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Abstract: Current shear design provisions for continuous reinforced 

concrete (RC) beams inadequately account for the coupled effects of 

shear span-to-depth ratio (a/d) and moment redistribution, often 

leading to conservative or unsafe predictions. This study addresses this 

gap through an integrated approach combining nonlinear finite element 

modelling and full-scale laboratory testing. Eleven continuous beam 

models with varying (a/d) ratios and transverse reinforcement 

percentages were analysed using ANSYS, and three full-scale RC 

beams were tested under symmetrical four-point loading. Results show 

that reducing (a/d)  increases shear strength by up to 42% but reduces 

redistribution capacity, while changes in transverse reinforcement ratio 

have negligible influence on redistribution. A new empirical equation 

is proposed to predict moment redistribution ratios, incorporating $a/d$ 

effects, with prediction errors within ±5% of experimental and 

numerical results. Compared with current code expressions, the 

proposed model offers consistently higher accuracy across a wide range 

of geometries. The findings provide a unified framework linking shear 

capacity and redistribution limits, enabling more rational and reliable 

shear design provisions for continuous RC beams in major structural 

codes. 
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1. Introduction  

 

Shear failure in reinforced concrete (RC) beams is typically sudden and brittle and once 

initiated it can lead to rapid structural collapse. For this reason, an accurate estimation of shear 

capacity is critical to ensuring ductility, serviceability, and overall safety throughout a 

structure’s lifespan [1–4]. Insufficient shear resistance can cause wide diagonal cracking, 

premature stiffness loss, and early degradation. Despite this importance, many experimental 

data and code provisions have been developed for simply supported beams [5,6], which do 

not replicate the stress reversals and interaction effects present in continuous members. 
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Continuous RC beams, being statically indeterminate, experience moment reversal near 

supports, inelastic regions under high load, and combined flexural–shear action [7,8]. Several 

experimental studies have shown that continuity can increase shear capacity by 30–50% 

relative to predictions based on simply supported beam formulas [9,10]. This improvement 

has been attributed to multiple mechanisms, including redistribution of internal forces [9,11], 

additional axial compression in the web [12,13], enhanced dowel action from longitudinal 

reinforcement [14,15], and smaller crack widths improving aggregate interlock [10,16]. 

Nevertheless, major design codes such as ACI 318-19 [17], BS 8110 [18], and Eurocode 2 

[19] still use shear expressions largely derived from simple-span beam testing. While some 

adjustments for continuous members exist — for example, modified stirrup requirements or 

alternative definitions of shear span — there is no comprehensive framework that quantifies 

the full influence of continuity on shear capacity. An additional factor often overlooked in 

continuous beam design is the ability of the structure to redistribute moments through plastic 

hinge formation near supports [7,21–23]. The extent of redistribution, typically expressed as 

the moment redistribution ratio 𝜷, is a key indicator of ductility and the ability to shift internal 

forces under ultimate loads. 

 

𝜷 =
𝑴𝒆−𝑴𝒆𝒙

𝑴𝒆
𝒙𝟏𝟎𝟎                                   (1) 

 

In continuous beam analysis, the experimental bending moment at any stage is denoted as 

𝑴𝒆𝒙 , while 𝑴𝒆 refers to the corresponding values at midspan and central support obtained 

from elastic theory. Although several models predict the moment redistribution ratio, β [7], 

they rarely account for the influence of the shear span-to-depth ratio (𝑎/𝑑), which plays a 

decisive role in redistribution potential [24–26]. For example, the expression by A. Tarek et 

al. [7] relates 𝛽 to the quantities of tensile reinforcement in positive (𝐴𝑠𝑠) and negative (𝐴𝑠ℎ) 

moment zones, incorporating the steel ratio (𝜌𝑠) and its minimum required value (𝜌𝑠𝑚𝑖𝑛). 

However, it does not consider the effect of 𝑎/𝑑. Lower 𝑎/𝑑 ratios often reduce ductility, 

thereby limiting the extent of redistribution achievable in practice. 

 

𝜷 = 𝟑𝟐. 𝟕𝟔𝟑 𝐥𝐧
𝑨𝒔𝒔

𝑨𝒔𝒉
+ 𝟓. 𝟎𝟔𝟏𝟏 𝐥𝐧(𝝆𝒔 − 𝝆𝒔𝒎𝒊𝒏) + 𝟏𝟑. 𝟔𝟗𝟖𝟖                           (2) 

 

The interaction between shear strength and redistribution is a defining feature of continuous 

RC members. Lower 𝑎/𝑑 values, associated with deeper sections, typically enhance shear 

capacity but restrict redistribution, whereas higher 𝑎/𝑑 ratios can permit substantial 

redistribution but increase vulnerability to premature shear failure if not adequately reinforced 

[24–26]. 

This study addresses the gap by examining how 𝑎/𝑑 influences both shear behavior and 

redistribution capacity in continuous RC beams. The approach combines nonlinear finite 

element simulations, new analytical formulations, and full-scale testing. The proposed shear 

capacity model is validated against experimental results from the present work and a wide 

range of published data, including tests on members reinforced with fiber-reinforced polymer 

(FRP) bars. Based on these results, guidelines for setting safe redistribution limits are 

proposed. The results contribute to a better understanding of shear behavior in continuous RC 
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beams—critical elements in buildings, bridges, and structural frames—and support the 

development of design provisions for FRP-reinforced members, which differ in shear transfer 

and deformation characteristics from conventional steel-reinforced systems. 

 

 

2. Experimental program 

 

2.1. Specimens Details 

To evaluate the effect of shear span-to-depth ratio (𝑎/𝑑) on the shear behavior and moment 

redistribution of continuous reinforced concrete beams, three two-span specimens were 

designed, constructed, and tested. The primary variable was the (𝑎/𝑑) ratio, while all other 

geometric and reinforcement parameters were kept constant. Each beam measured 4000 mm 

in overall length, comprising two equal spans of 1900 mm. The cross-section was rectangular, 

200 mm in width and 300 mm in total depth, with an effective depth of 270 mm. The beams 

were loaded using a symmetrical four-point bending configuration, applying a single 

concentrated load at the center of each span. The shear spans were set to 700 mm, 550 mm, 

and 400 mm, corresponding to 𝑎/𝑑 ratios of 2.6, 2.0, and 1.5, respectively. All specimens 

were proportioned to fail in shear prior to reaching their flexural capacity. To suppress 

flexural failure, the longitudinal reinforcement layout included three high-yield 16 mm 

diameter bars placed in the top layer over the central support and four 16 mm diameter bars 

at the bottom in the midspan regions. Shear reinforcement consisted of 6 mm mild steel 

stirrups spaced at 200 mm center-to-center within the shear-critical zones and 8 mm stirrups 

spaced at 100 mm in the external shear spans. To enhance anchorage and prevent splitting 

failures, the longitudinal bars were bent at the ends, providing a development length equal to 

the effective depth. A schematic representation of the reinforcement arrangement and beam 

geometry is provided in Table 1 and Figure 1. 

 

2.2. Material Characteristics 

All beams were produced using ready-mix concrete designed for a nominal compressive 

strength of 25 MPa, with a maximum aggregate size of 20 mm. To verify the actual strength 

of each batch, four 150 mm cubes were cast alongside the beams and cured under identical 

conditions. Compressive testing was performed on the same day as beam loading, and the 

average strength of the four cubes was adopted as the representative concrete strength for that 

batch.  For longitudinal reinforcement, 16 mm high-yield deformed bars were employed at 

both the tension and compression zones. The transverse reinforcement in the shear-critical 

regions consisted of mild steel stirrups with diameters of 6 mm and 8 mm. The mechanical 

properties of all reinforcing bars were established through standard tensile testing, providing 

values of yield strength, ultimate strength, and modulus of elasticity that were directly 

incorporated into the analytical and numerical models. A complete summary of these 

properties is presented in Table 2. 

 

2.3. Test Setup and Procedure 

Each specimen was arranged as a two-span continuous beam resting on three steel supports. 

The middle support functioned as a pinned connection, restraining horizontal movement but 
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permitting rotation, while the end supports were modeled as rollers, allowing longitudinal 

displacement. This ensured that the intended boundary conditions were reproduced 

accurately. Loading was applied using a 5000 kN EMS hydraulic testing frame. A rigid steel 

spreader beam transferred the actuator force into two equal concentrated loads, symmetrically 

placed within each span. The reaction at the central support and the total applied load were 

measured through calibrated load cells to ensure accuracy of the applied forces. To capture 

the deformation response, linear variable differential transformers (LVDTs) with high 

sensitivity were positioned at midspan and other critical points along the beam. Longitudinal 

reinforcement strains were monitored using electrical resistance strain gauges fixed at the 

tension reinforcement in both the midspan and central support regions. Additional strain 

gauges were bonded to the concrete compression zone (see Figure 3) and to selected internal 

stirrups in the shear-critical regions to record shear strains in the transverse reinforcement. 

Crack propagation was tracked using a precision LVDT (0.001 mm accuracy) mounted across 

major cracks to measure incremental crack widths throughout the loading sequence. All 

instruments were connected to a data acquisition system, enabling continuous recording of 

load, deflection, reinforcement strain, and crack width from the initial elastic stage up to 

ultimate failure. The reinforcement layout and overall experimental setup are illustrated in 

Figures 1 and 2, while detailed material and specimen properties are summarized in Table 2. 

 

Table 1: Compressive strength of the tested beams and reinforcing configuration.  

Beam 
(𝑓𝑐)  

(𝑀𝑃𝑎) 
(
𝑎

𝑑
) 

Longitudinal reinforcement Flexural reinforcement ratio (%) 

Top RFT Bottom RFT Top RFT Bottom RFT 

BS1 25 2.6 

3 Φ16 4 Φ16 1.12 
1.5 

 
BS2 24 2 

BS3 24.5 1.5 

 

Table 2: Mechanical properties of steel reinforcement  

Bar Type 
Diameter

(mm) 

Nominal 

area (mm2) 

Yield 

strength 

(MPa) 

Ultimate 

strength 

(MPa) 

Modulus of 

Elasticity 

(GPa) 

Steel bars 16 200 500 650 198 

Steel 

stirrups 

8 50 380 500 201 

6 28 360 450 198 

 

2.4. Calculation of Moments and Redistribution 

In the experimental program, internal moments were calculated using basic static equilibrium. 

Load cells at the steel beam (Fig.2) and supports recorded reaction forces. The sagging 

moment at mid-span and hogging moment at the central support were calculated using: 

 

𝑴𝒔𝒂𝒈. = 𝑹. (
𝒍

𝟐
− 𝒂)                                         (3) 

 

𝑴𝒉𝒐𝒈. = 𝑹. (
𝒍

𝟐
) −

𝒑

𝟐
∗ 𝒂                                             (4) 

 

where R is the end support reaction, a is the shear span, and p is the total machine load. 
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For linear elastic moment values, standard beam theory was used assuming fully elastic 

behaviour. The moment redistribution ratio, β, was then determined as: 

 

𝛃 =
𝑴𝒆−𝑴𝒆𝒙.

𝑴𝒆
∗ 𝟏𝟎𝟎                                                          (5) 

where Mex. is the experimentally determined moment at a given section and Me is the 

corresponding elastic moment. 

 

 
 

 

 

                                    

Fig. 1: Details of reinforcement of tested beams, typical cross-section. 

  

 
Fig. 2: External instruments and a typical test setup.  
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3. Test results and discussion 

 

3.1. Typical behavior and mode of failure 

All three test beams, BS1, BS2, and BS3, exhibited similar cracking behavior and progression 

of damage leading to ultimate shear failure. The Initial cracks appeared as minor vertical 

flexural cracks in the hogging moment region near the middle support due to tension in the 

concrete. As loading was increased incrementally, wider diagonal shear cracks began to 

propagate from near the middle support towards the applied point loads. In beam BS1 with a 

shear span-to-depth ratio (𝒂/𝒅) of 2.6, initial diagonal cracking was observed at an applied 

load of around 120 kN. The critical diagonal shear crack that resulted in failure initiated closer 

to the middle support and propagated towards the location of the load application as the load 

reached 190 kN. BS1 experienced a brittle and sudden shear failure crack through the mid-

depth along one shear span. Beams BS2 and BS3, with lower 𝒂/𝒅 ratios of 2.0 and 1.5, 

respectively, were intentionally designed to fail in shear before reaching flexural capacity. 

Much like in BS1, diagonal shear cracks started to form and widen starting from the middle 

support as the applied loads gradually increased. For BS2 with 𝒂/𝒅 = 2.0, shear cracking 

progressed more extensively compared to BS1, leading to an ultimate shear failure crack and 

collapse at 223 kN. Beam BS3 exhibited substantial web shear cracking early on and failed 

suddenly at 270 kN along one shear span close to the middle support. The formation of 

additional bending cracks was restrained near the failure loads for beams BS2 and BS3. 

Overall, while all three test beams showed analogous cracking behavior, the shear cracks were 

more widely spread for lower 𝒂/𝒅 ratios. For every continuous beam that was tested, brittle 

diagonal tension cracking that started close to the middle support in a single shear span was 

the most common mechanism of failure, emphasizing the impact of severe shear. Figure 3 

illustrates the crack propagation in beams BS1, BS2, and BS3, leading to a critical shear crack 

at failure. 

 

 
 

 
 

 
Fig. 3: Cracking patterns and failure modes for test beams BS1, BS2, and BS3, showing 

diagonal shear failure initiating near the middle support. 

 

BS1 

BS2 

BS3 
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3.2. Load deflection response 

The relationship between applied load and corresponding midspan deflection was monitored 

for all test beams. The load-deflection behavior exhibited two distinct stages: an initial 

uncracking response followed by a post-cracking response after concrete cracking. In the pre-

cracking stage, the load-deflection relationship was approximately linear with very little 

deviation. The stiffness was governed by the intact elastic modulus of the uncracked concrete 

in terms of compression and tension. After the formation of the first cracks due to the tensile 

cracking of concrete, the response transitioned to the post-cracking phase. With increasing 

applied loads, the stiffness degraded progressively as more extensive cracking occurred. The 

post-cracking stiffness and deflection depend on the axial stiffness of the reinforcing steel 

bars. All three test beams, BS1, BS2, and BS3, reached peak deflections of around 8-12 mm 

at failure, albeit at varying ultimate loads of 190 kN, 223 kN, and 270 kN, respectively. Beam 

BS1 with the highest 𝐚/𝐝 ratio of 2.6 exhibited the lowest stiffness throughout loading 

compared to BS2 and BS3, resulting in larger deflections. This demonstrates that reducing 

the shear span for constant depth decreases midspan deflections. The load-deflection plot for 

BS3 showed a plateauing behavior near peak load, indicating greater deformability before 

failure. In summary, with higher 𝐚/𝐝 ratios, initial cracking occurred at lower loads, and post-

cracking stiffness as well as ultimate loads were reduced. However, deflections increased for 

larger 𝐚/𝐝 values at a given load. The experimental load-deflection plots validate that the 

shear span-to-depth ratio substantially influences the stiffness, strength, and ductility of 

continuous concrete beams. Similar observation was recorded by Mahmoud, [27] for ordinary 

RC beams with varying 𝐚/𝐝 ratios. Figure 4 shows the full load-deflection response across 

pre- and post-cracking regimes up to peak loads for all test beams. Table 3 shows the values 

of the deflection for all tested beams at cracking, yield, ultimate and failure load. 

 
 

Fig. 4: Load–deflection responses of beams BS1, BS2, and BS3, illustrating the influence of 

shear span-to-depth ratio on stiffness and ductility. 
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Table 3: Deflection of the tested beams at different levels of loading. 

Beam 
At cracking load 

(mm) 

At yield load 

(mm) 

At ultimate load 

(mm) 

At failure load 

(mm) 

BS1 3.07 7.35 11.31 12.15 

BS2 3.51 5.98 7.93 8.11 

BS3 3.82 5.35 7.49 8.55 

 

3.3.  Shear strength 

The ultimate shear loads, corresponding midspan deflections, bending moments, moment 

redistribution ratios, and failure modes observed from the three RC continuous beam tests are 

summarized in Table 4. The experimental results validate that the shear strength capacity of 

continuous RC beams is significantly affected by the shear span to depth ratio (𝐚/𝐝). As the 

𝐚/𝐝 ratio decreased from 2.6 to 2.0 for BS1 and BS2, the ultimate shear load increased by 

around 17% from 190 kN to 223 kN. Further reducing the a/d ratio to 1.5 for BS3 led to a 

42% improvement in shear strength to 270 kN compared to BS1. Thus, substantially 

decreasing the shear span for a constant member depth considerably enhances the ultimate 

shear resistance. The extent of moment redistribution occurring between critical sections was 

also found to be influenced by the 𝐚/𝐝 ratio. Beams BS2 and BS3 with lower 𝐚/𝐝 values 

demonstrated increased moment redistribution capacity compared to BS1 with the highest 

tested a/d. This indicates that the degree of internal force transfer from sagging to hogging 

regions is higher for stockier members. However, BS3 with the minimum 𝐚/𝐝 exhibited lower 

ductility with more brittle, shear-dominated behavior. Thus, while lower shear spans allow 

greater moment redistribution, excessively short spans can result in sudden shear failures after 

yielding. In summary, reducing the shear span to depth ratio enhances both the ultimate shear 

strength as well as the moment redistribution capacity prior to failure. But decreasing 𝐚/𝐝 

beyond an optimum level led to abrupt shear failure at elevated loads without prior flexural 

yielding. 

 

Table 4: Moments, Moment Redistribution, Deflection and failure load. 

S
p
ec

im
en

 

𝑅
 (

𝑘
𝑁

) 

𝑄
 (

𝑘
𝑁

) 

𝑃 𝑢
 (

𝑘
𝑁

) 

D
ef

le
ct

io
n

 

(m
m

) 

E
x

p
. 

m
o
m

en
t 

(𝑘
𝑁

.𝑚
) 

E
la

st
ic

 

m
o
m

en
t 

(𝑘
𝑁

.𝑚
) 

𝛽
1

 %
 

M
o
d
e 

o
f 

fa
il

u
re

 

Hogging Sagging Hogging Sagging 

BS1 23.80 71.2 190 
11.00 

24.68 25.14 33.26 19.32 25.78 
shear 

BS2 17.50 94 223 
9.00 

28.44 23.3 37.18 17 23.5 
shear 

BS3 13.60 122.4 272 
8.90 

30.00 18.95 38.2 12.25 21.46 
shear 

• 𝑅 (𝑘𝑁): End reaction. 

•   𝑄 (𝑘𝑁): Ultimate shear force at central support,  

•   𝑃𝑢 (𝑘𝑁): Beam ultimate load, 

• 𝛽1 %: Experimentally determined moment redistribution ratio. 
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3.4. Summary of Experimental results 

• Reducing the a/d ratio from 2.6 to 1.5 increased the shear capacity by 42%. 

• All beams failed in shear, with critical cracking initiating near the middle support. 

• Higher shear strength came at the cost of reduced ductility and redistribution. 

• Moment redistribution improved with decreasing a/d ratio, but excessive reduction led 

to brittle failure. 

 

 

4. Nonlinear finite element (FE) modeling 

 

In the finite element simulations, concrete was represented using the eight-node SOLID65 

element in ANSYS (Figure 5) [27]. This element can capture tensile cracking, compressive 

crushing, and plastic deformation in three orthogonal directions, making it appropriate for 

reinforced concrete modelling. Each node had three translational degrees of freedom in the 

global x, y, and z directions. 

 

4.1. Material characteristics and element types 

The constitutive behavior of concrete included both linear isotropic and multi-linear isotropic 

components, with nonlinear behavior described using the Willam–Warnke failure criterion 

[30]. Shear transfer coefficients were set to 0.3 for open cracks and 0.8 for closed cracks, 

following recommendations from previous studies [28]. The elastic modulus was calculated 

in accordance with ACI 318 [17]: 

 

𝑬𝒄 = 𝟒𝟕𝟎𝟎 √𝒇𝒄                                          (6) 

 

where 𝒇𝒄 is the cylinder compressive strength in MPa. The modulus of rupture was 

determined as: 

 

𝒇𝒓 = 𝟎. 𝟔𝟐√𝒇𝒄                                                    (7) 

 

In this study𝒇𝒄and 𝒇𝒓were taken as 25 MPa and 3.10 MPa, respectively. Steel reinforcement 

was modelled using LINK180 elements (Figure 6) [27], which capture elastic–plastic 

behavior under axial loading. Material properties for both 16 mm high-yield deformed bars 

and 6–8 mm mild steel stirrups were obtained from tensile tests (Table 2). The stress–strain 

response was modelled as bilinear with zero tangent stiffness in the plastic range, and 

Poisson’s ratio was set to 0.30. Loading and support plates were simulated using SOLID185 

elements (Figure 7) [27], with an elastic modulus of 200 GPa and a Poisson’s ratio of 0.30. 

 

4.2. Model Structure 

The reinforcement in the finite element model was represented using LINK180 elements, 

embedded directly within the SOLID65 concrete elements. A perfect bond was assumed 

between steel and surrounding concrete, meaning no slip or interface elements were 

introduced. Similarly, the SOLID185 steel bearing plates used at the loading and support 

points were modelled in full contact with the concrete to ensure complete load transfer. 
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Fig. 4: SOLID65 geometry and stress-strain curve for concrete [27]. 

 

 
Fig. 5: LINK180 Geometry [27], and Stress-strain curve for steel bars. 

 

 
 

Fig. 6: SOLID185 Geometry [27]. 

 

The continuous beams tested in the laboratory exhibited symmetry both along their 

longitudinal axis through the central support and vertically through the centroidal axis of the 

cross-section. To reduce computational demand while maintaining modelling accuracy, only 

one-quarter of each beam was simulated (Figure 8a–c). Appropriate symmetry boundary 

conditions were applied to the cut planes to represent the remaining portions of the structure. 

Support conditions in the numerical model replicated those used experimentally (Figure 2). 

The central support was simulated as a hinged connection, restraining horizontal and vertical 

translation but allowing rotation, while the end support was modelled as a roller, restraining 

vertical movement only. No lateral restraints were applied, allowing free transverse 

deformation during loading. A mesh sensitivity analysis was conducted to determine an 

optimal element size that balances accuracy and computational cost. Mesh sizes from 75 mm 
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to 15 mm were examined. Coarser meshes resulted in premature numerical instability and 

reduced accuracy, whereas very fine meshes significantly increased the computational time. 

A final element size of 50 × 20 × 20 mm was selected, as it produced less than 0.05% variation 

in key response parameters compared to the finest tested mesh, while maintaining a 

reasonable solution time. 

 

 
 

(a) Test beam 

 
 

(b) Cross-section 

 
(c) axis of symmetry 

 
                                                   (d) boundry conditions  

 

Fig. 8: (a) Geometry of the test beam, (b) Cross-section, (c) Axis of symmetry, and (d) 

Boundary conditions. Note: Lateral displacements were not restrained in the simulation to 

reflect the absence of lateral supports during experimental testing. 

 

4.3. Numerical Solution Parameters 

The nonlinear static analysis was carried out in incremental load steps to capture both the pre-

cracking and post-cracking response of the beams. Each load step applied a fraction of the 

total load in the direction of the actuator, allowing the stiffness matrix to be updated 

progressively as material nonlinearity developed. The solution employed the Newton–

Raphson iterative procedure, which repeatedly updates the structural stiffness until 

equilibrium is achieved within a specified tolerance at the end of each load step. This 

approach ensures stable convergence even when stiffness degradation occurs due to cracking 

and yielding. The analysis type was set to small-displacement static conditions, consistent 

with the experimental deformation levels. Convergence checks were based on both force and 

displacement criteria, with tolerances of 0.005 and 0.05, respectively. These limits were found 

to provide a balance between computational stability and accuracy in reproducing the 

experimental load–deflection behavior. All other solution controls, including time stepping 

Concrete 
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and contact status updates, were set to maintain stability without artificially constraining 

crack development or redistribution effects. 

 

4.4. Model Verification  

The finite element model developed in ANSYS was validated against the experimental results 

obtained for the three continuous RC beams (BS1, BS2, and BS3) tested under symmetrical 

four-point bending. Validation involved a direct comparison of load–deflection curves, 

moment redistribution trends, cracking patterns, and ultimate load capacities. 

As shown in Table 5, the FEM-predicted yielding and ultimate loads were within 

approximately 3% of the experimental values for all beams. The numerical load–deflection 

responses (Figure 9) reproduced the initial elastic stiffness, the gradual reduction in stiffness 

after cracking, the yield plateau, and the peak load with close agreement to the experimental 

curves. It is calculated by: 

 

𝜷 =
𝑴𝒆−𝑴𝒆𝒙

𝑴𝒆
𝒙𝟏𝟎𝟎                                             (8) 

 

Figure 10 demonstrates that the FEM and experimental results followed similar trends at the 

middle support, with deviations not exceeding 20%, which is considered acceptable for 

nonlinear RC beam analysis. 

The predicted cracking patterns and failure modes closely matched those observed in the 

laboratory. The FEM successfully identified the initiation of flexural cracks, the formation of 

diagonal shear cracks in high-shear regions, and the progression to the critical shear crack 

that led to failure (Figures 11–13). The orientation and location of major cracks were 

consistent with experimental observations, and the predicted failure mode was shear-

dominated in all cases, as in the physical tests. This level of agreement in load response, 

redistribution behavior, and crack development confirms the robustness of the numerical 

model for simulating the structural performance of continuous RC beams. With this 

validation, the FEM was deemed suitable for the extended parametric study described in the 

following section. 

 

Table 5: Comparison between the Experimental and FEM results at yield and ultimate loads.   

Beam 

Yielding load at hogging region (kN) Ultimate load (kN) 

Exp. FEM Exp./ FEM Exp. FEM Exp./ FEM 

BS1 180 185 0.97 190 199 0.96 

BS2 200 208 0.96 223 230 0.97 

BS3 239 251 0.95 272 275 0.99 
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(a) BS1 

 
(b) BS2 

 
(c) BS3 

Fig. 7: Load-deflection behavior of tested beams. 

 

 
(a) BS1 

 

 
(b) BS2 

 
(c) BS3 

 

Fig. 8: Load versus end reactions of tested beams. 

 

 
(a) BS1 

 
(b) BS2 

 
(c) BS3 

Fig. 9: Load versus moment redistributions at the middle support of beams BS1, BS2 and 

BS3. 

 

  
Fig. 10: Numerical crack propagation pattern of beam BS1 from FEM analysis, showing 

critical diagonal shear cracking. 
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Fig. 11: Numerical crack pattern for beam BS2 from FEM, capturing diagonal cracking 

consistent with experimental results. 

 

4.5.  Summary of Numerical simulation results 

• The finite element (FE) models developed in ANSYS APDL closely replicated the 

experimental results of continuous RC beams, with ultimate load predictions within 3–5% 

of test values. 

• The FE simulations successfully captured the load-deflection behavior, including: 

o Initial elastic stiffness 

o Post-cracking degradation 

o Yield plateau and peak strength 

o Brittle shear failure at ultimate loads 

• The models effectively reproduced crack initiation and propagation, with predicted shear 

crack patterns and failure modes aligning well with experimental observations (Figures 

11–13). 

• Moment redistribution behavior was accurately simulated. The calculated redistribution 

ratios (β) at the critical middle support differed from experiments by no more than 20%, 

indicating acceptable accuracy for nonlinear structural response modelling. 

 

 

5. Parametric Study 

 

After validating the finite element model against the experimental program, a broader 

parametric investigation was carried out to quantify the influence of shear span-to-depth ratio 

(𝑎/𝑑), and transverse reinforcement ratio on the structural response of continuous RC beams. 

In total, 11 FE beam models were generated in ANSYS by systematically varying (𝑎/𝑑), and 

web reinforcement content, while maintaining all other geometric and material properties 

consistent with the experimental specimens. Specimen layouts, including reinforcement 

arrangements, are presented in Figure 14, with corresponding details listed in Table 6. 

   

 

  
Fig. 14: Details of test specimens (all dimensions in mm). 
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6. General behavior, cracking pattern, and mode of failure 

At various loading stages, all test beams exhibited identical cracking behavior until failure. 

All beams started to develop shear and flexural cracks as the load was gradually applied. The 

flexural cracks stopped forming at a specific load level, whereas further shear cracks began 

to emerge. All beams exhibited shear failure at ultimate load, and a critical shear crack line 

developed next to the centre support of the two-span continuous RC beams. Table 7 shows 

the shear failure loads for test beams. Failure occurred in all beams after the yielding of two 

adjacent stirrups in the internal shear span. Figure 15 clearly shows that beams reinforced 

with a high web reinforcement ratio have more shear cracks than beams reinforced with a low 

ratio. Furthermore, beams with a high shear span-to-depth ratio have more shear cracks than 

beams with a low ratio. Figure 16 shows the mode of failure for test beams.  

 

Table 6: Details of beams 

Specimen 𝑎/𝑑 𝑎 (𝑚𝑚) 𝑏 (𝑚𝑚) Stirrups 𝜇𝑠𝑡 
Main reinforcement (𝑓𝑐)  

(𝑀𝑃𝑎) Top Bottom 

C1 2 600 1300 5Φ6/m 0.280 

6Φ16 6Φ16 26 

C2 2 600 1300 7Φ6/m 0.373 

C3 2 600 1300 10Φ6/m 0.560 

C4 2 600 1300 5Φ8/m 0.500 

C5 1 300 1600 

7Φ8/m 0.667 

C6 1.5 450 1450 

C7 1.7 500 1400 

C8 2 600 1300 

C9 2.5 750 1150 

C10 3 900 1000 

C11 1.7 500 1400 10Φ8/m 1.00 

 

Table 7: End reaction, shear force, Moments and Moment Redistribution at ultimate load 

S
p
ec

im
en

 

R
 (

k
N

) 

Q
 (

k
N

) 

P u
∗
 (

k
N

) FEM moment, 

(kN. m) 

Elastic moment 

(kN. m) 

β
1

 %
 

𝛽
2

%
 

Hogging Sagging Hogging Sagging 

C1 26 118 144 40 31.2 47.8 25.9 16 -20 

C2 28.5 130 158.5 43.8 34.2 54 28.5 17 -20 

C3 31.6 145.4 177 49.3 37.9 58.9 31.7 16.3 -19.5 

C4 30.25 143 173.25 49.5 36.3 57.7 31.2 14.2 -16 

C5 17.3 300 317.3 64 26 73 19 12 -37 

C6 25 205 230 58.5 33.75 67.9 27.6 13.78 -22 

C7 28 188 216 57.6 36.1 67.8 30.24 15.07 -19.4 

C8 35.0 162.4 196.8 55.0 41.3 65.5 35.4 16 -16.7 

C9 52.6 149.6 202.2 57 55.2 70 47.5 18.5 -16.2 

C10 66.8 124 192.4 52.9 60.1 64.9 53.9 20 -11.5 

C11 39 265 304 81.8 50.3 95.5 42.6 14.3 -18 

𝑅: End reaction, 𝑄: Shear force, 𝑃𝑢
∗ = (

𝑃𝑢

2
): Ultimate load of one span, 𝛽1: Moment redistribution 

ratio of hogging moment,  𝛽2: Moment redistribution ratio of sagging moment. 
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(a) C1                                

 
(b) C2 

 
(c) C3 

 
(d) C4 

 
(e) C5 

 
(f) C6 

Fig. 15: Crack patterns and failure modes for beams C1–C6, illustrating effects of web 

reinforcement and a/d ratio on shear cracking. 

 

 

7. Load-Deflection Response 

 

Figures 16 and 17 illustrate the relationship between the applied load  for one span (𝑃𝑢
∗) and 

point load deflection for all tested beams. In general, the beams exhibited linear load-

deflection behavior with a steep slope in the uncracked stage at the start of the loading. 

Following cracking, the flexural stiffness decreased as the load increased; the flexural 

stiffness and deflection are dependent on the axial stiffness of the reinforcing bars [33]. Figure 

16 shows the effect of the percentage of web reinforcement on the ultimate load. Comparing 

the diagrams, it can be observed that the influence of varying the web reinforcement ratio 

while keeping the shear span-to-depth ratio constant at 𝑎/𝑑 = 2. The beams with higher web 

reinforcement ratios (C3, C4 and C8) exhibit improved load-carrying capacity and slightly 

higher stiffness compared to the beams with lower web reinforcement ratio (C1 and C2). 

However, the differences in the load-deflection response are not very pronounced between 

these beams. This observation suggests that for the shear span-to-depth ratio of 𝑎/𝑑 = 2, 

increasing the web reinforcement ratio beyond a certain point may not significantly enhance 

the overall load-deflection behavior or shear strength. The presence of minimum web 

reinforcement (as in C1) appears to be sufficient to ensure reasonable performance up to the 

ultimate load stage for this relatively low 𝑎/𝑑 ratio. It is important to note that these 

comparisons are specific to the 𝑎/𝑑 = 2 case, and the influence of web reinforcement ratio 

may be more pronounced for higher shear span-to-depth ratios, where shear stresses become 

more critical. Generally, as designed, the ultimate capacity of beams (C2, C3, C4, and C8) is 

increased compared with the control beam C1 by (10, 23, 20, 36%) respectively. This is due 

to the fact that increasing the amount of web reinforcement by decreasing the spacing between 

stirrups increases the shear strength of the beam carried by concrete and stirrups. The ultimate 

load of concrete beams decreases with limited values as the (a/d) ratio increases . The 

measured deflection of beams with high (𝑎/𝑑) ratios was consistently lower than that of 

beams with low (𝑎/𝑑) ratios at any load level. Beam C5 has stiffness higher than other beams, 

as shown in Figure 17.  
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Fig. 126: Load-deflection relationship at load point of test beams. 

 
Fig. 137: Effect of (𝑎/𝑑)ratio on Load-deflection relationship of test beams. 

 

 

8. Moment Redistribution 

 

The evolution of the moment redistribution ratio (β) for all specimens is plotted in Figure 18 

and numerically summarized in Table 7. This parameter was evaluated by comparing the 

bending moments at the middle support (hogging region) and at mid-span (sagging region) 

throughout the entire loading process, from the initial application of load up to failure.  At the 

early stages, before cracking occurred in the hogging zone, the redistribution ratio (β) 

assumed negative values. This indicates that the experimentally measured moment in the 
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hogging region exceeded the corresponding elastic moment, implying a transfer of internal 

forces from the sagging span toward the support region. Once the first flexural cracks 

developed at the support, β progressively decreased and approached zero at the cracking load.  

Beyond this stage, the redistribution mechanism reversed: internal forces shifted from the 

negative moment zone toward the positive span regions. Between cracking and yielding, the 

redistribution ratio increased gradually, while after yielding it rose more sharply, reaching 

peak values near failure.  The role of shear reinforcement was found to be relatively limited. 

For instance, beam C1, with the lowest web reinforcement ratio, exhibited redistribution 

values of approximately 14% at yield and 16% at failure. In comparison, beam C11, 

containing the highest stirrup ratio, showed a reduction in redistribution capacity, with 

average values of 21% at yield and 11% at failure, relative to beam C1. This suggests that 

variations in shear reinforcement ratio exert only a secondary influence on redistribution 

behavior.  By contrast, the shear span-to-depth ratio (𝑎/𝑑( had a pronounced effect. Beams 

C5–C10, which share the same stirrup ratio but differ in 𝑎/𝑑, clearly demonstrate this trend. 

Beam C5, with the lowest  (𝑎/𝑑(, exhibited a redistribution ratio of about 12%, whereas beam 

C10, with the highest  )𝑎/𝑑( (, showed a value nearly 67% greater than that of C5 (see Table 

7). This confirms that 𝑎/𝑑 is a dominant parameter controlling redistribution, as shorter spans 

favor shear resistance but reduce ductility, while larger spans enhance the capacity for 

moment transfer between critical regions.  Overall, Table 7 compiles the shear forces, support 

reactions, ultimate loads, hogging/sagging moments, and redistribution ratios, while Figure 

18 provides a consolidated visual of how β evolves with load level and varies with 

reinforcement and $a/d$. The results establish (
𝑎

𝑑
) as the dominant parameter governing 

redistribution, with transverse reinforcement acting mainly as a modifier rather than a driver. 

 
Fig. 1814: Variation in moment redistribution ratio (β) with changes in shear span-to-depth 

ratio (a/d) for all tested beams. 
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9. Development of Design Equations Using Elastic Moments and Redistribution Ratios 

 

Although many design codes employ linear elastic analysis for continuous reinforced 

concrete (RC) beams, experimental and analytical studies [31–34] consistently show that such 

members undergo significant moment redistribution prior to failure. The extent of 

redistribution permissible in design is often capped by simplified limits that do not explicitly 

account for key influencing parameters, which can lead to either unnecessarily conservative 

or unsafe predictions of structural capacity and serviceability.  ACI 318 [17] limits 𝜷 based 

on the net tensile strain in the extreme tension reinforcement, with a maximum allowance of 

20%. 

 

𝜷% ≤ 𝟏𝟎𝟎𝟎 Ɛ𝒕                                              (9) 

 

The negative moment determined by an elastic analysis can be changed by a factor according 

to the CSA code [33] with a maximum of 20%. 

 

𝜷% ≤ 𝟑𝟎 − 𝟓𝟎 (
𝒄

𝒅
)                                        (10) 

 

Where (
𝑐

𝑑
) is the ratio of a cross section's neutral axis depth to its effective depth at the 

ultimate limit state. In Europe, EC2 [20] and MC10 [34] also determine the degree of moment 

redistribution using the parameter (
𝑐

𝑑
) :  

 

𝜷% ≤ 𝟎. 𝟓𝟔 − 𝟏. 𝟐𝟓 (𝟎. 𝟔 +
𝟎.𝟎𝟎𝟏𝟒

Ɛ𝒖
)

𝒄

𝒅
    for 𝒇𝒄𝒌 ≤ 𝟓𝟎𝑴𝑷𝒂                    (11) 

 

𝜷% ≤ 𝟎. 𝟒𝟔 − 𝟏. 𝟐𝟓 (𝟎. 𝟔 +
𝟎.𝟎𝟎𝟏𝟒

Ɛ𝒖
)

𝒄

𝒅
        for 𝒇𝒄𝒌 > 𝟓𝟎𝑴𝑷𝒂                  (12) 

 

 with a limit of 20% for low-ductility steel and 30% for high- and normal-ductility steel. (Ɛ𝒖) 

denotes the ultimate concrete compressive strain, and (𝒇𝒄𝒌) is the concrete cylinder 

compressive strength. According to the British standard [19], the degree of moment 

redistribution is estimated using the neutral axis depth (𝑐) of the cross section, and the 

moments can be redistributed using an elastic analysis. 

 

𝜷% ≤ (𝟔𝟎 − 𝟏𝟎𝟎 
𝒄

𝒅
)                                                           (13) 

 

Tarek et al. [7] also determined the moment redistribution ratio of normal strength RC beams, 

which takes the longitudinal reinforcement ratio into account as mentioned in Eq. 14: 

 

𝜷 = 𝟑𝟐. 𝟕𝟔𝟑 𝐥𝐧
𝑨𝒔𝒔

𝑨𝒔𝒉
+ 𝟓. 𝟎𝟔𝟏𝟏 𝐥𝐧(𝝆𝒔 − 𝝆𝒔𝒎𝒊𝒏) + 𝟏𝟑. 𝟔𝟗𝟖𝟖                        (14) 

 

Table 6 reveals that for all specimens, the outcomes of the design codes previously discussed 

provide inconsistent outcomes and differ noticeably from those of the FE analysis. Tarek et 
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al. equation [7] is determined to be the results' closest approximation; however, the equivalent 

values are constant and unaffected by changes in (
𝑎

𝑑
). As a result, it is shown using Figure 10 

as a logarithmic function that the values of the redistribution of moments are significantly 

influenced by the values of (
𝑎

𝑑
). As a result, the Tarek equation [7] was developed in this study 

by incorporating the effect of the shear span to depth ratio (
𝑎

𝑑
). 

For one concentrated load:                    

                       

𝜷 = 𝟑𝟐. 𝟕𝟔𝟑 𝐥𝐧(
𝑨𝒔𝒔

𝑨𝒔𝒉
) + 𝟓. 𝟎𝟔𝟏𝟏 𝐥𝐧(𝝆𝒔 − 𝝆𝒔𝒎𝒊𝒏) + 𝟔. 𝟒𝟔 𝐥𝐧 (

𝒂

𝒅
) + 𝟕. 𝟔𝟔                         (15) 

 

For two concentrated loads:       

                                    

𝜷 = 𝟑𝟐. 𝟕𝟔𝟑 𝐥𝐧(
𝑨𝒔𝒔

𝑨𝒔𝒉
) + 𝟓. 𝟎𝟔𝟏𝟏 𝐥𝐧(𝝆𝒔 − 𝝆𝒔𝒎𝒊𝒏) + 𝟔. 𝟒𝟔 𝐥𝐧 (

𝒂

𝒅
)

𝟏
+ 𝟔. 𝟒𝟔 𝐥𝐧 (

𝒂

𝒅
)

𝟐
+ 𝟕. 𝟔𝟔       (16) 

 

Tables 8–10 compare the proposed equations with FEA results and code-based predictions. 

Across the full specimen set, the mean ratio of predicted to FEA 𝜷 values are 0.96, with an 

average deviation below 5%. The model performs most accurately for beams with (1.5 ≤ 𝑎/𝑑 

≤2.5), which covers most practical design cases. 

For very low 𝑎/𝑑 values (e.g., specimen C5, 𝑎/𝑑 = 1.0), the model slightly underestimates 

𝜷, likely due to shear-dominated response and reduced plastic rotation capacity. For high 

𝑎/𝑑 ratios (e.g., C10, 𝑎/𝑑 = 3.0), minor overprediction occurs, potentially because of 

increased flexural influence not fully captured in the simplified form. 

Compared with existing provisions, which either fix redistribution caps or neglect 

𝑎/𝑑 effects, the proposed equation provides a more adaptable and accurate tool. Its explicit 

incorporation of 𝑎/𝑑 enables reliable application to short-span and deep beams, where 

conventional formulas may become overly conservative or unconservative. 

                           

Table 8: The comparison of the FEM results and the obtained equations at the hogging zone. 

Specimen Predicted FEM FEM/Predicted 

C1 15.43 16 0.96 

C2 15.43 17 0.91 

C3 15.43 16.3 0.95 

C4 15.43 14.2 1.09 

C5 10.95 12 0.91 

C6 13.57 13.78 0.98 

C7 14.38 15.07 0.95 

C8 15.43 14.3 1.08 

C9 16.87 18.5 0.91 

C10 18.05 20 0.90 

C11 14.38 14.3 1.01 

 

 



JES, Vol 54, No 1, Pp. 1-24, Jan. 2026           DOI: 10.21608/JESAUN.2025.376890.1483 Part A: Civil Engineering 

 

21 

Table 9: Results of FEM in terms of moment redistribution. 
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C1 0.100 0.098 0.185 1.00 20.75 9.09 41.50 16.99 15.43 16.00 

C2 0.080 0.117 0.203 0.80 19.85 10.41 39.70 16.99 15.43 17.00 

C3 0.103 0.098 0.186 1.03 20.70 8.84 41.40 16.99 15.43 16.30 

C4 0.090 0.102 0.196 0.90 20.20 7.67 40.40 16.99 15.43 14.20 

C5 0.075 0.116 0.201 0.75 19.95 10.60 39.90 16.99 10.95 12.00 

C6 0.080 0.121 0.222 0.80 18.90 7.24 37.80 16.99 13.57 13.78 

C7 0.098 0.047 0.167 0.98 21.65 18.71 43.30 16.99 14.38 15.07 

C8 0.093 0.102 0.197 0.93 20.15 7.43 40.30 16.99 15.43 14.30 

C9 0.115 0.106 0.200 1.15 20.00 7.98 40.00 16.99 16.87 18.50 

C10 0.153 0.120 0.222 1.53 18.90 6.98 37.80 16.99 18.05 20.00 

C11 0.100 0.115 0.200 1.00 20.00 10.57 40.00 16.99 14.38 14.30 

   

 

 Table 10: Experimental and predicted moment redistribution ratios of the continuous 

reinforced concrete beams 
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𝛽
𝑝

𝑟
𝑒
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N. Baša [35] S1-15 4.2  --- 304 270 150 220 0.921 0.306 15.0 18.36 

S.M. Hasanur 

Rahman [23] 
SuR-II 5.2  --- 850 500 700 270 0.450 0.306 25.0 25.89 

AbdulAziz Abdul 

Samad [16] 

 (Beam 

3-0) 
3.3 4.8 600 1200 150 325 1.231 0.306 2.3 2.40 

Khalifa, 

A.Tumialan [36] 

CW1 4  --- 1600 1600 150 265 4.025 0.239 25.0 23.35 

CO1 4  ---- 1600 1600 150 265 4.025 0.239 25.0 23.35 

 

 

10. Prediction of ultimate load 

 

The shear capacity of RC continuous beams with shear reinforcement is essentially equal to 

the sum of the concrete (𝑉𝑐)  and stirrup contributions (𝑉𝑠) . Shear force for continuous RC 

beam at the middle support is obtained by (𝑄): 

 

𝑸 =  𝑽𝒏 . 𝒃 . 𝒅                                          (17) 
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To determine the total ultimate shear load for one span of a continuous concrete beam and the 

reaction of the edge support. First, the elastic bending moment and the moment redistribution 

ratio are used to determine the final bending moment value at the middle support. The elastic 

bending moments at mid-span and over the middle support of the two span beams have 

various shear spans indicated in [39], where P and L are the mid-span applied load and beam 

span, respectively, as shown in Figure 19.   

 

𝑴𝑩 =
𝑷.𝒂.𝒃

𝑳𝟑
(𝑳 + 𝒂)𝑳                                                (18) 

 

𝑴𝑪 =
𝑷.𝒂

𝟐
(𝟐 − 𝟑

𝒂

𝑳
+

𝒂𝟑

𝑳𝟑
)                                      (19) 

 

𝑴𝑩 𝑭𝒊𝒏𝒂𝒍 = 𝑴𝑩(𝟏 − 𝜷)                (20) 

 

𝑷 =  
𝑸.𝑳− 𝑴𝑩 𝑭𝒊𝒏𝒂𝒍

𝒂
                                                       (21) 

 

 
Fig. 19: Elastic bending moment distribution with constant flexural stiffness. 

 

 

11. Conclusions 

 

This study presented a combined experimental–numerical investigation into the shear strength 

and moment redistribution behavior of continuous RC beams, focusing on the influence of 

shear span-to-depth ratio (𝑎/𝑑) and transverse reinforcement ratio. The main findings are: 

1. Reducing 𝑎/𝑑 from 2.6 to 1.5 increased shear capacity by up to 42%, but reduced ductility 

and redistribution potential. 

2. Increasing transverse reinforcement enhanced shear resistance but had minimal effect on 

redistribution, which was governed primarily by 𝑎/𝑑. 

3. A new empirical equation was developed to predict moment redistribution ratios 

incorporating 𝑎/𝑑, achieving prediction errors within ±5% of FEM and experimental 

results, and outperforming existing code expressions. 

4. The validated FEM model reliably captured load–deflection behavior, cracking patterns, 

and redistribution trends, supporting its use in advanced structural analysis. 
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These results provide a rational framework for linking shear strength and redistribution limits, 

offering direct implications for refining shear design provisions in major structural codes. 

Adoption of the proposed model can improve the accuracy and reliability of designs for 

continuous RC beams, especially in cases involving short-span or deep-section members. 
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