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INTRODUCTION
Toxoplasmosis is a prevalent disease caused by 

infection with the obligate intracellular parasite T. 
gondii, affecting nearly all warm-blooded animals 
and humans[1]. It is classified within the phylum 
Apicomplexa, distinguished by specialized apical 
secretory organelles known as micronemes and 
rhoptries, which are essential for the parasite's 
survival and propagation. Additionally, it possesses a 
third type of secretory organelle, the dense granules, 
which are located in the cytosol and discharge their 
contents to modify the parasitophorous vacuole and 
reprogram the host cell[2].

This apicomplexan is an opportunistic and 
effective coccidian parasite characterized by a 
complicated life cycle, capable of infecting almost all 
homeothermic animals, including humans. Domestic 
cats and other members of the Felidae family serve 
as the primary definitive hosts, whereas humans and 
other non-feline species are classified as intermediate 
hosts[3]. The oocyst infective stage is the most 
resilient form to environmental conditions and has 
significant resistance to disinfectants, which is crucial 
in the transfer of infection to humans[4]. Human 
infection may occur via various routes, including the 
consumption of undercooked infected meat harboring 
T. gondii cysts, ingestion of oocysts from contaminated 
hands, food, or water, organ transplantation or 
blood transfusion, transplacental transmission, and 
accidental inoculation of tachyzoites[5]. Despite the 

acknowledgement of T. gondii as a major foodborne 
pathogen and the clear role of the meat borne 
transmission pathway in human infections, there 
are currently no recommendations for controlling T. 
gondii in meat[6].

Water used in irrigation methods, lakes, rivers, 
coastal areas, beaches, and wastewater and 
groundwater may be polluted by environmentally 
resilient oocysts. Furthermore, oocysts retain viability 
in water for 18 m at 4°C after exposure to 2% sulfuric 
acid and can survive even with the use of chemical 
agents, such as sodium hypochlorite and chlorine[7]. 
Attempts at inactivation of T. gondii are successful 
against other biological stages of the parasite. 
Nonetheless, cleaning potable water and fresh food 
from oocysts necessitates attention since their tough 
walls are a strong obstacle to physical and chemical 
assaults[8]. 

Adaptive and innate immunity significantly 
contribute to defense against toxoplasmosis. An 
efficient immune response regulates parasite 
proliferation while preventing immunopathology; 
the interferon (IFN-γ) and interleukin (IL-12) axis 
are the primary immunological mechanisms that are 
accountable for parasite regulation[9]. 

Toxoplasmosis may exhibit a broad range of 
clinical symptoms. In immunocompetent individuals, 
acute primary toxoplasmosis is regarded as either 
asymptomatic or exhibiting mild symptoms, including 
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ABSTRACT
Toxoplasmosis is a widespread disease infecting about one-third of the world’s human population. Until now, 
a live-attenuated vaccine (Toxovax) is the only commercially available vaccine that has several limitations for 
use in humans, while the current treatment for toxoplasmosis has limited efficacy in eradicating the infection 
and is associated with several side effects. Therefore, the search for effective preventive and control strategies 
for toxoplasmosis is mandatory. This comprehensive review aims to provide the current and emerging 
strategies for control of toxoplasmosis. The study highlights different approaches to control toxoplasmosis 
that include public health education regarding the hazards of the parasite and precautions that should be 
taken to avoid infection; procedures generally done to ensure sanitary food and water supplies; preventive 
screening measures to prevent transmission of toxoplasmosis through organ transplantation and blood 
donation; advanced diagnostic techniques; emerging chemotherapeutic targets, and promising vaccines for 
toxoplasmosis.
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among pregnant individuals across Japan was 0.016% 
at the national level[20].

It is worth mentioning that T. gondii is one of the 
rare pathogens able to cross the placental barrier, 
with the risk of transmitting the infection to the fetus 
rising as pregnancy advances. Around 60% to 81% 
of infections take place during the final trimester; 
however, the consequences of infection are typically 
more severe when it occurs in the early stages of 
pregnancy[21]. Early CT may lead to spontaneous 
abortion. In contrast, infections acquired in the later 
stages of pregnancy are more likely to result in mild 
or subclinical disease. Of note, CT can cause a range 
of complications, including brain calcifications, 
hydrocephalus, cognitive and motor impairments, 
retinochoroiditis, and deficits in vision and hearing[22].

Additionally, T. gondii induces multiple changes in 
host neurons and disrupts specific neuronal signaling 
pathways during chronic infection. In fact, presence of 
the parasite within neurons leads to direct neuronal 
damage and a decline in neuronal function, including 
cell death and atrophy[23]. Chronic toxoplasmosis in 
the brain can lead to significant alterations in neuronal 
structure, neurochemical balance, and behavior. 
These changes were associated with higher rates 
of psychiatric conditions including schizophrenia, 
bipolar disorder, personality disorders, self-directed 
aggression, and suicide attempts[24].

Ocular toxoplasmosis is a major global cause 
of posterior uveitis and can result in serious 
complications that threaten vision, including retinal 
detachment, choroidal neovascularization, and 
glaucoma. These manifestations may occur due to 
either congenital infection or infection acquired 
postnatally[25]. While ocular toxoplasmosis in adults 
was once thought to be a reactivation of congenital 
infection, a review by Kalogeropoulos et al.[26] 
indicated that the majority of ocular cases are likely the 
result of postnatally acquired infections. These cases 
typically manifest as posterior uveitis, characterized 
by a unilateral chorioretinal lesion and vitritis, with 
more severe presentations commonly observed in 
immunocompromised individuals.

Primary preventive measures against 
toxoplasmosis

Precautions for prevention of toxoplasmosis, 
include thorough washing of hands after handling raw 
meat and before eating, avoiding the consumption of 
undercooked meat, cleaning surfaces and utensils 
after contact with raw foods, carefully washing fruits 
and vegetables, and wearing protective gloves while 
gardening outdoors[27]. Extreme heat or cold can 
cause T. gondii encysted in meat to perish. Therefore, 
the meat of any animal should be cooked to 67°C or 
cooled to -13°C before consumption[28].

fever and mononucleosis-like manifestations, with 
or without lymphadenopathy. Severe, fulminant, and 
potentially fatal toxoplasmosis has been extensively 
documented in congenitally infected individuals 
and immunocompromised patients with significant 
immune deficits[10]. Congenital toxoplasmosis (CT) 
arises when a maternal infection is acquired for the 
first time during pregnancy. In the parasitemic phase, 
T. gondii may traverse the placenta and infiltrate the 
fetal circulation, with the risk of fetal infection rising 
with gestational age[11]. 

Until now, a live-attenuated vaccine (Toxovax) 
based on T. gondii tachyzoites (S48 strain) is the only 
commercially available vaccine. It has been licensed 
for use against toxoplasmosis in sheep, but it is not 
effective in preventing tissue cyst formation and has 
several limitations for use in humans[12]. Given the 
primary transmission pathways of T. gondii, a critical 
and pressing need exists to provide an effective vaccine 
for toxoplasmosis[13]. The established gold standard 
therapy for toxoplasmosis (pyrimethamine and 
sulfadiazine) effectively manages the active phase of the 
illness. Nevertheless, no treatment is effective against 
the latent phase of infection, partly due to the sluggish 
and asynchronous proliferation of bradyzoites[14]. 
Furthermore, the predominant pharmacological agents 
for managing toxoplasmosis in the general populace 
and pregnant women are spiramycin (SPM) and 
azithromycin; yet their efficacy may be compromised 
by insufficient blood-brain barrier (BBB) penetration 
and poor bioavailability[15]. Therefore, the search 
for effective preventive and control strategies for 
toxoplasmosis is mandatory.

Magnitude of toxoplasmosis and its complications 
Although toxoplasmosis is common worldwide, 

it usually remains asymptomatic. However, serious 
complications can arise in vulnerable groups such 
as fetuses, newborns, and immunocompromised 
patients[5]. Approximately one-third of the global 
population is estimated to be infected with T. gondii, 
with seroprevalence rates ranging from 10% to over 
90%. Highest rates were observed in Africa, Southeast 
Asia, the Middle East, Central and Eastern Europe, and 
Latin America. Based on continental infection rates, 
data revealed different seroprevalence rates among 
AIDS patients across continents; i.e., Asia (13.3–85.3%), 
Europe (40–76%), Africa (21.74–74.8%), and North 
America (7.3–26.5%)[16]. In their report, Egyptian 
reviewers[17] claimed that anti-T. gondii IgG antibodies 
were recorded varying between 3-42.5%, whereas 
among healthy blood donors, the seroprevalence ranged 
from 33.7% to 67.4%. In Nigeria, 26.8% seroprevalence 
among women of reproductive age was recorded[18]. In 
Iran, toxoplasmosis affected 62.2% of individuals across 
different population groups, with notable correlations 
observed between the infection, and risk factors such 
as age, contact with soil, and occupational exposure[19]. 
The estimated monthly prevalence of toxoplasmosis 



135

         Control of toxoplasmosis                                                                                                                                                                                              Mohsen et al.

Significant outbreaks of toxoplasmosis were 
associated with water contamination by oocysts[7] 
which exhibit resistance to commonly used chemical 
disinfection methods for maintaining sanitary water 
supplies, including strong acids, chlorine, detergents, 
ozone, and ultraviolet radiation. Consequently, the 
implementation of filtration systems is essential[29]. 
Heat therapies demonstrate rapid efficacy. Their 
application in treating low volumes of water can 
effectively inactivate the parasite, yet heating may 
induce undesirable organoleptic changes in vegetables. 
Other methodologies employed including radiation 
and pressure treatments, proved effective without 
altering the physicochemical characteristics of food. 
Consequently, these treatments may serve as effective 
alternatives for managing T. gondii and other parasites 
in vegetables[8].

Screening of toxoplasmosis among organ 
transplantation and blood donation

In solid organ transplant patients, prevention 
of toxoplasmosis requires multiple strategies, 
including serologic screening of both donors and 
recipients, chemoprophylaxis, and ongoing serological 
monitoring of patient’s post-transplantation[30]. 
Molecular detection of T. gondii in blood and body 
fluids, along with histopathological examination 
of affected tissues, is recommended for identifying 
tachyzoites in the diagnosis of acute toxoplasmosis 
in solid organ transplant recipients[31]. In addition, 
immunocompromised patients, individuals receiving 
multiple blood transfusions, and pregnant women 
must be administered T. gondii-free blood. To prevent 
the risk of toxoplasmosis transmission, screening for 
T. gondii in blood as well as blood products should be 
incorporated into the pre-transfusion blood testing 
protocol[32].

The prevention of toxoplasmosis cannot be 
achieved through donor selection and serological 
screening methods, given the high seroprevalence of 
toxoplasmosis among blood donors and the absence of 
reliable, approved diagnostic tests for toxoplasmosis. 
Furthermore, the rejection of blood donations due 
to positive serology test results threatens blood 
availability, particularly in regions with a high 
prevalence of toxoplasmosis. The capacity of T. gondii 
to persist and proliferate within leukocytes suggests 
that leukoreduction filters could lessen the risk of 
toxoplasmosis[33].

Advanced diagnostic techniques
In fact, the only conventional commonly used 

methods are serological assays for detection of T. gondii 
antibodies. However, immunological assays utilizing 
T. gondii tachyzoite lysate antigens or specific target 
antigens are the most frequently used approach[34]. 
Sabin-Feldman dye test is considered the gold standard 
for diagnosis of toxoplasmosis[35]. Distinguishing 
between acute and chronic toxoplasmosis using 

commercially available laboratory tests remains 
challenging. However, the IgG avidity assay can 
differentiate between recent and past infections: low 
IgG avidity indicates a recent infection, while high 
avidity suggests that the infection likely occurred 
more than four months ago[36]. 

Molecular techniques and genotyping
Various PCR-based techniques were established 

for diagnosis of toxoplasmosis, utilizing different 
clinical samples such as amniotic fluid, blood, and 
cerebrospinal fluid. Both conventional PCR and 
real-time PCR (RT-PCR) are commonly employed 
to detect T. gondii DNA and determine strain 
genotypes[37]. Isothermal nucleic acid amplification 
technology (INAAT) is considered a promising tool 
for diagnosing toxoplasmosis, as it enables fast 
DNA amplification. Among the INAAT approaches, 
loop-mediated isothermal amplification (LAMP) 
and nucleic acid sequence-based amplification 
(NASBA) were developed for the rapid detection of 
T. gondii[35]. It was reported that LAMP method can 
rapidly amplify a few copies of genetic material to 
109 copies with high efficiency, and specificity under 
isothermal conditions. Moreover, DNA amplification 
can be easily observed either by monitoring changes 
in turbidity or fluorescence, or through a loopamp 
real-time turbidimeter[38]. On the other hand, NASBA 
method enables proceeding of each reaction step 
when intermediate amplification becomes available 
throughout constant temperature without the need 
for thermocycler. Therefore, NASBA reaction is more 
efficient than other molecular methods that are 
limited to binary increases per cycle[39].

Recently, microRNAs (miRNAs) gained much 
attention as potential biochemical markers for various 
diseases. Their stability allows for reliable detection 
in plasma samples through quantitative real-time PCR 
(qRT-PCR)[40]. Serum miRNA mmu-miR-511-5p was 
investigated for its role in detecting toxoplasmosis 
and is suggested to be a highly sensitive biomarker, 
capable of identifying ME49 and RH strain infections 
as early as one week and three days, respectively[41]. 

Genotyping plays a crucial role in distinguishing 
different circulating strains, tracking the origin of 
infections during outbreaks, and identifying the 
strains linked to specific clinical presentations of 
the disease[42]. Using restriction fragment length 
polymorphism (RFLP), the majority of T. gondii 
isolates from human and animal samples were 
assigned to one of three clonal lineages (biotypes I, II, 
and III). Additionally, there is a growing focus on the 
biological differences that exist among these distinct 
genotypes[43].

Nanotechnology applied in diagnosis 
Nanomaterials offer promising advantages for 

the rapid detection of T. gondii antibodies, antigens, 
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and DNA. Their high sensitivity and specificity make 
them valuable tools for the screening and diagnosis of 
different stages of toxoplasmosis[44]. In particular, gold 
nanoparticles (AuNPs) are particularly advantageous for 
rapid test development because of their distinct optical, 
magnetic, and chemical properties, combined with their 
favorable biocompatibility, low toxicity, and the ease 
with which they can be synthesized and functionalized[45]. 
Biosensors utilizing AuNPs have been designed for the 
precise detection of nucleic acids and proteins, including 
the identification of T. gondii antibodies. Due to their 
high sensitivity and specificity, these biosensors have 
the potential to serve as advanced diagnostic platforms, 
offering significant advantages over conventional 
molecular and serological approaches[46].

Treatment 
Current therapeutic modalities for toxoplasmosis: 
Although the combination of sulfadiazine and 
pyrimethamine is the primary treatment regimen for 
toxoplasmosis, its efficiency in eliminating the infection 
is limited, besides causing several adverse effects, 
including bone marrow toxicity, pancytopenia, and 
megaloblastic anemia[47]. Alternative treatment regimens 
include pyrimethamine combined with clindamycin, 
clarithromycin, atovaquone, or azithromycin; however, 
none demonstrate efficacy against the latent tissue cyst 
stage of the infection[48]. Spiramycin and azithromycin 
are the most frequently used medicines for treating 
asymptomatic toxoplasmosis in the general population 
and in pregnant women. Nonetheless, barrier of blood-
brain penetration and low bioavailability may limit the 
complete therapeutic efficiency of these medications[15]. 

Recent research indicates that spiramycin may 
effectively combat acute toxoplasmosis, i.e., exhibiting 
lower toxicity, and attaining greater concentrations 
in the placenta compared to other medications. These 
traits aid in preventing parasite transfer from mother 
to fetus during gestation. Despite its significant benefits, 
penetration of the blood-brain barrier is inadequate, 
which necessitates its further advancement to profit 
from its benefits[49]. 

The principal adverse effect associated with extended 
antifolate treatment is myelotoxicity. To minimize this 
risk during prolonged antifolate therapy in chronic 
toxoplasmosis, leucovorin (folinic acid) is routinely co-
administered to safeguard the host’s folate pool. The 
incorporation of leucovorin does not interfere with 
the antiparasitic action of antifolates, as the parasite 
is believed to be incapable of utilizing reduced folate 
forms[50].

Ocular toxoplasmosis is traditionally managed with 
pyrimethamine and sulfadiazine in combination with a 
corticosteroid. Corticosteroids are believed to reduce 
intraocular inflammation. However, using corticosteroids 
alone was associated with worsening the disease, and 
leading to severe complications[51].

In fact, chemotherapy for toxoplasmosis lacks 
specificity, and is ineffective against some T. gondii 
forms. The treatment may hinder tachyzoite 
replication, but is ineffective in eradicating 
bradyzoites enclosed in tissue cysts. Consequently, 
there is a necessity for the exploration of novel 
therapeutic strategies for toxoplasmosis[52]. 

Nanotechnology applied in treatment: Successful 
medication delivery is facilitated by enhancing drug 
bioavailability and membrane permeability, and 
reducing drug dosages[49]. Being efficient drug delivery 
system, nanoparticles (NPs) showed considerable 
potential in overcoming the drawbacks associated 
with traditional anti-toxoplasmosis medications. 
Gained advantages include sustained release of 
drugs, protection from degradation, increased 
cellular uptake, and selective targeting of T. gondii-
infected cells[53]. Several recent studies reported 
enhancement of the efficacy of treatment by using 
different types of NPs combined with one or the other 
of chemotherapeutic agents for toxoplasmosis[54-56].

The green synthesis of NPs employs natural and 
environmentally friendly materials, thereby reducing 
energy use and avoiding toxic and harmful reagents[57]. 
Researchers are advancing treatment options for 
toxoplasmosis by developing green-synthesized 
NPs, to enhance biomedical science and offer more 
effective, safer, and environmentally sustainable 
therapies for toxoplasmosis[58]. Metal–organic 
frameworks (MOFs) were also employed in various 
studies as nanocarriers for anti-T. gondii drugs. Their 
chemical structure can be modified by altering the 
metal ions and/or organic linkers, resulting in an 
increased surface area and, consequently, enhanced 
drug-loading capacity[59,60].

Drug repurposing approach: Drug repurposing 
are novel clinical applications for established 
medications with defined therapeutic purposes. This 
process represents a promising approach to drug re-
discovery, potentially reducing financial costs and 
shortening development times[61]. This application 
experienced significant advancement over the past 
decade and represents a promising strategy for 
identifying therapeutic alternatives for rare and 
neglected diseases[62]. 

In an attempt to assess the efficacy of 666 
compounds from the Selleck New Compound Library 
(https://www.selleckchem.com/screening/fda-
approved-drug-library), 68 compounds inhibited 
T. gondii growth. Among these, NVP-AEW541 and 
GSK-J4 HCl specifically inhibited tachyzoite invasion 
and proliferation by interrupting its cell cycle 
progression from G1 to S phase, respectively. Both 
compounds extended the survival of acutely infected 
mice with T. gondii, and significantly decreased the 
tissue parasite burden[63]. Later, a study involving 
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the screening of the COVID Box (160 compounds) 
assessed the potential drug repurposing candidates for 
toxoplasmosis. The investigators proposed almitrine a 
promising therapeutic candidate for toxoplasmosis[64].

Altiratinib, initially developed for the treatment of 
glioblastoma, demonstrated significant parasiticidal 
activity against T. gondii. It was demonstrated to 
universally disrupt the splicing process by inhibiting a 
specific kinase known as T. gondii pre-mRNA processing 
factor 4 kinase. The findings indicated the necessity 
for continued advancement of pan-apicomplexan 
inhibitors aimed at this pathway[65]. Both clofazimine 
which serves as an anti-tuberculosis antibiotic[66], and 
triclabendazole which is utilized for the treatment 
of animal fascioliasis[67] demonstrated potential 
efficacy in treating toxoplasmosis. In an in vitro study, 
the investigators showed that both drugs inhibited 
spermine incorporation into the parasite, a process 
essential for the synthesis of other polyamines[62]. In 
another previous experimental study, the investigators 
evaluated the potential efficacy of clofazimine for the 
treatment of toxoplasmosis. Results revealed promising 
results, demonstrating its effectiveness in reducing cyst 
burden during both acute and chronic toxoplasmosis. 
Additionally, mice treated with clofazimine exhibited 
elevated levels of IFN-γ, indicating its potential 
immunomodulatory role[68].

Evaluation of new compounds: Tyrosine is a key 
amino acid required for Toxoplasma proliferation and 
the establishment of parasitophorous vacuoles. It is 
transformed into levodopa by two distinct aromatic 
amino acid hydroxylases (AAHs). Experimental assays 
using recombinant AAHs expressed in E. coli, along 
with two chemical derivatives (para-nitro and meta-
iodo), showed that T. gondii AAHs can be targeted by 
4-arylthiosemicarbazide derivatives[69]. A new series 
of (1-benzyl-4-triazolyl)-indole-2-carboxamides and 
structurally related compounds was investigated for 
their activity against toxoplasmosis. Notably, compounds 
JS-2-41 and JS-2-44 demonstrated significant in vivo 
effectiveness by reducing the number of Toxoplasma 
brain cysts in experimentally infected rats[70].

Natural products: Natural products served as a 
significant source of treatments for numerous parasitic 
diseases. They exhibit greater diversity, structural 
complexity, and molecular rigidity compared to 
synthetic alternatives[71]. Numerous natural products 
were evaluated and demonstrated promising activity 
in the treatment of toxoplasmosis as Cuminum cyminum 
seed oil[72], extracts of berberine[73], Azadirachta 
indica[74], as well as a combination of Tabebuia rosea and 
Tabebuia chrysantha[75].

Novel therapeutic targets
•	 Current treatments for toxoplasmosis primarily target 

apicoplast-based protein biosynthesis and folate 
metabolism. Advances in genome sequencing and 

molecular genetic tools have led to the identification 
of T. gondii specific proteins that play essential 
roles in parasite survival. These proteins represent 
promising targets for drug development[76].

•	 Acknowledgment of T. gondii histone deacetylases 
resulted in the development of a novel specific 
inhibitor that affects gene expression in T. gondii 
and Plasmodium spp. strains in vitro and in mouse 
models for acute and chronic toxoplasmosis[77].

•	 Protein kinases (PKs) emerged as key targets for 
designing highly specific and effective inhibitors 
against numerous diseases. Several previous studies 
claimed that T. gondii PKs were distinct from those 
in mammalian cells, positioning them as promising 
candidates for novel drug development[78]. The 
following are examples of these studies.

1.	 A study identified T. gondii calcium calmodulin-
dependent PK (TgCAMK) at the apical region of 
both extracellular, and intracellular tachyzoites of 
infected cells. The investigators proposed it a novel 
therapeutic target for toxoplasmosis[79]. 

2.	 Toxoplasma hexokinase (TgHK), a PK involved 
in regulating glycolysis, represents promising 
targets for the development of new therapies. 
Since glycolysis plays a critical role in T. gondii 
development, its disruption impairs tachyzoite 
replication and tissue cyst formation, highlighting 
its significance as a key therapeutic target[80].

3.	 Calcium-dependent protein kinases (CDPKs) 
play essential roles in T. gondii intracellular 
development. An atypical member of this family, 
CDPK7, exhibits a distinct domain architecture, 
and composition compared to other CDPK family 
members. Quantitative phosphoproteomic analysis 
suggested that TgCDPK7 had an essential role 
in regulating the phosphorylation of proteins 
potentially associated with lipid metabolism and 
protein/lipid transport[81].

4.	 Inhibition of AMP-activated PK, involved in 
energy metabolism impaired Toxoplasma growth, 
indicating their critical function in sustaining 
metabolic activity. Additionally, their distinct 
features in T. gondii may open new avenues 
for designing more targeted, safe, and effective 
treatments for toxoplasmosis[78].

5.	 Chinese investigators identified tRNA as a novel 
target within the translation machinery for 
potential drug development. In T. gondii, specific 
tRNAs undergo thiouracil modifications at defined 
sites, which are critical for their proper function. 
The enzymes catalyzing these modifications are 
essential for Toxoplasma survival, making them 
attractive targets for the development of new 
therapeutic agents[82].

6.	 Another study investigated the potential 
of Panobinostat (LBH589), a novel histone 
deacetylase (HDAC) inhibitor, for the treatment of 
ocular toxoplasmosis. The findings demonstrated 
that LBH589 suppressed T. gondii proliferation 
and activity in a dose-dependent manner, while 
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exhibiting minimal toxicity to retinal pigment epithelial 
cells[83].

•	 Of note, the histone code is formed through various post-
translational modifications (PTMs), e.g., acetylation. 
This code is recognized by specialized proteins known 
as readers that regulate the structure and function of 
chromatin. Replacement of standard histones with 
variant forms introduces another level of control 
over gene expression. It was reported that T. gondii 
possesses a unique histone variant (H2B), termed 
H2B.Z. The combined influence of PTMs and histone 
variants is essential for gene regulation in T. gondii, 
highlighting potential targets for the development of 
new therapeutic strategies[84].

•	 Fatty acid, phospholipid, and neutral lipid metabolism 
are fundamental to T. gondii lipid metabolic processes 
as membrane production and crucial cellular functions 
such as replication, invasion, egress, cell division, and 
apoptosis. Disruption of these pathways can impair 
lipid balance and damage membrane integrity, leading 
to death. As such, these lipid-related mechanisms are 
being actively explored as targets for developing novel 
therapeutic drugs against toxoplasmosis[85].

Immunization 
Despite significant progress in developing effective 

vaccines for toxoplasmosis research for new protective 
vaccination strategies is a challenging objective. Recent 
experimental approaches for the development of an 
effective vaccine against T. gondii are encouraging 
despite significant uncertainties owing to its complex 
life cycle and challenges in clinical translation[86]. 
Vaccine candidates such as live-attenuated vaccines[87], 
recombinant antigens[88], and carbohydrates[89] were 
utilized. Besides, various platforms were evaluated for 
their protective effects in animal models including DNA 
vaccines[90], NPs-based vaccines[91-94], and virus-like 
particles-based vaccines[95].

Live attenuated vaccines: Attempts at treatments with 
ƴ irradiation, chemicals, and multiple passages were 
employed to produce an attenuated T. gondii that is less 
virulent and unable to complete its life cycle[86]. This 
vaccine has limitations that include that its use is restricted 
to veterinary applications and it has a limited shelf life of 
10 d. Additionally, being derived from a live-attenuated 
pathogen, the vaccine cannot be administered to humans 
due to safety concerns[12]. The swift advancement of 
gene-editing technology rendered the CRISPR/Cas9 an 
important transforming, potent, and precise tool for gene 
editing and deletion in T. gondii, enabling the creation of 
functionally live attenuated strains. The benefit of this 
approach is to foster development of a vaccine of low 
virulence while still able to stimulate host immunity[96]. A 
recent research by Wang et al.[87] tested a live attenuated 
vaccine of WH3 Δrop18 and their results showed that all 
vaccinated mice were able to survive when challenged 
with infection by various strains of T. gondii, including RH 
(type I), ME49 (type II), WH3 or WH6 (type Chinese 1)[87].

Recombinant antigens: A recombinant subunit 
vaccine demonstrated higher safety profile and 
unusual side effects due to its composition of highly 
purified antigens[88]. In fact, T. gondii possesses over 
1000 proteins and glycoproteins that constitute a 
variable collection of antigens, derived from the 
various structures of the parasite as surface antigens, 
stage specific antigens and circulating antigens[97]. 
Protein vaccines are essentially composed of highly 
purified antigen. as the essential component of 
the vaccine. Hence, protein and subunit vaccines 
demonstrate a high level of safety, and a diverse 
range of antigens have been investigated as potential 
candidates for vaccination[98]. On the other hand, 
a recombinant cocktail protein vaccine including 
macrophage migration inhibitory factor (TgMIF), 
calcium-dependent protein kinase 3 (TgCDPK3), and 
Tg14-3-3 proteins was evaluated. Immunized mice 
with cocktail (3 proteins) vaccine elicited a strong 
immune response with highest levels of IgG antibody 
and IFN-γ production compared to controls, and 
other vaccines composed of two proteins[99].

Carbohydrate  vaccines: It was  reported that 
vaccines developed with glycosyl-phosphatidyl-
inositol (GPI) glycoconjugates represent possible 
candidates, with significant advantages compared 
to conventional vaccine. Notably, they present a 
significantly higher safety profile than live attenuated 
or inactivated vaccines[12]. However, carbohydrates 
are inclined to produce lower immunogenicity 
compared to proteins, resulting in reduced 
production of high-affinity antibodies. Interestingly, 
the structure of carbohydrates often resembles that 
of the host, which may result in autoimmunity[86]. 
A previous study[89] also demonstrated that an 
immune response elicited by specific T. gondii GPI 
glycoconjugates do not confer protective immunity.

The DNA derived vaccines: They are promising 
platforms against toxoplasmosis being easy to 
produce, safe, and able to stimulate both humoral 
and cellular immune responses[100]. However, these 
vaccines generate only weak immunity due to 
the poor distribution of plasmids or degradation 
by lysosomes requiring suitable antigen delivery 
system to elicit optimal immune responses[101]. In 
a recent study[102], the investigators immunized 
mice with DNA vaccine encoding T. gondii histone 
deacetylase sirtuin-2 (pVAX1-SIR2) loaded on 
chitosan and poly (d, l-lactic-co-glycolic)-acid (PLGA) 
nanospheres. Results revealed that immunized mice 
when challenged with a lethal dose of T. gondii RH 
strain showed more resistance to infection with low 
parasite burden.

Nanotechnology-based vaccines: Against various 
pathogens, including T. gondii, NPs can serve as 
both carriers for antigen delivery, and immune-
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stimulating adjuvants to boost the immune response. 
When administered intramuscularly, NPs exhibit a 
depot effect by retaining the antigen near the injection 
site for an extended period. This sustained presence 
allows the antigen to be released gradually, prolonging 
its availability to antigen-presenting cells leading to a 
stronger and more effective T-cell immune response[103].

Recently, self-assembling NPs emerged as 
innovative delivery systems in vaccines development. 
This approach facilitates efficient uptake by antigen-
presenting cells, which is crucial for triggering a robust 
immune response[104]. Although only a few studies have 
investigated their application in immunization against 
toxoplasmosis, obtained results so far indicated potential 
strong and high efficacy. These studies evaluated nasal 
administration of porous maltodextrin NPs loaded with T. 
gondii antigen instead of traditional routes e.g., oral and 
intradermal. Potent immune response and protection 
against challenged infection was observed in nasal 
immunized animals, with recommendations for further 
assessment of their toxicity and safety measures[91-94].

Virus-like particle (VLP) vaccines: The use of VLP 
vaccines represents a novel strategy, and their continued 
development is recommended for vaccine development. 
They are highly safe because they lack the genetic material 
necessary for replication. Furthermore, due to their size, 
these particles display fast transfer to the lymph nodes 
leading to induction of a swift immune response. The 
repetitive presentation of antigens on the particle surface 
enhances the induction of a robust immune response[12].  
In a previous study[95], a VLP vaccine expressing T. gondii 
rhoptry-13 (ROP13) were generated. Mice immunized 
elicited significantly higher levels of T. gondii-specific 
antibodies following boost immunization, whereas no 
significant antibody inductions were detected upon 
prime immunization.

CONCLUDING REMARKS
1.	 Heat therapies, radiation and pressure treatments 

may serve as effective alternatives against T. gondii 
oocysts in water and vegetables. However, extreme 
heat or cold can cause T. gondii encysted in meat to 
perish. Therefore, meat should be cooked at 67°C or 
stored at -13°C before consumption.

2.	 Screening for T. gondii antibodies in blood as well as 
blood products should be incorporated into the pre-
transfusion blood testing protocol and leukoreduction 
filters could reduce the risk of toxoplasmosis.

3.	 Prevention of toxoplasmosis in solid organ transplant 
patients requires multiple strategies, including 
serologic screening of both donors and recipients, 
chemoprophylaxis, and ongoing serological 
monitoring of patient’s post-transplantation.

4.	 Recent technology, e.g., INAAT utilizing either 
LAMP and NASBA is a promising tool for diagnosing 
toxoplasmosis. In addition, miRNAs proved potential 
biochemical markers for toxoplasmosis.

5.	 Since NPs serve as efficient delivery systems, 
nanotechnology provided wide diversity of 
applications in all eras of control measures 
(diagnosis, treatment and prevention) against 
toxoplasmosis. 

6.	 Several approved drugs were investigated for 
their potential efficacy against toxoplasmosis 
such as NVP-AEW541, GSK-J4 HCl, almitrine, 
altiratinib, clofazimine, and triclabendazole.

7.	 Aromatic amino acid hydroxylases and series of 
(1-benzyl-4-triazolyl)-indole-2-carboxamides 
and structurally related compounds were 
investigated for their activity that showed 
potential efficacy against toxoplasmosis.

8.	 Numerous natural products demonstrated 
promising activity in the treatment of 
toxoplasmosis as C. cyminum seed oil, and 
extracts of berberine, A. indica, T. rosea and 
T. chrysantha. Moreover, they exhibit greater 
diversity, structural complexity, and molecular 
rigidity compared to synthetic alternatives.

9.	 Advances in genome sequencing and molecular 
genetic tools resulted in identification of T. 
gondii specific drug targets, such as PKs, histone 
modifying enzymes, tRNA target, and lipid-
related mechanisms.

10.	Various vaccine platforms were experimentally 
evaluated for production of effective vaccines for 
toxoplasmosis, such as NPs-based vaccines, DNA 
vaccines, and virus-like particles-based vaccines.
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