by Eqs.
(4.3a), (4.5), and (4.3c). Let x̃xx j = x̃xx(τ j) and ũuu j = ũuu(τ j) for
j = 0,1, . . . ,n represent the discretized state and control
variables at the collocation points. The integral constraint

in Eq. (4.5) is discretized as:

x̃xx j = xxx0 +
n

∑
k=0

Q j,kT ′(τk) fff (x̃xxk, ũuuk), j = 0,1, . . . ,n.

(5.16)
Similarly, the cost functional in Eq. (4.3a) is

approximated by:

J̃ ≈
n

∑
k=0

Qn+1,kT ′(τk)g(x̃xxk, ũuuk), (5.17)

where Qn+1,k = ∑
N
i=0 ϖ̄iLn,k (τ̄i) ∀k.

5.4 Resulting NLP

The discretization process transforms the FHOCI into a
finite-dimensional NLP of the form:

min
x̃xx0,x̃xx1,...,x̃xxn,ũuu0,ũuu1,...,ũuun

n

∑
k=0

Qn+1,kT ′(τk)g(x̃xxk, ũuuk), (5.18a)

subject to x̃xx j = xxx0 +
n

∑
k=0

Q j,kT ′(τk) fff (x̃xxk, ũuuk), j = 0(1)n,

(5.18b)

x̃xx0 = xxx0. (5.18c)

This NLP can be solved using standard optimization
techniques such as SQP or interior point methods. The

©2025 Sohag University sjsci.journals.ekb.eg Sohag J. Sci. 2025, 10(3), 371-394 378



Figure 4: Grid-like surfaces of the parametric map T (α,β )
2,L plotted above the planar region specified by the discrete set

Ωn = {(τi,L) : L = 0.5(0.5)10, i = 0(1)n} using the parameters’ ranges n ∈ {10,15,20}, α = −0.7,−0.3,0.2, and β =
−0.9,0,1.5.

solution provides the optimal state and control trajectories
at the collocation points, which can then be interpolated
to obtain continuous approximations of the optimal
trajectories.

The use of Jacobi polynomials in this discretization
scheme offers greater flexibility compared to the
Gegenbauer polynomials used in [28], as the two
parameters α and β can be independently adjusted to
optimize the numerical performance for specific problem
characteristics. We refer to the present Jacobi-based IPS
method by the “JGR-IPS” method. The acronyms
“JGR-IPS1” and “JGR-IPS2” stand for the JGR-IPS
method performed using the parametric mappings T (α,β )

1,L

and T (α,β )
2,L , respectively, while “JGR-IPS12” stands for

the JGR-IPS method performed using either maps T (α,β )
1,L

and T (α,β )
2,L .

In the following section, we analyze the mathematical
properties of this discretization scheme, including its
convergence behavior and error bounds.

6 Numerical Analysis

Having developed our JGR-IPS, we now analyze its
mathematical properties and performance characteristics.
This analysis provides theoretical insights into the
method’s convergence behavior, stability properties, and

error bounds, establishing a solid foundation for
understanding its practical performance. While some
aspects of this analysis build upon the framework
established in [28] for Gegenbauer polynomials, we
extend these results to the more general Jacobi
polynomial family and derive new insights specific to this
broader framework.

6.1 Analysis of JGR-Based
Interpolation/Collocation: Stability and
Sensitivity

The Lebesgue constant is a practical tool for assessing the
accuracy and numerical stability of polynomial
interpolations, as it indicates how closely a function’s
interpolant matches the function’s best polynomial
approximant. For the JGR-based interpolation scheme,
the Lebesgue constant Λn is defined as:

Λn = max
τ∈[−1,1]

n

∑
i=0

|Ln,i(τ)|, (6.1)

where Ln,i(τ) are the Lagrange interpolation polynomials
in barycentric form as defined in Eq. (5.8).

The growth rate of the Lebesgue constant with respect
to n provides valuable insights into the stability of the
interpolation scheme. For JGR nodes with Jacobi
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parameters α and β , we can establish bounds on the
Lebesgue constant that depend on these parameters. This
analysis extends the results presented in [28] for
Gegenbauer polynomials to the more general Jacobi
polynomial family.

The Lebesgue constant’s surface for JGR points is
shown in Figures 5 and 6. The Lebesgue constant is
estimated by maximizing ∑

n
i=0 |Ln,i(τ)| using the

MATLAB fminbnd solver. The surface is constructed
using least-squares approximation and displayed
alongside its cross-sections with the vertical planes
specified in each subfigure. We infer the following
observations:

(i)The Lebesgue constant generally remains stable as
α → −1 or α → 2 when β is constant, and similarly,
for constant α , it remains stable as β →−1 or β → 2
(see Figures 5 and 6).

(ii)The Lebesgue constant grows logarithmically with the
number of collocation nodes, as evident in Figures 5
and 6.

Figures 7 and 8 depict the minimum Lebesgue
constant computed for β ∈ {−0.999,−0.99,−0.9(0.1)2}
versus α and for α ∈ {−0.999,−0.99,−0.9(0.1)2}
versus β , respectively, for various values of n. The
following observations are noted:

(iii)For most values of n, the minimum Lebesgue constant
decreases as α increases, with the smallest values often
occurring near α = 3 for larger n (see Figure 7).

(iv)Similarly, for most values of n, the minimum
Lebesgue constant decreases as β increases, with the
smallest values often occurring near β = 3 for larger n
(see Figure 8).

Figures 9 and 10 illustrate the Jacobi weight function
for various α and β values. Figure 9 shows that
increasing α causes the weight function to diminish on
the right of the interval, while Figure 10 shows that
increasing β causes it to diminish on the left.
Consequently, JGR quadrature becomes extrapolatory for
large α and β values, relying heavily on nodes away from
either the left or right of the interval, as established in [49,
Theorem 2.5] for Gegenbauer polynomials. Thus, Jacobi
polynomials with α > 2 and β > 2 are generally
unsuitable for interpolation or collocation.

The above analysis highlights the behavior of the
parametric mappings in achieving accurate
approximations with the JGR-IPS method. The following
rule of thumb provides guidance on selecting optimal α

and β values for interpolation and collocation based on
Jacobi polynomials:

Rule of Thumb. We suggest choosing the Jacobi
parameters α and β for interpolation and
collocation as follows:

(α,β ) ∈ [−1+ ε,2]2, 0 < ε ≪ 1. (6.2)

The analysis of the Lebesgue constant for JGR-based
interpolation using Jacobi polynomials reveals that it
grows logarithmically with n for specific ranges of the
parameters α and β , indicating good numerical stability.
However, the specific growth rate is highly dependent on
the chosen parameter values, with certain combinations
yielding superior stability. Key observations include:

–For β = −0.9, 0, and 0.7, the Lebesgue constant
achieves its minimum when α = −0.999, −0.1, and
−0.1, respectively.

–Conversely, for α = −0.9, 0, and 0.7, the Lebesgue
constant is minimized when β = 0.5, 1, and 1,
respectively.

These observations underscore the advantage of the
Jacobi polynomial approach, as they demonstrate that
careful tuning of α and β can optimize numerical
stability for specific problem characteristics. The
dependence of the Lebesgue constant on α and β

suggests that Jacobi polynomial-based interpolation can
be tailored to minimize approximation errors by selecting
optimal parameter pairs. Specifically, the identified values
of α and β that minimize the Lebesgue constant indicate
configurations where the interpolation process is
particularly stable. This tunability is a significant
advantage, enabling practitioners to adapt the
interpolation scheme to the specific requirements of their
problem, potentially leading to more accurate and robust
numerical results.

Remark 61. When α ̸= β , the Jacobi weight function
w(α,β )(x) = (1 − x)α(1 + x)β becomes asymmetric,
allowing the collocation scheme to adapt more flexibly to
solution features that are unevenly distributed across the
domain. This asymmetry can improve resolution near
critical regions such as boundary layers or steep
gradients, where symmetric weight functions may fail to
concentrate sufficient collocation density. Consequently,
selecting α ̸= β can yield improved approximation
quality for problems with localized features or exhibiting
asymmetric solution profiles.

Remark 62. For the Lebesgue constant analysis
conducted in this section, we assume the problem we are
tackling is well-conditioned. Otherwise, the recommended
interval [−1 + ε,2] may not be valid, and its choice
generally depends on the sources of sensitivity.

6.2 Error Analysis and Convergence Properties

This section provides the bounds of the truncation error
and convergence rates for the discretized integral
constraints and cost functional. We begin with a theorem
characterizing the truncation error of the Jacobi
interpolant.

Theorem 63. Let f ∈ Cn+1[−1,1) be approximated by a
Jacobi interpolant Pn f based on the JGR nodes set Sn.
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Figure 5: The left plots display the surfaces of the Lebesgue constant for JGR-based interpolation, sketched over the planar
region defined by the discrete set {(n,α) : n = 10(10)100,α ∈ [−0.999,−0.99,−0.9(0.1)2]}, with β ∈ {−0.9,0,0.7}.
These surfaces are constructed using a least-squares approximation with curves of the form c1+c2 lnn, for real parameters
c1 and c2, and the z-axis is set to a logarithmic scale. The right plots illustrate the Lebesgue constant versus n = 10(10)100
for α ∈ {−0.999,−0.2,−0.1,0,0.5,1} and the same values of β .

Then there exist (n+ 1) numbers ξi ∈ (−1,1), i = 0(1)n,
such that the truncation error of the approximation is
given by:

f En (τi,ξi) =
f (n+1) (ξi)

(n+1)!K(α,β+1)
n

∫
τi

−1
J

(α,β )
n+1 (τ)dτ ∀i,

(6.3)
where

K(α,β )
n =

Γ (2n+α +β +1)
2nn!Γ (n+α +β +1)

, ∀n. (6.4)

Proof.By the error formula for Lagrange interpolation, we
can write:

f (τ) =
n

∑
k=0

fk Ln,k(τ)+ f En (τ,ξ ) , ∀−1 ≤ τ < 1,

(6.5)
for specified −1 < ξ < 1, where f En is the interpolation
truncation error at the JGR nodes given by:

f En (τ,ξ ) =
f (n+1) (ξ )

(n+1)!

n

∏
k=0

(τ − τk) . (6.6)

By acknowledging that
J

(α,β )
n+1 (τ) = K(α,β+1)

n ∏
n
k=0 (τ − τk) and integrating Eq.

(6.5) over [−1,τi) ∀i, the proof is established.

Building on this result, we can establish error bounds
for the discretized integral constraints and cost functional.
The following corollary applies this error analysis to our
specific problem formulation.

Corollary 64. Let η : [−1,1)→ R and ψk : [−1,1)→ R
be defined as η(τ) = T ′(τ)g(x̃xx(τ), ũuu(τ)) and
ψk(τ) = T ′(τ) fk (x̃xx(τ), ũuu(τ)), for each k = 1(1)nx. Then
the truncation errors of the discretized cost functional and
integral constraints at each collocation point τ j ∈ Sn are
given by:

η En (ζ ) =
η(n+1)(ζ )

(n+1)!K(α,β+1)
n

∫ 1

−1
J

(α,β )
n+1 (τ)dτ, (6.7)

and

ψk En (τ j,ξ j) =
ψ

(n+1)
k (ξ j)

(n+1)!K(α,β+1)
n

∫
τ j

−1
J

(α,β )
n+1 (τ)dτ,

k = 1(1)nx, j = 0(1)n, (6.8)

respectively, where ζ ,ξ j ∈ (−1,1)∀ j.

These error expressions can be further bounded to
provide more practical estimates of the truncation error.
The following theorem establishes such bounds.
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Figure 6: The left plots display the surfaces of the Lebesgue constant for JGR-based interpolation, sketched over the planar
region defined by the discrete set {(n,β ) : n = 10(10)100,β ∈ [−0.999,−0.99,−0.9(0.1)2]}, with α ∈ {−0.9,0,0.7}.
These surfaces are constructed using a least-squares approximation with curves of the form c1+c2 lnn, for real parameters
c1 and c2. The right plots illustrate the Lebesgue constant versus n = 10(10)100 for β ∈ {−0.999,−0.2,−0.1,0,0.5,1}
and the same values of α .

Theorem 65. Let ψk ∈ Cn+1[−1,1), n > 1, and∥∥∥ψ
(n+1)
k

∥∥∥
[−1,1)

= Aψk,n ∈ R+∀k, for some constant Aψk,n

dependent on n and k. Then the truncation errors of the
discretized integral constraints at each collocation point
τ j ∈ Sn are bounded by:

∣∣
ψk En

(
τ j,ξ j

)∣∣≤ Aψk ,n2nΓ (n+α +β +2)
(
1+ τ j

)
(n+1)Γ (2n+α +β +2)

∥∥∥J (α,β )
n+1

∥∥∥
[−1,1)

,

k = 1(1)nx, j = 0(1)n, (6.9)

where −1 < ξ j < 1∀ j, and∥∥∥J (α,β )
n+1

∥∥∥
[−1,1)

=

2(2n+β +q+2)
2n+α +β +2

(
n+q

n

)
= O(nq) , q ≥−1/2,∣∣∣2(n+β +1)J(α,β )

n (x′)
∣∣∣+ ∣∣∣2(n+1)J(α,β )

n+1 (x′′)
∣∣∣

|2n+α +β +2|
= O

(
n−1/2

)
,

q <−1/2,
(6.10)

with q = max(α,β ) governing the growth rate of the scaled
Jacobi polynomial norm, x′ being the maximum point of

J(α,β )
n (τ) nearest to x0 =

β −α

α +β +1
, and x′′ being the maximum

point of J(α,β )
n+1 (τ) nearest to x0. Furthermore, as n → ∞, we

have:∣∣
ψk En

(
τ j,ξ j

)∣∣<
∼

Aψk ,n

( e
2

)n 1+ τ j

nn+1−q , ∀q ≥−1/2, (6.11)

and∣∣
ψk En

(
τ j,ξ j

)∣∣<
∼

Aψk ,n

( e
2

)n 1+ τ j

nn+ 3
2
, ∀−1 < q <−1/2.

(6.12)

Proof.Eq. (3.116b) from [46] immediately yields:

(1+ τ)J(α,β+1)
n (τ)

=
2(n+β +1)J(α,β )

n (τ)+2(n+1)J(α,β )
n+1 (τ)

2n+α +β +2
. (6.13)

Therefore: ∥∥∥J (α,β )
n+1

∥∥∥
[−1,1)

=

∥∥∥∥ 2(n+β +1)
2n+α +β +2

J(α,β )
n (τ)+

2(n+1)
2n+α +β +2

J(α,β )
n+1 (τ)

∥∥∥∥
[−1,1)

.

(6.14)

Eq. (6.10) can be obtained by applying the triangle
inequality to the right-hand side of Eq. (6.14) and
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Figure 7: Minimum Lebesgue constant for JGR-Based Interpolation versus α: For each value of α , the Lebesgue constant
is minimized over all β values in the range {−0.999,−0.99,−0.9(0.1)3}. The minimum Lebesgue constant at each
n = 10(5)85 is plotted for α ∈ {−0.999,−0.99,−0.9(0.1)3}.

utilizing the relation from [56, Eq. (7.32.2)]:∥∥∥J(α,β )
n

∥∥∥
[−1,1)

= max[−1,1]

∣∣∣J(α,β )
n

∣∣∣=
(

n+q
n

)
∼ nq, q = max(α,β )≥−1/2,∣∣∣J(α,β )

n (x′)
∣∣∣∼ n−1/2, q = max(α,β )<−1/2.

(6.15)

Inequality (6.9) can be obtained with the help of Eqs. (6.4)
and (6.8). The asymptotic inequalities (6.11) and (6.12)
follow directly from Lemma A1.

Similar bounds can be established for the truncation
error of the discretized cost functional, as stated in the
following theorem.

Theorem 66. Let η ∈ Cn+1[−1,1) and
∥∥∥η(n+1)

∥∥∥
[−1,1)

=

Aη ,n ∈ R+, for some constant Aη ,n dependent on n. Then
the truncation error of the discretized cost functional is
bounded by:

∣∣
η En (ζ )

∣∣≤ Aη ,n2n+1Γ (n+α +β +2)
(n+1)Γ (2n+α +β +2)

∥∥∥J (α,β )
n+1

∥∥∥
[−1,1)

,

(6.16)
where −1 < ζ < 1. Furthermore, as n → ∞, we have:∣∣

η En (ζ )
∣∣<
∼

Bη ,n

( e
2

)n 1
nn+1−q , ∀q ≥−1/2, (6.17)

and∣∣
η En (ζ )

∣∣<
∼

Bη ,n

( e
2

)n 1

nn+ 3
2
, ∀−1< q<−1/2, (6.18)

where Bη ,n = CAη ,n, for some positive constant C, and q
is as defined by Eq. (6.15).

Proof.Inequality (6.16) can be obtained with the help of
Eqs. (6.4) and (6.7). The asymptotic inequalities (6.17) and
(6.18) follow directly from Lemma A1.

Although the previous theorems indicate that our
method is convergent, we expect divergence as the mesh
size grows large if the computations are carried out using
floating-point arithmetic, extending the observation made
in [28] for Gegenbauer polynomials to the more general
Jacobi polynomial family. The next section highlights this
fact with rigorous mathematical proofs.

6.3 Divergence Analysis for Large Mesh Grids

In this section, we analyze the convergence behavior of
our method for large mesh grids, revealing some striking
results regarding the limitations of typical collocation
schemes when applied to the transformed FHOCI. The
following corollary establishes the divergence of the
method for large mesh sizes under certain conditions.
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Figure 8: Minimum Lebesgue constant for JGR-Based Interpolation versus β : For each value of β , the Lebesgue constant
is minimized over all α values in the range {−0.999,−0.99,−0.9(0.1)3}. The minimum Lebesgue constant at each
n = 10(5)85 is plotted for β ∈ {−0.999,−0.99,−0.9(0.1)3}.

Figure 9: The profile of the Jacobi weight function
w(α,β )(x) = (1− x)α(1+ x)β for α ∈ {1.5(0.25)3.5,4,5}
and β = 1.5. In the figure legend, ‘a‘ and ‘b‘ refer to α and
β , respectively.

Corollary 67. Let T ∈ {T (α,β )
1,L ,T (α,β )

2,L }, and suppose that
∃ k̂ ∈ {1, . . . ,nx} : ψk̂ ∈ Cn[−1,1), 0 <

∥∥ fk̂

∥∥
[−1,1) < ∞,

and 0 ≤
∥∥∥∥ d j

dτ j fk̂

∥∥∥∥
[−1,1)

< ∞ ∀ j = 1, . . . ,n+ 1. Then the

upper truncation error bounds of the discretized integral
constraints diverge at each collocation point as n → ∞,
for any map scaling parameter value L.
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Figure 10: The profile of the Jacobi weight function
w(α,β )(x) for α = 1.5 and β ∈ {1.5(0.25)3.5,4,5}.

Proof.By the General Leibniz Rule, the (n+1)st-derivative
of ψk̂ is given by:

ψ
(n+1)
k̂

(τ) =
n+1

∑
j=0

(
n+1

j

)
T (n+2− j)(τ)

d j

dτ j fk̂ (x̃xx(τ), ũuu(τ)) ,

(6.19)
thus:∥∥∥ψ

(n+1)
k̂

∥∥∥
[−1,1)

=
n+1

∑
j=0

(
n+1

j

)∥∥∥T (n+2− j)
∥∥∥
[−1,1)

∥∥∥∥ d j

dτ j fk̂

∥∥∥∥
[−1,1)

.

(6.20)
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Let T = T (α,β )
1,L , and notice that(

T (α,β )
1,L

)(m)
(τ) =

2L(m)!
(1− τ)m+1 ∀m ∈ Z+, which is a

monotonically increasing function for increasing values
of τ as clearly seen from Figure 11. Therefore,

Aψk̂,n = O

(∥∥∥∥(T (α,β )
1,L

)(n+2)
∥∥∥∥
[−1,1)

)
. From Theorem 65:

∣∣∣ψk̂
En (τ j,ξ j)

∣∣∣≤ 2L(n+2)!
( e

2

)n 1+ τ j

nn+1−q

∥∥(1− τ)−n−3∥∥
[−1,1) ,

∀q ≥−1/2, (6.21a)

and∣∣∣ψk̂
En (τ j,ξ j)

∣∣∣<
∼

2L(n+2)!
( e

2

)n 1+ τ j

nn+ 3
2

∥∥(1− τ)−n−3∥∥
[−1,1) ,

∀−1 < q <−1/2, (6.21b)

whence we realize that the upper bound of
∣∣∣ψk̂

En

∣∣∣ at each
collocation point τ j diverges as n → ∞. Consider now the
case when T = T (α,β )

2,L . By a similar argument, notice first

that
(

T (α,β )
2,L

)(m)
(τ) =

L(m−1)!
(1− τ)m ∀m ∈ Z+ is also a

monotonically increasing function for increasing values
of τ as shown by Figure 11. Therefore,

Aψk̂,n = O

(∥∥∥∥(T (α,β )
2,L

)(n+2)
∥∥∥∥
[−1,1)

)
. From Theorem 65:

∣∣∣ψk̂
En (τ j,ξ j)

∣∣∣≤ L(n+1)!
( e

2

)n 1+ τ j

nn+1−q

∥∥∥(1− τ)−n−2
∥∥∥
[−1,1)

,

∀q ≥−1/2, (6.22a)

and∣∣∣ψk̂
En (τ j,ξ j)

∣∣∣<
∼

L(n+1)!
( e

2

)n 1+ τ j

nn+ 3
2

∥∥∥(1− τ)−n−2
∥∥∥
[−1,1)

,

∀−1 < q <−1/2, (6.22b)

from which we observe that the upper bound of
∣∣∣ψk̂

En

∣∣∣ at
each collocation point τ j diverges as n → ∞.

Under a similar proof to that of Corollary 67, one can
derive the following second divergence result.

Corollary 68. Let T ∈ {T (α,β )
1,L ,T (α,β )

2,L }, η ∈ Cn[−1,1),
0 < ∥g∥[−1,1) < ∞, and

0 ≤
∥∥∥∥ d j

dτ j g
∥∥∥∥
[−1,1)

< ∞∀ j = 1, . . . ,n + 1, then the upper

truncation error bound of the discretized cost functional
diverges as n → ∞, for any map scaling parameter value
L.

These results reveal an important limitation of our
method: While it is expected to converge exponentially
for small or moderate values of n, divergence becomes

inevitable as n grows very large, regardless of the choice
of the map scaling parameter L. This behavior is a
consequence of the ill-conditioning introduced by the
parametric mappings, which becomes increasingly severe
as the mesh size grows.

The practical implication of this analysis is that our
method should be used with appropriately sized mesh
grids, typically in the range where exponential
convergence is observed before the onset of divergence.
This characteristic is not unique to our Jacobi-based
approach but is shared by many PS methods applied to
infinite-horizon problems using similar parametric
mappings.

Figure 11 provides critical insight into the
comparative behavior of the two parametric mappings
T (α,β )

1,L and T (α,β )
2,L . While both mappings exhibit

divergence as n → ∞, the derivatives of T (α,β )
1,L grow more

rapidly near τ = 1, with
(

T (α,β )
1,L

)(m)
(τ) =

2L(m)!
(1− τ)m+1

compared to
(

T (α,β )
2,L

)(m)
(τ) =

L(m−1)!
(1− τ)m . This

fundamental difference—an additional factor of 2 and
higher-order singularity at τ = 1—explains why T (α,β )

1,L

diverges faster than T (α,β )
2,L for large n values. As

demonstrated in the proof of Corollary 67, the
ill-conditioning of T (α,β )

1,L is more severe by a factor of
2/(1 − τ), which becomes particularly problematic as τ

approaches 1. Consequently, T (α,β )
2,L emerges as the

superior choice for large-scale mesh implementations.
Remark 69 (Practical Guidance on Mesh Size Selection).
Before selecting the mesh size for practical
implementation, it is advisable to monitor convergence
metrics iteratively. For example, we may begin with
coarse grids (e.g., n = 5−10) and incrementally increase
n while tracking key indicators such as the MRE, the AEJ ,
or the MAEx,u. These metrics typically decrease
exponentially until instability sets in. To avoid divergence,
we can select the largest n before the onset of increasing
or oscillating errors, as indicated by these metrics.

6.4 Parameter Selection for Optimal
Performance

One of the key advantages of our Jacobi-based approach
over previous methods using Gegenbauer polynomials is
the additional degree of freedom provided by the two
parameters α and β . This flexibility allows for more
refined tuning of the method’s performance
characteristics to match specific problem requirements.

Our analysis reveals that the choice of α and β affects
several important aspects of the method’s performance:

1.The distribution of collocation points, which
influences the resolution of the approximation in
different regions of the domain.
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Figure 11: The mth-order derivatives of T (α,β )
1,L and T (α,β )

2,L versus τ in log-lin scale for several values of L and m. The

superscript of T (α,β )
i,L , i = 1,2 has been omitted in the plots.

2.The conditioning of the integration matrices, which
impacts the numerical stability of the discretization.

3.The convergence rate of the method, as indicated by
the error bounds established in Theorems 65 and 66.

4.The range of mesh sizes for which the method exhibits
stable convergence before the onset of divergence.

Through careful selection of these parameters, it is
possible to optimize the method’s performance for
specific problem characteristics. In particular, our
analysis and numerical experiments indicate that certain
combinations with α ̸= β can yield more accurate
approximations than those achievable with Gegenbauer
polynomials (where α = β = λ − 0.5), Legendre
polynomials (where α = β = 0), or Chebyshev
polynomials (where α = β =−0.5).

This finding represents a significant advancement over
previous approaches, as it expands the toolkit available
for solving IHOCs with high precision. The optimal
parameter values depend on the specific characteristics of
the problem being solved, including the smoothness of
the solution, the behavior of the system dynamics, and the
nature of the cost functional.

In the following section, we present numerical
examples that demonstrate the practical performance of
our method and validate the theoretical findings
established here.

7 Numerical Examples

To validate the theoretical findings presented in the
previous section and demonstrate the practical
effectiveness of our JGR-IPS, we now examine two
numerical examples. These carefully selected test cases
illustrate the method’s performance across different
problem types and parameter configurations, with
particular emphasis on comparing the results obtained
using Jacobi polynomials with those from Gegenbauer,
Legendre, and Chebyshev polynomials. The first example
is a practical application concerning spacecraft attitude
maneuvers, while the second is a benchmark problem
commonly used to evaluate numerical methods for
infinite-horizon OC. Numerical experiments were
performed using MATLAB R2020a, running on a
personal laptop equipped with 64-bit Windows 10
Education, a 1.19 GHz Core i5 CPU, and 8 GB of RAM.
The NLPs resulting from the JGR-IPS12 procedures were
solved using MATLAB’s fmincon solver, specifically
with the sqp algorithm (referred to as fmincon-sqp).
Optimal state and control variables for all numerical
examples were precisely calculated within MATLAB
using 15 digits of internal computational precision.

For Examples 1 and 2, the fmincon solver was run
with stopping criteria TolFun = TolX = 10−15. All tests
used parameter values L ∈ {0.25(0.25)10} and {α,β} ⊆
{−0.9(0.1)2}. We used two sets of initial guesses: Ω1 =
{(x̃xx0, ũuu0) : x̃xx0 = 1nx , ũuu0 = 1nu} and Ω2 = {(x̃xx0, ũuu0) : x̃xx0 =
0.51nx , ũuu0 = 0.51nu}. For simplicity, Ω denotes Ω1 ∪Ω2.
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7.1 Example 1: Attitude Maneuvers of an
Asymmetric Rigid-Body Spacecraft

Our first example concerns the attitude maneuvers of an
asymmetric rigid-body spacecraft, a problem of
significant practical importance in aerospace engineering.
The objective is to determine the OC strategy for
reorienting the spacecraft from an initial attitude to a
desired final attitude while minimizing control effort. The
dynamics of the spacecraft are described by the following
equations:

ẋ1 =
I2 − I3

I1
x2x3 +

u1

I1
, (7.1a)

ẋ2 =
I3 − I1

I2
x3x1 +

u2

I2
, (7.1b)

ẋ3 =
I1 − I2

I3
x1x2 +

u3

I3
, (7.1c)

where xi are the angular velocities, Ii are the principal
moments of inertia, and ui are the control torques. The
IHOC is formulated as:

min
xxx,uuu

J =
1
2

∫
∞

0

3

∑
i=1

(
xi(t)2 +ui(t)2)dt, (7.2a)

subject to the dynamics (7.1a)-(7.1c) and the initial
conditions:

x1(0) = 0.01, x2(0) = 0.005, x3(0) = 0.001. (7.2b)

This example was previously solved in [50] using an
extended modal series method. This technique converts a
nonlinear TPBVP, derived from the maximum principle,
into a sequence of linear time-invariant TPBVPs.
Recursively solving these problems yields the OC law
and trajectory as uniformly convergent series.
Additionally, this example was also solved in [51] using a
Feed Forward Neural Network Scheme.

We applied our JGR-IPS to this problem using the
spacecraft’s principal moments of inertia:
I1 = 86.24kg · m2, I2 = 85.07kg · m2, and
I3 = 113.59kg · m2. We tested various combinations of
the parameters α , β , L, and n.

Table 2 presents the optimal cost values obtained
using different polynomial families and parameter
combinations across various mesh sizes n. The
JGR-IPS12 method demonstrably outperforms [50]’s
approach, as evidenced by our method consistently
achieving smaller objective function values for varying n.
Specifically, the lowest objective function values were
recorded for α ∈ [1.6,1.9] and β ∈ [0.6,1.8] with
n = 10,15. This observation aligns with our general “Rule
of Thumb” discussed in Section 6.1.

Similarly, Table 3 indicates that the JGR-IPS12
method yields superior MREs. The tabulated data also
reveals a noteworthy observation: Jacobi polynomials
with α ∈ [1.6,1.9] and β ∈ [0.6,1.8] for n = 10,15 exhibit

higher convergence rates compared to other polynomial
families. This includes Chebyshev polynomials
(α = β =−0.5), Legendre polynomials (α = β = 0), and
Gegenbauer polynomials (α = β = λ − 0.5). The data
collectively illustrates the method’s convergence behavior
across different parameter combinations and confirms our
theoretical prediction of exponential convergence for
small to moderate mesh sizes, irrespective of the
parameter choice.

The success of JGR-IPS12 in this context can be
attributed to several key factors:

1.The system dynamics’ integral form facilitates
increased accuracy through numerically stable
quadratures.

2.The parametric logarithmic mapping T (α,β )
2,L is

preferred over T (α,β )
1,L due to its reduced sensitivity

and slower growth near τ = 1.
3.The scaling parameter L, when optimally selected,

contributes to faster convergence rates.
Figure 12 further illustrates the approximate optimal

state and control trajectories obtained using JGR-IPS1.
The smooth and physically realistic nature of these
trajectories provides additional validation for the
effectiveness of our approach.

7.2 Example 2: Linear Quadratic Regulator
Problem

Our second example is a LQR problem with an infinite
horizon, which has an analytical solution that can be used
to assess the accuracy of our numerical method. The
problem is formulated as:

min
x1,x2,u

J =
∫

∞

0

(
x2

1(t)+0.5x2
2(t)+0.25u2(t)

)
dt, (7.3a)

subject to the dynamics:

ẋ1 = x2, (7.3b)
ẋ2 = 2x1 − x2 +u, (7.3c)

and the initial conditions:

x1(0) =−4, x2(0) = 4. (7.3d)

The exact state and control variables to this problem
are given by:

xxx∗(t) = exp(N t)xxx(0), (7.4a)
u∗(t) =−HHHxxx∗(t), (7.4b)

where

N =

[
0 1

−2.82842712474619 −3.557647291327851

]
,

(7.4c)

HHH = [4.828427124746193,2.557647291327851] ;
(7.4d)
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Table 2: f val of [50]’s method and JGR-IPS12 obtained using n = 10,15 and (x̃xx0, ũuu0) ∈ Ω .

Example 1

[50]’s method JGR-IPS1 JGR-IPS2

(x̃xx0, ũuu0) ∈ Ω1 (x̃xx0, ũuu0) ∈ Ω2 (x̃xx0, ũuu0) ∈ Ω1 (x̃xx0, ũuu0) ∈ Ω2

f val/(M) f val/(n)/(α)/(L)/(β ) f val/(n)/(α)/(L)/(β ) f val/(n)/(α)/(L)/(β ) f val/(n)/(α)/(L)/(β )
0.005432195475/(3) 5.35003584754812e−05/(10)/(1.9)/(2.75)/(1.8) 5.35003584754812e−05/(10)/(1.9)/(2.75)/(1.8) 2.93725040738347e−05/(10)/(1.9)/(7.5)/(1.8) 2.93725040736794e−05/(10)/(1.9)/(7.5)/(1.8)

4.18050600008906e−06/(15)/(1.7)/(0.25)/(0.7) 4.18050600008899e−06/(15)/(1.7)/(0.25)/(0.7) 5.45632819380131e−07/(15)/(1.6)/(0.25)/(0.6) 7.31733271230786e−07/(15)/(1.7)/(0.5)/(0.7)

Table 3: Table 3 presents the MRE for [50]’s method and JGR-IPS12, obtained using n = 10,15 and initial guesses from
Ω .

Example 1

[50]’s method JGR-IPS1 JGR-IPS2

(x̃xx0, ũuu0) ∈ Ω1 (x̃xx0, ũuu0) ∈ Ω2 (x̃xx0, ũuu0) ∈ Ω1 (x̃xx0, ũuu0) ∈ Ω2

MRE/(M) MRE/(n)/(α)/(L)/(β ) MRE/(n)/(α)/(L)/(β ) MRE/(n)/(α)/(L)/(β ) MRE/(n)/(α)/(L)/(β )
6.4000e−13/(3) 3.4694e−18/(10)/(1.9)/(2.75)/(1.8) 2.6021e−18/(10)/(1.9)/(2.75)/(1.8) 3.9031e−18/(10)/(1.9)/(7.5)/(1.8) 7.3726e−18/(10)/(1.9)/(7.5)/(1.8)

4.5103e−17/(15)/(1.7)/(0.25)/(0.7) 5.1608e−17/(15)/(1.7)/(0.25)/(0.7) 4.8139e−17/(15)/(1.6)/(0.25)/(0.6) 5.5403e−17/(15)/(1.7)/(0.5)/(0.7)
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Figure 12: Numerical simulations for Example 1 performed using the JGR-IPS1 technique. All state and control variables
were defined on the interval [0,1000]. For the presented method, we used n = 25, α = β = 0, and L = 9.75. Figures were
generated by evaluating the solution at 10001 equally spaced points between 0 and 1000, starting with the initial guess
x̃xxn = ũuun = 111n.

cf. [53,52,39]. Using MATLAB’s Symbolic Math
Toolbox, the optimal cost functional value for this linear
quadratic regulator problem was determined to be
J∗ = 19.85335656362790, rounded to sixteen significant
digits.

We applied our JGR-IPS method to this problem,
exploring various combinations of the parameters α and
β . The results were then compared with the analytical
solution. Only the parametric mapping T (α,β )

2,L was
thoroughly tested in this example with different values of
the scaling parameter L, due to its slower divergence rate,
as noted in Section 6.3.

Table 4 presents the AEJ for various polynomial
families, parameter combinations, and mesh sizes. Our
results demonstrate that the proposed method achieves
high accuracy even with relatively small mesh sizes. The
table also provides a direct comparison between our
current method, JGR-IPS2, our previous work [28], and
the transformed LGR approach of [41]. It is evident that
the proposed method generally produces lower AEJ
values than those in [41], with the exception of n = 100.
Aligning with our divergence analysis, we observed an
unusual drop in precision as the mesh size increases from
moderate to large-scale. In particular, the results confirm
our theoretical prediction of exponential convergence for
moderate mesh sizes followed by divergence for very
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large mesh sizes. Interestingly, complete machine
accuracy for the exact J∗ was recorded as early as n = 20
for both, the JGR-IPS2 and our previous method [28],
highlighting incredibly accurate numerical techniques
with exponential convergence rates for coarse meshes. It’s
important to note that the Legendre case (α = β = 0)
achieved the highest accuracy for the JGR-IPS2 method
across all scenarios except for n = 100. In this specific
case, collocation at values of α and β where α ̸= β

provided increased precision. Furthermore, the presented
method demonstrates superiority over our previous
method [28] only for n = 30,60, and 90; both methods
exhibit comparable accuracy for n = 20, while our former
method [28] performs better otherwise. One may attribute
this slight gain in accuracy by our previous method [28]
to the exceedingly accurate SR interpolation algorithm
developed there, which improved the direct IPS method
for IHOCs using Gegenbauer polynomials and GGR
points; cf. Remark 11.

Table 5 presents the CPU times (in seconds) for
computing the AEJ , demonstrating that the JGR-IPS2
method consistently achieves lower computational times
compared to [41], highlighting its superior efficiency.
Table 6 displays further the MAEx,u. A comparison with
the results from [55] is provided in Table 7, showing that
our presented method offers superior accuracy in most
cases.

Figure 13 shows the approximate optimal state and
control trajectories obtained using our JGR-IPS2 with
specific parameter values, compared with the analytical
solution. The excellent agreement between the numerical
and analytical solutions confirms the accuracy of our
approach. Figures 14, 15, and 16 present the MAEx,u for
various parameter combinations, illustrating the
convergence behavior of the JGR-IPS2 method. In Figure
14, for fixed n and L, the global minimum of MAEx,u
typically occurs near α = 0, suggesting that Legendre
polynomials (α = β = 0) are often optimal among Jacobi
polynomials. Similarly, Figure 15 shows that the
minimum MAEx,u generally occurs near β = 0 for fixed n
and L. Stability analysis indicates that Jacobi polynomials
remain stable for α near −1, but instability emerges as α

approaches 2 (Figure 14). Conversely, instability is
common for β near −1 or 2, while stability is generally
observed in the intermediate range (Figure 15). Figure 16
does not yield a consistent pattern for a general rule of
thumb across the tested (α,β ,L) combinations.

7.3 Discussion of Results

The numerical examples presented in the previous
subsection validate the theoretical findings established in
Section 6 and demonstrate several key advantages of our
JGR-IPS:

1.The method achieves exponential convergence for
moderate mesh sizes, allowing for high-accuracy
approximations with relatively few collocation points.

Example 2
[41]’s Method [28]’s Method JGR-IPS2

n AEJ AEJ/λ/L AEJ/α/β/L
10 3.92e-05 1.0658e-14/0.5/4.25 2.4869e-14/0/0/2.5
20 1.76e-06 0/0.5/5.75 0/0/0/3.25
30 2.73e-07 1.0658e-14/0.5/2.5 3.5527e-15/0/0/6
40 7.24e-08 1.0303e-13/0.5/6 1.1724e-13/0/0/6.75
50 2.63e-08 5.1514e-13/0.5/5 6.6080e-13/0/0/5.75
60 1.19e-08 8.3844e-13/0.5/5.5 8.3489e-13/0/0/6
70 6.45e-09 1.2967e-12/0.5/10 2.2631e-12/0/0/5.5
80 4.06e-09 1.7977e-12/0.5/10 5.7376e-12/0/0/8.5
90 2.90e-09 1.4021e-9/0/3.5 1.5227e-10/0/0/1.5
100 2.29e-09 5.3783e-08/0.8/4 3.6658e-07/-0.3/0.7/0.75

Table 4: The AEJ of [41]’s method, our previous method
in [28] using the logarithmic mapping T (λ )

2,L , and the
lowest AEJ gained by JGR-IPS2 using (x̃xx0, ũuu0) ∈ Ω1. All
approximations were rounded to 5 significant digits.

Example 2

[41]’s Method JGR-IPS2
n CPU time CPU time

10 0.15 0.15
20 0.35 0.18
30 0.57 0.17
40 1.01 0.16
50 1.37 0.17
60 1.96 0.16
70 2.51 0.19
80 4.65 0.36
90 4.26 0.34

100 5.41 0.58

Table 5: The CPU times for running the code to compute
AEJ of [41]’s method and the lowest AEJ obtained by the
JGR-IPS2 using (x̃xx0, ũuu0) ∈ Ω1.

Example 2
n α β L MAEx,u

10 0 0 2.5 8.5317e-07
20 0 0 3.25 1.6512e-06
30 0 0 6 1.2799e-06
40 0 0 6.75 4.0971e-06
50 0 0 5.75 3.5581e-06
60 0 0 6 2.1720e-06
70 0 0 5.5 1.4486e-05
80 0 0 8.5 7.4694e-06
90 0 0 1.5 1.6675e-04

100 -0.3 0.7 0.75 1.1630e-03

Table 6: The MAEx,u of JGR-IPS2 using (x̃xx0, ũuu0) ∈ Ω1
computed at the collocation points. All approximations
were rounded to 5 significant digits.

2.Certain combinations of Jacobi parameters α and β

with α ̸= β yield more accurate approximations than
those provided by Gegenbauer, Legendre, or
Chebyshev polynomials, confirming the benefit of the
additional degree of freedom in parameter selection.
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Figure 13: The plots of the exact optimal states and control of Example 2 and their collocated approximations acquired
by means of JGR-IPS2 on the domain [0,10] with n = 30,α = β = 0,L = 4.25, and (x̃xx0, ũuu0)∈ Ω1. All plots were produced
with 101 equally spaced points between 0 and 10.

Figure 14: The MAEx,u of the JGR-IPS2 at the collocation points using n = 10(10)50, α = −0.9(0.1)2, (L,β ) =
(1,−0.2),(2,0),(3,0.5),(4,1), and (x̃xx0, ũuu0) ∈ Ω1.

3.The method successfully handles both practical
engineering problems (Example 1) and benchmark
problems with analytical solutions (Example 2),
demonstrating its versatility and robustness.

4.The observed divergence for very large mesh sizes
confirms our theoretical prediction and highlights the

importance of selecting appropriate mesh sizes for
optimal performance.

5.The simplified computational approach without the
switching technique for barycentric weights performs
adequately across various parameter combinations,
validating our decision to eliminate this complexity
from the implementation.
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Figure 15: The MAEx,u of the JGR-IPS2 at the collocation points using n = 10(10)50, β = −0.9(0.1)2, (L,α) =
(1,−0.2),(2,0),(3,0.5),(4,1), and (x̃xx0, ũuu0) ∈ Ω1.

Example 2
t [55]’s Method JGR-IPS2

n = 10 n = 10,α = 0,β = 0,L = 2.5
0 0 0
1 6.86391e-04 1.86805e-05
2 7.46026e-04 8.79501e-05
3 2.54228e-06 4.69135e-05
4 9.00173e-04 3.32519e-05
5 2.08183e-04 7.15694e-06
6 8.95379e-04 1.17352e-05
7 1.89575e-04 3.20300e-07
8 7.03556e-04 7.69009e-06
9 7.33797e-04 1.00914e-05
10 3.75724e-05 7.93869e-06
15 6.67898e-04 6.6117e-05
20 6.60049e-04 1.66080e-04

f val 19.853452 19.8533565636279

Table 7: Absolute error of the first state component for
[55]’s method and JGR-IPS2 with (x̃xx0, ũuu0) ∈ Ω1, rounded
to six significant digits.

These results collectively establish the effectiveness
of our JGR-IPS for solving IHOCs and demonstrate its
advantages over previous approaches based on more
specialized polynomial families.

8 Conclusion

In this paper, we have presented a novel direct IPS
method for solving IHOCs using Jacobi polynomials. Our
approach extends previous work that utilized Gegenbauer

polynomials by employing the more general and flexible
Jacobi polynomial family, which offers an additional
degree of freedom through its two parameters α and β .
Through rigorous theoretical analysis and numerical
experiments, we have demonstrated several key
advantages of this approach.

First, our method transforms IHOCs into
finite-horizon problems in integral form using parametric
mappings, which are then discretized using rational
collocations based on Jacobi polynomials and JGR nodes.
This approach avoids the precision degradation typically
associated with numerical differentiation procedures and
allows for efficient solution of the resulting NLP.

Second, we have established comprehensive error
bounds and convergence properties for our method,
showing that it achieves exponential convergence for
moderate mesh sizes. Our analysis also reveals the
limitations of the method for very large mesh sizes, where
divergence becomes inevitable due to the ill-conditioning
introduced by the parametric mappings. This finding
extends similar observations made for Gegenbauer
polynomials to the more general Jacobi polynomial
family.

Third, we have demonstrated that certain
combinations of Jacobi parameters with α ̸= β yield
more accurate approximations than those provided by
Gegenbauer, Legendre, or Chebyshev polynomials. This
result highlights the benefit of the additional degree of
freedom in parameter selection offered by the Jacobi
polynomial approach. The optimal parameter values
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Figure 16: The MAEx,u of the JGR-IPS2 at the collocation points using n = 10(10)50, L = 0.5(0.5)6, (α,β ) =
(−0.2,1),(0,0.5),(0.5,0),(1,−0.2), and (x̃xx0, ũuu0) ∈ Ω1.

depend on the specific characteristics of the problem
being solved, providing a flexible framework that can be
adapted to various applications.

Fourth, we have implemented a simplified
computational approach that eliminates the need for the
switching technique used in previous work for computing
barycentric weights. Our analysis shows that for many
parameter combinations within the Jacobi family, the
standard formula performs adequately without requiring
the more complex switching approach, reducing the
computational complexity of the method.

Finally, we have validated our theoretical findings
through numerical examples, including a practical
application to spacecraft attitude maneuvers. These
examples demonstrate the effectiveness of our method in
solving complex IHOCs and confirm its advantages over
previous approaches.

While the spacecraft attitude maneuver example
demonstrates the efficacy of the proposed Jacobi PS
method, its applicability extends to a wide range of
IHOCs across diverse domains. For instance, in finance,
the method can optimize long-term portfolio management
strategies under stochastic constraints. In robotics, it can
facilitate motion planning for autonomous systems
operating over extended time horizons, ensuring
energy-efficient trajectories. Similarly, in energy systems,
the approach can address optimal control of renewable
energy grids, balancing supply and demand indefinitely.
These potential applications underscore the versatility of
the proposed method, positioning it as a powerful tool for

tackling complex, long-term optimization challenges in
various fields. Future research directions may also include
the development of adaptive mesh refinement strategies
that can utilize the flexibility of Jacobi polynomials, the
exploration of alternative parametric mappings that may
offer improved conditioning for large mesh sizes, and the
application of our method to a wider range of practical
problems in various fields. Additionally, the extension of
this approach to handle state and control constraints more
efficiently represents an important area for further
investigation.

In addition to the specific contributions of this study,
the proposed Jacobi PS framework has broader
implications in both aerospace and finance. In aerospace
engineering, Jacobi PS methods have been successfully
applied to optimal trajectory design and flight-control
problems, demonstrating their effectiveness in handling
complex dynamic constraints [29]. In the field of finance,
Jacobi-family spectral and PS approaches, including
barycentric and Gauss-Jacobi schemes, have been
employed for option pricing under fractional models [57].
These applications highlight the versatility of the
proposed method and underscore its potential impact
beyond the immediate scope of this work.

In conclusion, our JGR-IPS provides a powerful and
flexible tool for solving IHOCs, offering improved
accuracy and adaptability compared to previous
approaches based on more specialized polynomial
families. The theoretical foundations and practical
implementation presented in this paper establish a solid
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framework for the continued development and application
of this method in various scientific and engineering
domains.

A Useful Lemma

Lemma A1. For fixed α >−1 and β >−1, the term (n+
1)!K(α,β+1)

n = O(n2n(n/e)n), as n → ∞.

Proof.Notice that:

(n+1)!K(α,β+1)
n =

(n+1)Γ (2n+α +β +2)
2nΓ (n+α +β +2)

. (A.1)

Also, Stirling’s formula to the factorial function can be
written as follows:
√

2πxx+1/2e−x <Γ (x+1)<
√

2πxxxe−xe1/(12x) ∀x∈ [1,∞).
(A.2)

Applying Eq. (A.2) to the ratio of Gamma functions in Eq.
(A.1) gives:

Γ (2n+α +β +2)
Γ (n+α +β +2)

<

(
1+

n
n+α +β +1

)n+α+β+3/2

(2n+α +β +1)n e−ne1/(12(2n+α+β+1)) = O
(

4n
(n

e

)n)
,

as n → ∞. (A.3)

By combining this result with Eq. (A.1), we can readily
show that:

(n+1)!K(α,β+1)
n =

n+1
2n O

(
4n
(n

e

)n)
= O(n2n(n/e)n) .

(A.4)
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