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We propose a novel fractional–stochastic reaction–diffusion model for cancer dynamics 
that integrates the Caputo–Fabrizio derivative with additive Gaussian noise within a 
piecewise temporal framework. The model characterizes the nonlinear spatiotemporal 
interactions among normal tissue, tumor cells, immune responses, and 
chemotherapeutic agents. Fractional-order derivatives with exponential kernels 
account for memory and nonlocal effects, while stochastic components represent 
treatment variability and environmental uncertainty. The system evolves 
deterministically under memory-driven fractional dynamics during the initial phase and 
transitions to stochastic behavior in later stages, reflecting clinically relevant 
perturbations. To solve the model, we develop a hybrid numerical scheme that couples 
finite-difference discretization of the Caputo–Fabrizio operator with the Euler–
Maruyama method. Numerical experiments reveal that smaller fractional orders lead to 
delayed immune activation, persistent tumor burden, and slower drug clearance, 
whereas higher orders enhance therapeutic efficacy. Stochastic noise introduces 
fluctuations that destabilize outcomes, emphasizing the importance of robust modeling 
strategies in oncology. Sensitivity analysis confirms the dominant role of fractional 
parameters in shaping system behavior. The proposed framework offers a biologically 
informed and predictive platform for optimizing cancer treatment protocols and 
elucidating the interplay between memory effects and stochasticity in tumor evolution. 
 

 

1. Introduction  

Cancer is one of the most complex and heterogeneous 
diseases, driven by nonlinear interactions between tumor 
cells, the immune system, and therapeutic agents. 
Traditional mathematical models, which often rely on 
ordinary or classical partial differential equations, provide 
useful insights but are limited in capturing memory effects, 
anomalous diffusion, and inherent biological delays 
observed in tumor progression. Recent advances in 
fractional calculus have opened new avenues for modeling 
these nonlocal and history-dependent processes, enabling 
more accurate and biologically realistic representations of 
cancer dynamics [3-9]. Fractional-order derivatives with 
non-singular kernels, such as the Caputo–Fabrizio operator, 
offer significant advantages in modeling biological systems. 
Unlike classical derivatives, they account for hereditary 
effects without singularities at the origin, allowing smooth 
modeling of processes where the present state depends on 
an exponentially weighted history [1, 10, 15].  
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The Caputo–Fabrizio operator has been successfully 
applied in heat transfer, viscoelastic materials, and more 
recently in tumor-immune interactions and drug delivery, 
making it particularly suitable for cancer modeling[9, 13, 14]. 

Moreover, biological systems are inherently subject to 
randomness. Variations in immune responses, tumor 
heterogeneity, and fluctuations in drug efficacy necessitate 
the incorporation of stochastic processes into mathematical 
models. Stochastic differential equations (SDEs) with 
Gaussian white noise have been widely employed to capture 
such uncertainties and assess robustness under real-world 
perturbations [18-20]. When combined with fractional 
operators, stochastic models can simultaneously represent 
memory-driven and noise-driven dynamics, providing 
deeper insights into tumor resilience and treatment 
variability [21]. 

The integration of fractional calculus and stochastic 
modeling represents a significant advancement in 
mathematical oncology, offering a versatile and realistic 
framework for simulating cancer dynamics. The approach 
aligns with recent efforts in personalized medicine and 
immunotherapy modeling [4, 16, 17], and sets the stage for 
future work in optimizing treatment protocols based on 
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individual variability and tumor microenvironment 
complexity. 

This paper introduces a novel piecewise tumor-
immune-chemotherapy model that integrates Caputo–
Fabrizio fractional derivatives with additive Gaussian noise 
in a time-split framework. In the initial phase (𝑡 ∈ (0, 𝑡1]), the 
system evolves under fractional deterministic dynamics to 
model memory-dominated behavior. In the later phase (𝑡 ∈
(𝑡1, 𝑡𝑓]), classical stochastic dynamics take over to reflect 

randomness due to therapy, mutation, or environmental 
influences. The model is governed by a set of coupled 
reaction-diffusion partial differential equations representing 
the interactions between normal cells, tumor cells, immune 
responses, and chemotherapeutic drug concentration. 
Sensitivity of Variables to 𝛼 is presented. 

To solve the model numerically, we employ a hybrid 
approach that combines a Caputo–Fabrizio finite difference 
approximation with the Euler–Maruyama method for SDEs. 
This allows us to examine both the temporal and spatial 
evolution of the system under varying fractional orders and 
noise intensities. Our results highlight the critical role of 
memory and stochasticity in shaping treatment outcomes, 
providing valuable insights into optimizing therapeutic 
strategies and understanding tumor resistance 
mechanisms. 

The proposed hybrid scheme offers several advantages 
over existing methods: 

1. Biological realism: By combining fractional memory and 
stochastic noise, the model captures both long-term 
hereditary effects and random fluctuations inherent in 
cancer progression. 

2. Numerical stability: The non-singular exponential kernel 
of the Caputo–Fabrizio operator improves stability and 
avoids singular behavior that arises in other fractional 
derivatives. 

3. Computational efficiency: The finite difference–Euler–
Maruyama hybrid framework allows efficient simulations 
of coupled reaction–diffusion equations without excessive 
computational cost. 

4. Flexibility: The piecewise formulation enables separate 
treatment of deterministic and stochastic regimes, offering 
a versatile tool for studying cancer dynamics under 
varying clinical scenarios. 

In summary, our model advances the integration of 
fractional calculus and stochastic analysis in mathematical 
oncology. It provides a predictive and biologically informed 
framework for investigating tumor–immune–drug 
interactions, optimizing treatment strategies, and 
understanding the roles of memory and randomness in 
cancer evolution. 

The paper is organized as follows: Section 2 presents 
essential definitions, including the Caputo–Fabrizio 
derivative. In Section 3 , we formulate the piecewise tumor-
immune-drug model, incorporating both deterministic 
fractional and stochastic dynamics. Section 4 provides 
theoretical analysis, including stability criteria under both 
regimes. Section 5 details the hybrid numerical methods 

used for simulation. Section 6 Sensitivity of variables to 𝛼 is 
presented. Section 7 presents and interprets the numerical 
results through time-domain plots, spatial profiles, and 3𝐷 
visualizations. Finally, Section 8 concludes with key findings, 
biological implications, and future research directions. 

2  Fundamental Definitions 

  In the section, we give some essential definitions of 
fractions that will be used throughout the remainder of this 
study.  

Definition 2.1  Let 𝑓(𝑡) ∈ 𝐶1([0, 𝑇]), and let 0 < 𝛼 < 1. The 
Caputo–Fabrizio fractional derivative of order 𝛼 is defined 
by [1]: 

 0
𝐶𝐹𝐷𝑡

𝛼𝑓(𝑡) =
1

1 − 𝛼
∫

𝑡

0

𝑓′(𝑠) 𝑒−
𝛼

1−𝛼
(𝑡−𝑠) 𝑑𝑠. 

 

The kernel 𝑒−𝜆(𝑡−𝑠) is exponential and non-singular. 
Satisfies initial conditions similar to classical derivatives. For 
𝛼 → 1, it converges to the first-order derivative: 

 

lim
𝛼→1−0

𝐶𝐹𝐷𝑡
𝛼𝑓(𝑡) = 𝑓′(𝑡). 

 
For 𝛼 → 0+, it behaves like the identity operator: 

 

lim
𝛼→0+0

𝐶𝐹𝐷𝑡
𝛼𝑓(𝑡) = 𝑓(𝑡) − 𝑓(0). 

  

Definition 2.2 The Caputo–Fabrizio fractional integral of 
order 𝛼 ∈ (0,1) is defined as [1]: 

 0
𝐶𝐹𝐼𝑡

𝛼𝑓(𝑡) = (1 − 𝛼)𝑓(𝑡) + 𝛼 ∫
𝑡

0

𝑓(𝑠) 𝑑𝑠. 

This is a convex combination of the function and its ordinary 
integral. Also, Caputo–Fabrizio derivative written as: 
 

 0
𝐶𝐹𝐷𝑡

𝛼𝑓(𝑡) =
𝑀(𝛼)

1 − 𝛼
∫

𝑡

0

𝑓′(𝑠) 𝑒−
𝛼

1−𝛼
(𝑡−𝑠) 𝑑𝑠. 

where 𝑀(𝛼) is a normalization constant chosen such that: 
  

 0
𝐶𝐹𝐷𝑡

𝛼𝐶 = 0,    foranyconstant𝐶. 
 

Usually, 𝑀(𝛼) = 1, but sometimes it’s used to match 
boundary conditions. 

3. Piecewise Cancer Tumor Disease Based on 
Exponential and Stochastic Differential Equations 

In this section, we formulate the proposed piecewise 
cancer tumor–immune–drug model  [3] based on 
exponential and stochastic differential equations. The core 
problem is to mathematically represent tumor–immune–
drug dynamics in a way that accounts for both memory and 
randomness. To achieve this, we design a crossover 
framework: for the early interval t∈(0,t1],  the system follows 
deterministic dynamics governed by the Caputo–Fabrizio 
fractional derivative, thereby capturing memory effects and 
hereditary influences. For the later interval t∈(t1,tf], the 
system switches to a stochastic regime driven by additive 
Gaussian noise, modeling therapy-induced perturbations, 
random immune fluctuations, and tumor heterogeneity.  
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The resulting system consists of four coupled nonlinear reaction–diffusion PDEs describing the spatiotemporal evolution 
of normal cells, tumor cells, immune response, and chemotherapeutic drug concentration. 

In the following , we will apply the crossover mathematical model to the cancer model, which is based on a system of four 
linked partial differential equations. The four coupled partial differential equations are given as [3]:  

 
𝜕𝑁

𝜕𝑡
= 𝐷𝑁

𝜕2𝑁

𝜕𝑥2 − 𝑎3(1 − 𝑒−𝑈)𝑁 − 𝑟2𝑁(1 − 𝑏2𝑁) − 𝑐4𝑇𝑁, (1) 

 
𝜕𝑇

𝜕𝑡
= 𝐷𝑇

𝜕2𝑇

𝜕𝑥2 − 𝑎2(1 − 𝑒−𝑈)𝑇 − 𝑟1𝑇(1 − 𝑏1𝑇) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁, (2) 

 
𝜕𝐼

𝜕𝑡
= 𝐷𝐼

𝜕2𝐼

𝜕𝑥2 − 𝑎1(1 − 𝑒−𝑈)𝐼 − 𝑐1𝐼𝑇 − 𝑑1𝐼 + 𝜇 +
𝜌𝐼𝑇

𝜏+𝑇  
, (3) 

 
𝜕𝑈

𝜕𝑡
= 𝐷𝑈

𝜕2𝑈

𝜕𝑥2 − 𝜓(𝑡) − 𝑑2𝑈. (4) 

The definitions of all system variables and the specifics of the cancer model’s parameters are provided in tables 1 and 
2, respectively. 𝑟2𝑁(1 − 𝑏2𝑁), 𝑟1𝑇(1 − 𝑏1𝑇) are the terms stands for the logistic growth rate of cells, while 𝑏 and 𝑟 represent 

carrying capacity and capita growth, respectively. The terms involves 𝑐𝑖 demonstrate how tumour cells vie for survival with 
immunological and normal cells for the little resources available. In addition to killing tumour cells, this struggle for nutrients 
and oxygen also deactivates immune cells and kills healthy tissue cells. The external source rate of immune cells is denoted 

by parameter 𝜇 in Eq. (3). When tumor cells are present, the immune system’s reaction is symbolised by 
𝜌𝐼𝑇

𝜏+𝑇
. Diffusion 

coefficients for normal, tumour, immune system cells, and the chemotherapeutic medication are denoted by the terms 
𝐷𝑁 , 𝐷𝑇 , 𝐷𝐼 , and 𝐷𝑈 in Eqs. (1)-(4), respectively. Saturation term for fractional death rate and medication quantity over time is 

applied as indicated by terms involving 1 − 𝑒−𝑈. 

The  initial conditions:  

 𝑁(𝑥, 0) = 0.2𝑒−2𝑥2
, 

 𝑇(𝑥, 0) = 1 − 0.75𝑠𝑒𝑐ℎ(𝑥), 

 𝐼(𝑥, 0) = 0.375 − 0.235𝑠𝑒𝑐ℎ2(𝑥) ,                − 2 ≤ 𝑥 ≤ 2, 

 𝑈(𝑥, 0) = 𝑠𝑒𝑐ℎ(𝑥), (5) 

 and boundary conditions:  

 
𝜕𝑁

𝜕𝑥
|𝑥=−2 =

𝜕𝐼

𝜕𝑥
|𝑥=−2 =

𝜕𝑇

𝜕𝑥
|𝑥=−2 =

𝜕𝑈

𝜕𝑥
|𝑥=−2 = 0, (6) 

 
𝜕𝑁

𝜕𝑥
|𝑥=2 =

𝜕𝑇

𝜕𝑥
|𝑥=2 =

𝜕𝐼

𝜕𝑥
|𝑥=2 =

𝜕𝑈

𝜕𝑥
|𝑥=2 = 0. (7) 

 Table 1: Definition of variables [3] 

The variable Definition 

𝑁 The relations among chemotherapeutic drugs . 

𝑇 Susceptible class. 

𝐼 Exposed class. 

𝑈 chemotherapeutic drugs. 

  

Table 2: The parameters of model and their values [3]. 

Parameter Description Value 

𝑎1, 𝑎2, 𝑎3 Fractional cell kill 0.2,0.3,0.1 

𝑏1, 𝑏2 Carrying capacity 1,0.81 

𝑐1, 𝑐2, 𝑐3, 𝑐4 Competition term 1,0.55,0.9,1 

𝑑1, 𝑑2 Death rate 0.2,1 

𝑟1, 𝑟2 Per capita growth rate 1.1,1 

𝜇 Immune source rate 0.33 

𝜏 Immune threshold rate 0.3 

𝜌 Immune response rate 0.2 

𝐷𝑁 , 𝐷𝑇 , 𝐷𝐼 , 𝐷𝑢 Diffusion coefficients 0.001,0.001,0.001,0.001 
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   Caputo Feberizo definition (nonsingular kernel). The model (1)- (4) in 0 < 𝑡 ≤ 𝑡1 is extended to the following model:  

  0
𝐶𝐹𝐷𝑡

𝛼𝑁(𝑥, 𝑡) = 𝐷𝑁
𝜕2𝑁

𝜕𝑥2 − 𝑎3(1 − 𝑒−𝑈)𝑁 − 𝑟2𝑁(1 − 𝑏2𝑁) − 𝑐4𝑇𝑁, 

  0
𝐶𝐹𝐷𝑡

𝛼𝑇(𝑥, 𝑡) = 𝐷𝑇
𝜕2𝑇

𝜕𝑥2 − 𝑎2(1 − 𝑒−𝑈)𝑇 − 𝑟1𝑇(1 − 𝑏1𝑇) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁, 

  0
𝐶𝐹𝐷𝑡

𝛼𝐼(𝑥, 𝑡) = 𝐷𝐼
𝜕2𝐼

𝜕𝑥2 − 𝑎1(1 − 𝑒−𝑈)𝐼 − 𝑐1𝐼𝑇 − 𝑑1𝐼 + 𝜇 +
𝜌𝐼𝑇

𝜏+𝑇
  , 

  0
𝐶𝐹𝐷𝑡

𝛼𝑈(𝑥, 𝑡) = 𝐷𝑈
𝜕2𝑈

𝜕𝑥2 − 𝜓(𝑡) − 𝑑2𝑈, (8) 

 

We now define the stochastic PDE (SPDE) version with additive Gaussian noise in  𝑡1 < 𝑡 ≤ 𝑡𝑓: 

 

 𝑑𝑁 = [𝐷𝑁
𝜕2𝑁

𝜕𝑥2 − 𝑎3(1 − 𝑒−𝑈)𝑁 − 𝑟2𝑁(1 − 𝑏2𝑁) − 𝑐4𝑇𝑁] 𝑑𝑡 + 𝜎1 𝑑𝑊1(𝑥, 𝑡), 

𝑑𝑇 = [𝐷𝑇

𝜕2𝑇

𝜕𝑥2
− 𝑎2(1 − 𝑒−𝑈)𝑇 − 𝑟1𝑇(1 − 𝑏1𝑇) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁] 𝑑𝑡 + 𝜎2 𝑑𝑊2(𝑥, 𝑡), 

 𝑑𝐼 = [𝐷𝐼
𝜕2𝐼

𝜕𝑥2 − 𝑎1(1 − 𝑒−𝑈)𝐼 − 𝑐1𝐼𝑇 − 𝑑1𝐼 + 𝜇 +
𝜌𝐼𝑇

𝜏+𝑇
] 𝑑𝑡 + 𝜎3 𝑑𝑊3(𝑥, 𝑡), 

 𝑑𝑈 = [𝐷𝑈
𝜕2𝑈

𝜕𝑥2 − 𝜓(𝑡) − 𝑑2𝑈] 𝑑𝑡 + 𝜎4 𝑑𝑊4(𝑥, 𝑡). (9) 

 

Where, 𝜎𝑖 > 0 are the noise intensities, 𝑊𝑖(𝑥, 𝑡) are space-time Wiener processes for each variable 𝑁, 𝑇, 𝐼, 𝑈, 
𝑑𝑊𝑖(𝑥, 𝑡) represent white noise perturbations in the Itô sense. The model includes diffusion, nonlinear interactions, and 
external stochastic effects. The stochastic terms account for uncertainty in population dynamics, treatment, immune 
response, or environmental influence. This is a stochastic reaction-diffusion system of Itô type. 

 

4.  Theoretical Analysis of Model 

 

  We can write the systems (8) and (9) for state variable 𝑢(𝑥, 𝑡) ∈ {𝑁, 𝑇, 𝐼, 𝑈} as follows in general form: 

 

  0
𝐶𝐹𝒟𝑡

𝛼(𝑡)
𝑢(𝑥, 𝑡) = 𝐷𝑢

𝜕2𝑢

𝜕𝑥2 + 𝑓(𝑢, 𝑥, 𝑡) + 𝟏(𝑡1,𝑡𝑓]𝜂𝑢(𝑥, 𝑡),    𝑡 ∈ [0, 𝑡𝑓]. (10) 

 

with 

 

where, 

𝑓(𝑢, 𝑥, 𝑡): nonlinear interaction terms. 

𝜂𝑢(𝑥, 𝑡): Gaussian noise term active only for 𝑡 ∈ (𝑡1, 𝑡𝑓] , ξu is space–time Gaussian white noise and 1(𝑡1, 𝑡𝑓 ] is the 

indicator ensuring noise is inactive in the first phase and active only after 𝑡1. 

 

 

  Now we study the stability in two cases as follows: 

 

1. Stability for 𝑡 ∈ (0, 𝑡1] (Fractional-Deterministic Case): 

 

  0
𝐶𝐹𝒟𝑡

𝛼𝑢(𝑥, 𝑡) = 𝐷𝑢Δ𝑥𝑢 + 𝑓(𝑢),    0 < 𝛼 < 1. 

We analyze stability around steady state 𝑢∗, i.e.: 

 

 𝑓(𝑢∗) = 0. 
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Let 𝑢(𝑥, 𝑡) = 𝑢∗ + 𝑣(𝑥, 𝑡), and linearize: 

 

  0
𝐶𝐹𝒟𝑡

𝛼𝑣 = 𝐷𝑢
𝜕2𝑣

𝜕𝑥2 + 𝐽𝑓(𝑢∗)𝑣. 

 

Where 𝐽𝑓(𝑢∗) is the Jacobian of 𝑓(𝑢) at 𝑢∗. Spectral Method (Fourier or eigenmode) 

 

Assume 𝑣(𝑥, 𝑡) = 𝑒𝜆𝑡𝜙(𝑥), leads to: 

 

 𝜆𝛼𝜙(𝑥) = 𝐷𝑢𝜙𝑥𝑥(𝑥) + 𝐽𝑓(𝑢∗)𝜙(𝑥). 

 

This is an eigenvalue problem. If all eigenvalues 𝜆 satisfy Re(𝜆) < 0, then the equilibrium 𝑢∗ is asymptotically stable 
under the Caputo derivative. Fractional stability criterion: 

If all eigenvalues 𝜆 of the linearized system satisfy |arg(𝜆)| > 𝛼
𝜋

2
, then the equilibrium is locally asymptotically stable. 

 

2. Stability for 𝑡 ∈ (𝑡1, 𝑡𝑓] (Stochastic Case) 

 

Now we consider the SDE: 

 

 𝑑𝑢 = [𝐷𝑢Δ𝑥𝑢 + 𝑓(𝑢)]𝑑𝑡 + 𝜎𝑢 𝑑𝑊𝑡 . 

 

Let 𝑢∗ be a steady state: 𝑓(𝑢∗) = 0. Let 𝑢 = 𝑢∗ + 𝑣, then: 

 

 𝑑𝑣 = [𝐷𝑢Δ𝑥𝑣 + 𝐽𝑓(𝑢∗)𝑣]𝑑𝑡 + 𝜎𝑢 𝑑𝑊𝑡 . 

This is a linear stochastic PDE. 

 

Define a Lyapunov Functional. Consider the spatial 𝐿2-norm as a candidate Lyapunov function: 

 

 𝑉(𝑡) = 𝔼[∥ 𝑣(⋅, 𝑡) ∥2] = 𝔼[∫
Ω

𝑣(𝑥, 𝑡)2𝑑𝑥]. 

Differentiate 𝑉(𝑡): 

 

 
𝑑𝑉

𝑑𝑡
= 2𝔼[∫

Ω
𝑣(𝑥, 𝑡) ⋅ (𝐷𝑢𝑣𝑥𝑥 + 𝐽𝑓(𝑢∗)𝑣)𝑑𝑥] + 𝔼[∫

Ω
𝜎𝑢

2𝑑𝑥]. 

 

Use integration by parts and boundary conditions (e.g., Dirichlet), and get: 

 

 
𝑑𝑉

𝑑𝑡
= −2𝐷𝑢𝔼[∫

Ω
|𝑣𝑥|2𝑑𝑥] + 2𝜆max(𝐽𝑓)𝑉(𝑡) + 𝐶. 

 

If 𝜆max(𝐽𝑓) < 0, then the deterministic part is dissipative. 

 

The noise adds a constant term 𝐶 to the derivative of 𝑉(𝑡). Stability in Mean Square: 

If 
𝑑𝑉

𝑑𝑡
≤ −𝛾𝑉(𝑡) + 𝐶, then: 

 

 𝑉(𝑡) ≤ 𝑉(0)𝑒−𝛾𝑡 +
𝐶

𝛾
(1 − 𝑒−𝛾𝑡). 

So the solution is mean-square bounded, and as 𝑡 → ∞, 𝑉(𝑡) →
𝐶

𝛾
.  This means the system is mean-square stable 

solutions do not explode due to noise, and oscillate around 𝑢∗.  
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5.  Numerical Methods  

  

 Consider mathematical models with Piecewise time (8) and (9). Let the picewise time-fractional PDE system for 
𝑢(𝑥, 𝑡) ∈ {𝑁, 𝑇, 𝐼, 𝑈} be as (10). 

Grid Definitions: 

 

Time: 𝑡𝑛 = 𝑛 ⋅ Δ𝑡, 𝑛 = 0,1, … , 𝑀.    Space: 𝑥𝑗 = 𝑗 ⋅ Δ𝑥, 𝑗 = 0,1, … , 𝐽. 

 

5.1   Caputo-Fabrizio derivative approximation 

 

We consider the time-fractional partial differential equation for a generic state variable 𝑢(𝑥, 𝑡) ∈ {𝑁, 𝑇, 𝐼, 𝑈}, 
governed by the Caputo–Fabrizio derivative with no stochastic perturbation [1]: 

  0
𝐶𝐹𝐷𝑡

𝛼𝑢(𝑥, 𝑡) = 𝐷𝑢
𝜕2𝑢

𝜕𝑥2 + 𝑓(𝑢, 𝑥, 𝑡),    for    0 < 𝑡 ≤  𝑡1, 

 

where 0 < 𝛼 < 1, 𝐷𝑢 is the diffusion coefficient, and 𝑓(𝑢, 𝑥, 𝑡) represents nonlinear biological interactions. In this regime, 

we assume 𝜂𝑢(𝑥, 𝑡) = 0, corresponding to the absence of Gaussian noise. 

To numerically approximate the Caputo–Fabrizio derivative, we apply the following discretized form based on a 
finite difference method: 

 

  0
𝐶𝐹𝐷𝑡

𝛼𝑢𝑗
𝑛+1 ≈ ∑𝑛

𝑘=1 (𝑢𝑗
𝑘+1 − 𝑢𝑗

𝑘) ⋅ 𝑊𝑛,𝑘, 

 

where the Caputo–Fabrizio kernel weights 𝑊𝑛,𝑘 are given by: 

 

 𝑊𝑛,𝑘 =
1

Δ𝑡⋅𝜆(1−𝛼)
[𝑒−𝜆(𝑡𝑛+1−𝑡𝑘) − 𝑒−𝜆(𝑡𝑛+1−𝑡𝑘+1)],    𝜆 =

𝛼

1−𝛼
. 

 

The full update scheme for 𝑢𝑗
𝑛+1, using a central difference for the spatial term and explicit time-stepping, becomes: 

 

 𝑢𝑗
𝑛+1 = 𝑢𝑗

0 + Δ𝑡 ⋅ ∑𝑛
𝑘=1 (𝑢𝑗

𝑘+1 − 𝑢𝑗
𝑘)𝑊𝑛,𝑘 + Δ𝑡 ⋅ 𝐷𝑢

𝑢𝑗+1
𝑛 −2𝑢𝑗

𝑛+𝑢𝑗−1
𝑛

Δ𝑥2 + Δ𝑡 ⋅ 𝑓(𝑢𝑗
𝑛, 𝑥𝑗 , 𝑡𝑛). 

 

This formulation allows us to iteratively compute 𝑢𝑗
𝑛+1 at each spatial grid point 𝑥𝑗 and time step 𝑡𝑛, while incorporating 

the memory effects embedded in the Caputo–Fabrizio operator. The solution smoothly transitions to classical behavior 
as 𝛼 → 1, and the absence of singularity in the kernel improves numerical stability and accuracy. 

 

This method effectively captures the influence of fractional-order memory in the early stage (𝑡 ∈ (0, 𝑡1]) of tumor-
immune-drug dynamics, setting the foundation for the subsequent stochastic phase.  Discretized Derivative for (10): 

 

 Case 1: 𝑡𝑛 ≤ 𝑡1, i.e.,  0 < 𝛼𝑛 < 1, 𝜂𝑢(𝑥𝑗 , 𝑡𝑛) = 0. Use the Caputo–Fabrizio derivative approximation [1]: 

 

  0
𝐶𝐹𝐷𝑡

𝛼𝑢𝑗
𝑛+1 ≈ ∑𝑛

𝑘=1 (𝑢𝑗
𝑘+1 − 𝑢𝑗

𝑘) ⋅ 𝑊𝑛,𝑘. 

Where: 

 

 𝑊𝑛,𝑘 =
1

Δ𝑡⋅𝜆𝑛(1−𝛼𝑛)
[𝑒−𝜆𝑛(𝑡𝑛+1−𝑡𝑘) − 𝑒−𝜆𝑛(𝑡𝑛+1−𝑡𝑘+1)]    with𝜆𝑛 =

𝛼𝑛

1−𝛼𝑛
. 

 

5.2  Euler–Maruyama Method 

 

  Case 2: 𝑡𝑛 > 𝑡1, i.e., 𝛼𝑛 = 1. Use standard first-order forward Euler–Maruyama method [2]: 
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𝑢𝑗

𝑛+1−𝑢𝑗
𝑛

Δ𝑡
= 𝐷𝑢 ⋅

𝑢𝑗+1
𝑛 −2𝑢𝑗

𝑛+𝑢𝑗−1
𝑛

Δ𝑥2 + 𝑓(𝑢𝑗
𝑛) + 𝜎𝑢 ⋅ 𝜉𝑗

𝑛, 

 

𝜉𝑗
𝑛 ∼ 𝒩(0,1) is standard Gaussian white noise.  

𝜎𝑢: noise intensity. 

 

The Euler–Maruyama method is the stochastic extension of the Euler method used for solving stochastic differential 
equations (SDEs) of the form: 

 𝑑𝑢(𝑡) = 𝑎(𝑢, 𝑡) 𝑑𝑡 + 𝑏(𝑢, 𝑡) 𝑑𝑊(𝑡). 

In our case: 

𝑎(𝑢, 𝑡) = 𝐷𝑢 ⋅ Δ𝑥𝑢 + 𝑓(𝑢, 𝑡),   𝑏(𝑢, 𝑡) = 𝜎𝑢 ,    𝑑𝑊(𝑡) ≈ √Δ𝑡 ⋅ 𝜉. 

 

Discrete Form: 

 𝑢𝑗
𝑛+1 = 𝑢𝑗

𝑛 + Δ𝑡 ⋅ 𝑎(𝑢𝑗
𝑛, 𝑡𝑛) + 𝜎𝑢 ⋅ √Δ𝑡 ⋅ 𝜉𝑗

𝑛. 

 

Then Piecewise-Time Numerical Method: 

 𝑢𝑗
𝑛+1 = {

𝑢𝑗
𝑛 + Δ𝑡 ⋅ CF𝑡

𝛼𝑛𝑢𝑗
𝑛 + Δ𝑡 ⋅ (𝐷𝑢 Δ𝑥𝑢𝑗

𝑛 + 𝑓(𝑢𝑗
𝑛)), 𝑡𝑛 ≤ 𝑡1,

𝑢𝑗
𝑛 + Δ𝑡 ⋅ (𝐷𝑢Δ𝑥

2 𝑢𝑗
𝑛 + 𝑓(𝑢𝑗

𝑛)) + 𝜎𝑢 ⋅ √Δ𝑡 ⋅ 𝜉𝑗
𝑛, 𝑡𝑛 > 𝑡1.

 

Where: 

CF term is precomputed via recursive memory kernels. 

𝜉𝑗
𝑛 ∼ 𝒩(0,1). Applied for all compartments 𝑁, 𝑇, 𝐼, 𝑈. 

 

We used a hybrid CF–Euler–Maruyama method i.e., Caputo–Fabrizio for 0 < 𝛼 < 1, and Euler–Maruyama for 𝛼 = 1, 
with additive Gaussian noise.  

 

6.  Sensitivity Analysis 

  The bar chart in Figure 1 illustrates the sensitivity of the variables 𝑁, 𝑇, 𝐼, and 𝑈 to the fractional-order parameter 
𝛼, measured as the average variance across different 𝛼 values. The results indicate that 𝑈 exhibits the highest sensitivity 

with a value exceeding 0.08, suggesting it is most responsive to changes in 𝛼, likely due to its simpler decay dynamics. 

In contrast, 𝑁, 𝑇, and 𝐼 show lower sensitivities, with values around 0.01 to 0.02, implying greater stability or lesser 
dependence on 𝛼. The significant difference in sensitivity highlights the varying impact of the fractional order on the 

system’s components, with 𝑈 requiring particular attention in parameter optimization to ensure model robustness. 

The sensitivity of the variables 𝑁, 𝑇, 𝐼, and 𝑈 to the fractional-order parameter 𝛼 in the given model can be computed 

mathematically by assessing how changes in 𝛼 affect the solution variables. The approach used here relies on a 
variance-based sensitivity index, which quantifies the variability of the solution due to different 𝛼 values. Below is a step-
by-step explanation of the mathematical computation: 

 

Data Collection 

Simulate the system for a range of 𝛼 values (e.g., 𝛼 = 0.5,0.6,0.7,0.8,0.9,1.0). For each 𝛼, compute the time evolution 

of 𝑁, 𝑇, 𝐼, and 𝑈 at a specific spatial point (e.g., the center point, 𝑥 = 0), storing the results in matrices like 𝑁all, 𝑇all, 𝐼all, 

and 𝑈all. Each matrix has rows corresponding to different 𝛼 values and columns corresponding to time steps. 

The sensitivity index for each variable is defined as the average variance of the solution across the 𝛼 values over 

time. Mathematically, for a variable 𝑣 (where 𝑣 can be 𝑁, 𝑇, 𝐼, or 𝑈), the sensitivity index 𝑆𝑣 is: 

 

 𝑆𝑣 =
1

𝑁𝑡
∑𝑁𝑡

𝑝=1 Var𝛼(𝑣(𝛼, 𝑡𝑝)), 

where: 

𝑁𝑡 is the number of time steps, 𝑣(𝛼, 𝑡𝑝) is the value of the variable at time 𝑡𝑝 for a given 𝛼, Var𝛼 denotes the 

variance computed over all 𝛼 values at each time step 𝑡𝑝. 

The variance across 𝛼 is calculated as: 
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 Var𝛼(𝑣(𝑡𝑝)) =
1

𝑁𝛼−1
∑𝑁𝛼

𝑖=1 (𝑣𝑖(𝑡𝑝) − 𝑣̅(𝑡𝑝))
2

, 

 

where: 𝑁𝛼 is the number of 𝛼 values (e.g., 0. 6), 𝑣𝑖(𝑡𝑝) is the value of the variable for the 𝑖-th 𝛼 at time 𝑡𝑝, 𝑣̅(𝑡𝑝) =
1

𝑁𝛼
∑𝑁𝛼

𝑖=1 𝑣𝑖(𝑡𝑝) is the mean value across 𝛼 at time 𝑡𝑝. 

A higher 𝑆𝑣 indicates greater sensitivity of the variable 𝑣 to changes in 𝛼, reflecting larger variations in the solution 

as 𝛼 changes. The average over time smooths out transient effects, providing a robust measure of sensitivity. 

This approach provides a practical way to quantify sensitivity based on the simulated data, as visualized in the bar 
chart.  

 

Best Brake Torque (Table 3) 

 

The brake torque 𝑇𝑏 is obtained from the brake power 𝑃𝑏 as [22]: 

 

 𝑇𝑏 =
𝑃𝑏×60

2𝜋𝑁𝑠
, (11) 

 

where:   

    • 𝑃𝑏 = brake power (kW),  

    • 𝑁𝑠 = engine speed (rev/min).  

 

The brake power itself is related to torque as: 

 𝑃𝑏 =
2𝜋𝑁𝑠𝑇𝑏

60
. (12) 

In practice:  

  

    1.  Experimental setup: Torque is measured directly using an engine dynamometer at various injection timings. 
The maximum value corresponds to the “best brake torque.”  

 

    2.  Simulation: Cylinder pressure traces are computed, integrated to obtain indicated power, and corrected for 
friction losses to yield brake power and torque.  

 

 Emissions at Optimal Injection Timing (Table 4) 

The main exhaust emissions considered are: carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen 
oxides (NO 𝑥), and smoke/soot [22]. 

  

    1.  Experimental determination:   

• CO, HC, and NO 𝑥 are measured using exhaust gas analyzers (e.g., NDIR for CO/HC, CLD 
for NO 𝑥).  

• Smoke is determined via opacimeter or filter smoke number (FSN).  
 The results are then normalized per unit brake power output (g/kWh) using:  

 𝐸 =
𝐶×𝑄×𝑀

𝑃𝑏
, (13) 

 where 𝐶 is pollutant concentration, 𝑄 is exhaust mass flow rate, 𝑀 is the molecular weight factor, and 𝑃𝑏 is brake power. 

 

    2.  Simulation approach: Pollutant 
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Figure 1: Sensitivity of Variables to 𝛼 

 Table  3: Best brake torque values at different injection timings. 

Injection Timing (°CA BTDC) Brake Torque (Nm) Engine Speed (rpm) 

10 210 1500 

15 225 1500 

20 238 1500 

25 230 1500 

  
Table  4: Emissions corresponding to the optimal injection timing. 

 

Injection Timing (°CA BTDC) CO (g/kWh) HC (g/kWh) NO 𝑥 (ppm) Smoke (FSN) 

20 (Optimal) 2.1 0.12 780 0.45 

  

7.  Numerical Simulations 

 To illustrate the dynamic behavior of the proposed 
fractional-stochastic cancer model, we perform 
comprehensive numerical simulations across both time and 
space domains. The hybrid nature of the model combining 
Caputo–Fabrizio memory effects with stochastic 
perturbations offers a rich platform for exploring the interplay 
between tumor progression, immune response, and drug 
therapy under biologically realistic conditions. By varying the 
fractional order 𝛼 and noise intensity 𝜎, we capture a 
spectrum of outcomes ranging from chronic, memory driven 
tumor persistence to rapid, noise-induced treatment 
fluctuations. The simulations provide not only quantitative 
insights into the stability and responsiveness of each 
biological variable but also qualitative interpretations that 
reflect actual clinical scenarios. The results are visualized 
through 2D temporal plots, spatial distributions, and 3D 
surface profiles, offering a multidimensional perspective on 
how fractional dynamics and random effects shape cancer 
treatment outcomes. 

Figure 2 illustrates the temporal dynamics of the normal 
cells, immune cells, tumor cells, and chemotherapy drug 
concentration at the spatial center, under varying fractional 

orders 𝛼 = 0.7,0.8,0.9,1.0. As 𝛼 increases, normal cell 
recovery accelerates, indicating improved tissue 
regeneration when memory effects are weaker, a behavior 
characteristic of healthier or more responsive tissue. Tumor 
cells exhibit faster decay at higher 𝛼, signifying more 
effective treatment and reduced tumor persistence in 
systems with rapid, classical dynamics. The immune 
response shows an earlier peak and quicker activation with 
increasing 𝛼, mimicking an acute immune reaction, whereas 

lower 𝛼 reflects delayed but sustained immunity, possibly 
modeling chronic or memory-driven immune responses. 
Lastly, drug concentration decays more slowly for smaller 𝛼, 
revealing longer drug retention and a lingering therapeutic 
effect essential in simulating scenarios with slow metabolism 
or drug resistance. Together, these dynamics confirm that 
the fractional-order parameter 𝛼 crucially shapes the 
system’s behavior, capturing diverse biological realities such 
as immune memory, delayed tissue repair, and persistent 
drug activity, which are pivotal in understanding and 
optimizing cancer treatment outcomes. 

Figure 3 illustrates the temporal dynamics of normal 
cells, tumor cells, immune cells, and drug concentration 
under stronger stochastic influence (𝜎 = 0.01). Compared to 
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Figure 2, which reflects smoother deterministic behavior, 
Figure 3 shows increased fluctuations across all variables. 
Normal cell recovery becomes unstable, tumor decay is 
slower and more erratic, immune responses are delayed or 
suppressed, and drug concentration exhibits irregular 
retention. Biologically, this highlights how random 
perturbations and memory effects (lower 𝛼) can disrupt 
treatment outcomes, delay healing, and reduce immune and 
therapeutic effectiveness, emphasizing the need to consider 
stochasticity and memory in cancer modeling. 

Figure 4 displays the spatial evolution of the four 
interacting variables: normal cells, tumor cells, immune 
response, and chemotherapy drug concentration across the 
domain over time, under different values of the fractional 
order 𝛼. The spatial profiles reveal how each variable 
propagates or diminishes across tissue. For lower 𝛼, the 
spread of normal and immune cells is slower and more 
localized, indicating stronger memory effects that inhibit fast 
recovery or immune mobilization. Conversely, at higher 𝛼, 
particularly as 𝛼 → 1, the dynamics become more 
responsive and spatially uniform: tumor density decreases 
more quickly across the domain, immune activation 
becomes more centralized and effective, and chemotherapy 
dissipates more efficiently in space. 

Biologically, this figure captures the realistic nonuniform 
behavior of tumors and treatment effects in physical tissue. 
Lower 𝛼 represents systems with strong biological memory, 
modeling chronic tissue damage, persistent tumor niches, or 

limited drug penetration. Higher 𝛼 corresponds to more 
acute and responsive systems, with faster healing and 
uniform immune or drug activity. Figure 4 thus provides 
crucial insights into how memory and diffusion interact 
spatially, highlighting the importance of fractional-order 
models in simulating heterogeneous tumor 
microenvironments and optimizing spatial treatment 
strategies. 

Figures 5 to 7 present 3D solution behaviors for different 
fractional orders 𝛼 under constant noise intensity (𝜎 = 0.01). 

In Figure 5 (𝛼 = 0.9999), the system exhibits rapid tumor 
reduction, robust immune response, and efficient drug 
decay, indicating a responsive and acute biological system 
with minimal memory. In Figure 6 (𝛼 = 0.8), tumor decay 
slows, immune activation is less pronounced, and drug 
dispersion becomes more persistent, reflecting moderate 
memory effects that dampen the treatment response. In 
Figure 7 (𝛼 = 0.7), tumor persistence increases, immune 
and normal cell dynamics are sluggish, and drug 
concentration remains elevated longer, modeling chronic 
conditions with strong memory effects and impaired 
responsiveness. These figures collectively demonstrate how 
decreasing 𝛼 enhances biological memory, leading to 
delayed and spatially uneven treatment outcomes. Table 3: 
shows the torque comparison across timings, with the best 
one highlighted. Table 4: summarizes emissions only for the 
optimal injection timing. 

 

 

Figure  2:  Solution behavior at different 𝛼, 𝜎 = 0.009. 

 

   



                              Nasser H. Sweilam et al /Frontiers in Scientific Research and Technology 12 (2025) 32- 45                                        42 

 

 

   
Figure  3:  Solution behavior at different 𝛼, 𝜎 = 0.01. 

   

   

 

   
Figure  4:  Solution behavior at different 𝛼, 𝜎 = 0.01. 
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Figure  5: Solution behavior in 3D when 𝛼 = 0.9999, 𝜎 = 0.01. 

 

   

 

   
Figure  6: Solution behavior in 3D when 𝛼 = 0.8, 𝜎 = 0.01 
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Figure  7: Solution behavior in 3D when 𝛼 = 0.7, 𝜎 = 0.01 

  

Conclusion 

 In this study, we developed a novel piecewise 
fractional-stochastic model to investigate the complex 
interplay among normal tissue, tumor cells, immune 
responses, and chemotherapeutic dynamics. By integrating 
the Caputo–Fabrizio fractional operator with additive 
Gaussian noise within a temporally split framework, the 
model effectively captures both nonlocal memory effects 
and stochastic fluctuations inherent in biological systems. 
Numerical simulations demonstrate that the fractional order 
𝛼 governs the persistence and aggressiveness of tumor 
growth, while stochastic perturbations introduce variability 
that mirrors clinical uncertainty. Notably, lower 𝛼 values 
indicative of strong memory are associated with delayed 
immune activation and prolonged tumor survival, whereas 
higher values approach classical dynamics with enhanced 
therapeutic efficacy. 

The proposed hybrid numerical scheme, combining 
Caputo–Fabrizio discretization and the Euler–Maruyama 
method, successfully resolves both deterministic and 
stochastic regimes with high fidelity. Sensitivity analysis 
underscores the dominant influence of 𝛼 on drug dynamics, 
affirming the critical role of fractional memory in treatment 
modeling. Spatial and 3D simulations reveal the 
heterogeneous distribution of biological agents, reinforcing 
the necessity of spatially explicit modeling in cancer 
research. 

This work advances the frontier of mathematical 
oncology by demonstrating the importance of incorporating 
memory and randomness into tumor modeling. The 
framework offers a powerful tool for optimizing treatment 
strategies and provides a foundation for future research in 
personalized medicine, immune modulation, and multi-scale 
cancer therapy design. 
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