INFLUENCE OF THREE MINERAL OILS AND OTHER COMPOUNDS ON THE POPULATION OF THE CITRUS RUST MITE, PHYLLOCOPTRUTA OLEIVORA ASHMEAD AND THE CITRUS BROWN MITE, EUTETRANYCHUS ORIENTALIS (KLEIN). ### SOFEE M. IBRAHIM Plant Protection Research Institute , Agricultural Research Centre, Dokki, Egypt. (Manuscript received 14 March 1992) ### Abstract The effect of three mineral oils; Star oil, Shokrona oil and Shokrona Super, as well as Vertimec (abamectin 1.8% E.C., natural product produced by the soil microorganism, *Streptomyces avermitis*) and Dithane M-45, against the citrus rust mite *Phyllocoptruta oleivora* and the citrus brown mite, *Eutetranychus orientalis* was evaluated. Results indicated that Dithane M-45 was the most effective compound in reducing citrus rust mite population and produced the least percentage of russetted fruits. Vertimec came next, followed by Shokrona Super, Star oil then Shokrona oil. Vertimec was the most toxic compound against the citrus brown mite followed by Shokrona Super, Star oil then Shokrona oil. ### INTRODUCTION Recently, Dithane M-45 and Kelthane were found to be highly effective against citrus rust mite, citrus brown mite and citrus flat mites. Phosphorus compounds used as summer sprays against scale insects, mealy bugs and fruitflies infesting citrus trees were found to cause the build up of citrus mites (Attiah and Wahba , 1971). The increasing use of different acaricides and insecticides in controlling injurious mites and insects, are main factors causing hazards to man and decrease natural enemies population. This paper deals with the effect of some mineral oils as well as the biological compound Vertimec (abamectin 1.8%) on the citrus rust mite, *Phyllocoptruta olei-vora* Ashmead and the citrus brown mite, *Eutetranychus orientalis* (Klein). # MATERIALS AND METHODS Two groves of navel orange trees were chosen, one at Kaha Qualubia Governorate and the other at Hosh Eisa, Behera Governorate during 1990 season. The first experiment included 90 trees highly infested with the citrus brown mite, *E. orientalis*, and the second experiment included 96 trees highly infested with the citrus rust mite, *Ph.oleivora*. The first grove was divided into five treatments and six treatments were used in the second. In the two experiments, every treatment contained four replicates each having four trees. The trees received one application on August 1st, 1990 (first experiment), and on September 3rd, 1990 (second experiment) by using a motor sprayer. The check treatment was left unsprayed. Mite counts were started just befor treatments (pre-count), then at weekly intervals after treatment along one month. Each sample included 20 leaves per replicate totalling 80 leaves per treatment for the first experiment, and 8 fruits per replicate making a total of 32 fruits per treatment for the second experiment. Similar precount was done before spraying to estimate the percentage reduction in mite population by using Henderson and Tilton equation (1955). The materials and their rates of use in 100 litres of water were, Star oil (1.5l), Shokrona oil (1.5 l.), Shokrona Super (1.5l.), Vertimec (30cc) and unsprayed control. Dithane M-45 (120g) was used in the second experiment. At the end of the second experiment, the number of russetted and healthy fruits were recorded for each treatment. ## RESULTS AND DISCUSSION As indicated in Table 1, Vertimec and Shokrona Super showed a reduction in the citrus brown mite population (83.81 and 82.28 %, respectively). Star oil showed a reduction of 79.75 % while Shokrona oil was the least effective giving Table 1. Population of E. orientalis before and after spraying. | Spray | No. of mi | 10.71.77 | | | | | |-------------------|--------------------|-------------------|--------------|--------------|--------------|-------| | | Before
Spraying | Average reduction | | | | | | | 1/8 | 8/8 | 15/8 | 22/8 | 29/8 | % | | Vertimec | 878 | 126
86.00* | 132
84.25 | 158
83.17 | 166
81.82 | 83.81 | | Shokrona
Super | 919 | 138
85.00 | 158
82.15 | 179
81.19 | 187
80.81 | 82.28 | | Star oil | 881 | 163
82.00 | 169
80.05 | 183
80.20 | 203
76.77 | 79.75 | | Shokrona | 895 | 249
73.00 | 250
71.65 | 286
69.31 | 315
64.65 | 69.65 | | Control | 899 | 896 | 853 | 907 | 884 | Ξ | ^{* %} Reduction 69.65 % reduction in mite population. Thus, it could be concluded that Vertimec and Shokrona Super were the most effective compounds against the citrus brown mite, *E. orientalis.* Data in Table 2, show the effect of the tested compounds on *Ph. oleivora* population. Dithane M-45 was the most effective compound in reducing mite population (92.50%). Reduction percentages of mite population in the other treatments were less than 90% as Vertimec gave 87.20%, while Shokrona Super, Star oil and Shokrona oil gave 85.54, 83.84 and 81.00%, respectively. Table 2. Population of the rust mite *Phyllocoptruta oleivora* before and after spraying. | | No. of mit | | | | | | |-------------------|--------------------|---------------|----------------|---------------------|---------------|-------| | Spray | Before
Spraying | 181 | After spraying | Average reduction % | | | | | 3/9 | 10/9 | 17/9 | 24/9 | 1/10 | 70 | | Dithane
M-45 | 3316 | 173
94.95* | 221
93.73 | 317
91.35 | 394
89.97 | 92.50 | | Vertimec
1.8% | 3409 | 180
94.74 | 260
92.78 | 502
86.62 | 1019
74.67 | 87.20 | | Shokrona
Super | 3190 | 187
94.14 | 269
92.02 | 523
85.16 | 1063
72.46 | 85.54 | | Star oil | 3129 | 191
93.83 | 286
71.35 | 697
79.75 | 1091
70.42 | 83.54 | | Shokrona | 3205 | 261
91.81 | 323
90.50 | 764
· 78.34 | 1382
63.36 | 81.00 | | Check | 3340 | 3290 | 3487
 | 3648
 | 3891
- | | ^{* %} Reduction The percentage of russetted fruits compared with the total number of fruits in each treatment is shown in Table 3. These Percentages confirmed those shown in Table2 that Dithane M-45 was the most effective compound in reducing mite population and at the same time was the highest protective product against russetting giving only 0.14% reussetted fruits. The percentages of russetted fruits in case of Vertimec, Shokrona Super, Star oil and Shokrona oil were 5.34 , 6.74, 8.52 and 12.37%, respectively . In the check the percentage jumped to 47.9% . The previous findings agree with those of Attiah et al., (1971) and Hanna et al., (1975). Table 3. Percentages of russetted fruits compared with the total number of fruits in different treatments. | Treatments | | Average
of
russetted | | | | | | |-------------------|---------------|----------------------------|---------------------|---------------------|---------------------|------------------------|-------------| | | | 1 | 2 | 3 | 4 | Total | fruits
% | | Dithane
M-45 | T.
R.
% | 785
6
0.79 | 496
2
0.40 | 904
5
0.60 | 574
3
0.52 | 2683
16
0.57 | 0.14 | | Vertimec | T.
R.
% | 545
28
5.13 | 781
36
4.60 | 904
62
6.85 | 851
41
4.81 | 3081
167
21.39 | 5.34 | | Shokrona
Super | T.
R.
% | 337
17
5.04 | 456
32
5.86 | 483
47
9.73 | 615
39
6.34 | 1981
135
26.97 | 6.74 | | Star oil | T.
R.
% | 671
58
8.64 | 713
63
8.83 | 533
49
9.19 | 416
31
7.45 | 2333
201
34.11 | 8.52 | | oil | T.
R.
% | 801
92
11.48 | 625
88
17.08 | 493
72
14.60 | 545
51
9.35 | 2464
303
49.51 | 12.37 | | Control | T.
R.
% | 675
321
47.55 | 871
385
44.20 | 593
291
49.07 | 714
363
50.84 | 2853
1360
191.66 | 47.91 | T = Total no. of fruits R = Russetted fruits ^{% =} Percentage reduction of russetted fruits # REFERENCES - Attiah, H. H. and M.L. Wahba, 1971. Phosphorus compounds as a cause of flat mite increase. Proc. 3rd Int. Cong. Acarol., Prague. - Attiah, H.H., M.L. Wahba and S. M. Kodirah, 1971. Chlorobenzilate as an acaricide of wide spectrum against tcitrus mites. Proc. 3rd Int. Cong. Acarol, Prague. - 3 . Hanna, M.A., M.A. Abdel -Hafez and M.L. Wahba, 1975. Influence of thiocarbamate fungicides on population of citrues rust mite *Phyllocoptruta oleivora* Ashmead. Res. Rev., 53 (1): 181 186. - 4 . Henderson, C F. and E. W. Tilton, 1955. Test with acaricides against the brown wheat mite. J. Econ. Entomol., 84: 157 161. | 0001 | | | 186 | | | | | |------|--|--|-----|--|--|--|--| | | | | | | | | | # تأثير فاعلية ثلاث زيوت معدنية وبعض المركبات الأكاروسية علي تعداد أكاروس صدأ الموالع Phyllocoptruta oleivora Ashmead وأكاروس الموالع البني (klein) # صوفي ميخائيل ابراهيم معهد بحوث وقاية النباتات - مركز البحوث الزراعية - الدقى تم اجراء تجربتين حقليتين لتقييم تأثير ثلاثة زيوت معدنية (ستار أويل وشكرونا أويل وشكرونا أويل وشكرونا أويل وشكرونا سوبر) واثنين من المركبات هما الفيرتيميك وهو مركب طبيعي منتج بواسطة البكترية ستربتوميسيس أفيرميتيس، ومبيد دياثين م 20 ضد أكاروس صدأ الموالح Dhyllocoptruta بمحافظة القليوبية، وأكاروس الموالح البني Coleivora Ashmead بمحافظة البحيرة. وأظهرت النتائج أن الدياثين م ٤٥ كان أكثر المواد تأثيراً في تقليل أعداد أكاروس صدأ الموالح متبعاً بمركب فيرتيميك ثم شكرونا سوبر ويليه ستار أويل وأخيراً شكرونا. وكان المركب فيرتيميك أكثر المركبات فعاليه ضد أكاروس الموالح البني متبوعاً بالمركب شكرونا سوبر ثم ستار أويل وأخيراً الشكرونا.