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Abstract:  

The homology properties of Banach algebras have been a central topic in functional analysis, 

with foundational contributions by Johnson, Kadison, Sinclair, and Ringrose leading to 

classifications based on Hochschild (co)homology and the concept of amenability. The 

interplay between Hochschild, cyclic, and dihedral (co)homology has further enriched the 

study of Banach and operator algebras, with key developments in biflatness, bi-projectivity, 

and ideal amenability. Recent research has focused on the computation of dihedral homology 

for Banach algebras, utilizing projective tensor powers and Hochschild complexes. By 

extending classical homological tools, we introduce a framework for relative reflexive 

homology and analyze its properties within involutive Banach algebras. Furthermore, we 

construct free involutive resolutions and explore their role in the homological classification of 

Banach algebras. There are many applications in the general sciences. Our results establish 

fundamental connections between dihedral homology, cyclic homology, and reflexive 

homology, which offer new perspectives on the algebraic and functional structure of Banach 

algebras and operator algebras. 
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1-Introduction 

The study of Banach algebras and their (co)homology properties has been a central topic in 

functional analysis. In (Johnson et al.,1972) initiated the investigation of (co)homology in 

Banach algebras, demonstrating that these structures can be characterized by their Hochschild 

(co)homology groups. In particular, the vanishing of the Hochschild (co)homology group led 

to the classification of a significant subclass of Banach algebras, termed amenable algebras. 

This foundational work paved the way for further research into more complex structures, 

including operator algebras. In (Kadison, 1990; Ringrose, 1972; Sinclair & Smith, 2009) 

extended the framework of the Banach algebras to operator algebras, encompassing 𝐶∗ -

algebras and von Neumann algebras. A pivotal tool in this area is the Connes-Tsygan exact 

sequence, which connects cyclic (co)homology with simplicial (co)homology, offering a robust 

method for analyzing algebraic structures. 

The relationship between the (co)homology group 𝐻𝑛(𝐴, 𝐴∗) of a Banach algebra 𝐴 and its 

relative counterpart 𝐻𝑛
𝐵(𝐴, 𝐴∗), where 𝐴∗ denotes the dual Banach space of 𝐴, is of significant 

interest. This connection enables the exploration of dihedral (co)homology groups and their 

relative variants. In (Helemskii, 1989; Helemskii, 1992) advanced the study of Banach algebras 

through the development of Banach homology theory, introducing the concepts of biflat and 

𝑏𝑖 -projective Banach algebras. For instance, a Banach algebra 𝐴 is biflat if there exists a 

bounded 𝐴-bimodule morphism 𝜌: 𝐴 → (𝐴⊗ 𝑝𝐴)∗∗ such that 𝜋∗∗ ∘ 𝜌 represents the canonical 

embedding of 𝐴 into 𝐴∗∗. Furthermore, Helemskii demonstrated that 𝐺1(𝐺) is biflat when 𝐺 is 

amenable and 𝑏𝑖-projective when 𝐺 is compact. (Kaniuth et al., 2008) later expanded on these 

ideas by defining a new notion of amenability for Banach algebras based on their character. 

Operator algebras have also been the subject of extensive (co)homology studies. Simplicial 

(co)homology has been explored in works such as (Essmaili et al., 2011; Johnson et al.,1972; 

Kadison, 1990) while cyclic (co)homology has been examined in (Helemskii, 1992; Johnson 

et al.,1972; Sinclair & Smith, 2009). The dihedral homology of algebras with characteristic 

zero has been shown (Krasauskas et al., 1987; Loday, 1991) and others studying the dihedral 

cohomology of unital and involutive algebras over commutative rings. Alaa contributed 

important findings on the dihedral homology of operator algebras in (NorEldean, 2013). 

Subsequent studies by (Krasauskas et al., 1987) investigated the interplay between Hermitian 
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𝐾-theory and dihedral homology. Further research into the (co)homology of operator algebras 

was conducted in (NorEldean & Gouda, 2013; NorEldean, 2014), with analyses of their 

triviality and non-appearing as shown by (NorEldean & Gouda, 2009).  

This body of work highlights the richness of the (co)homology structures in Banach and 

operator algebras, offering a foundation for deeper exploration into their algebraic and 

functional properties. 

2- Homology of Banach algebra 

Recently, the simplicial, cyclic, and dihedral (co)homology groups for Banach algebras were 

computed. To proceed, we first recall some definitions and key facts required for this 

discussion. 

For a Banach algebra 𝐴 with a unit and involution, we define the unital Banach algebra as the 

Banach algebra with a unit element 𝑒   𝑠. ℎ  ‖𝑒‖ = 1. We denote 𝐶𝑛(𝐴) for 𝑛 = 0,1,⋯ as the 

projective tensor power of 𝐴 taken (𝑛 + 1) times, written as 𝐴⨂(𝑛+1) = 𝐴⨂ …⨂𝐴. The 

elements of these Banach spaces are referred to as 𝑛-dimensional chains. 

Define the operator 𝑑𝑛: 𝐶𝑛(𝐴) → 𝐶𝑛(𝐴), for 𝑛 = 0,1,2, …, as follows: 

𝑑𝑛(𝑎0, ⨂𝑎1⨂…⨂𝑎𝑛) = ∑ (−1)𝑖(𝑎0⨂…⨂𝑎𝑖𝑎𝑖+1⨂…𝑎𝑛+1) +
𝑛
𝑖=0

(−1)𝑛+1(𝑎𝑛+1𝑎0⨂…𝑎𝑛)        (1.1) 

It is well known that 𝑑𝑛−1 ∘ 𝑑𝑛 = 0  for all 𝑛 ∈ 𝑁 , which is equivalent to 𝐼𝑚(𝑑𝑛+1) ⊆

𝑘𝑒𝑟 (𝑑𝑛). The elements of 𝐼𝑚(𝑑𝑛+1) are called 𝑛-boundaries, while the elements of 𝑘𝑒𝑟 (𝑑𝑛) 

are referred to as 𝑛-cycles. The chain complex 𝐶(𝐴) = (𝐶∙(𝐴), 𝑑∙) is thus a chain complex 

represented as: 

𝐶(𝐴): 0 ← 𝐶0(𝐴)
𝑑0
←⋯ ← 𝐶𝑛(𝐴)

𝑑𝑛
← 𝐶𝑛+1(𝐴) ← ⋯              (1.2) 

This complex is said to be the Hochschild (simplicial) complex, and its homology is called 

Hochschild homology, denoted by 𝐻𝑛 = 𝐻𝑛(𝐴, 𝐴) =
ker 𝑏𝑛

𝐼𝑚 𝑏𝑛+1
. 

Define 𝑡𝑛 ∶  𝐶𝑛(𝐴) →  𝐶𝑛(𝐴), for 𝑛 =  0, 1, …, be the operator given by: 

𝑡𝑛(𝑎0⨂𝑎0⨂⋯⨂𝑎𝑛) = (−1)𝑛(𝑎𝑛⨂𝑎0⨂⋯⨂𝑎𝑛−1) 

with 𝑡0 = 𝑖𝑑.  

The space 𝐶𝑛(𝐴)  is the quotient of 𝐶𝑛(𝐴) by the closure of the linear span of elements of the 

form 𝑥 ↦ 𝑡𝑛(𝑥)for 𝑛 =  0, 1,⋯. According to (Helemskii, 1992), 𝐼𝑚(1 − 𝑡𝑛) is closed in 
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𝐶𝑛(𝐴) , and we have 𝐶𝑛(𝐴)  =
𝐶𝑛(𝐴)

𝐼𝑚(1−𝑡𝑛)
. This leads to a quotient complex 𝐶𝐶∙(𝐴)  of the 

complex 𝐶𝐶(𝐴), and the homology of 𝐶𝐶∙(𝐴), denoted 𝐻𝐶𝑛(𝐴), is called the 𝑛-dimensional 

Banach cyclic homology group of 𝐴. 

Define another operator 𝑟𝑛 ∶  𝐶𝑛(𝐴) →  𝐶𝑛(𝐴), for 𝑛 =  0, 1, …, by: 

𝑟𝑛(𝑎0⨂⋯⨂𝑎𝑛) = (−1)
𝑛(𝑛+1)

2 ∈ 𝑎0
∗⨂𝑎𝑛

∗⨂⋯⨂𝑎1
∗                    (1.3) 

where ∈= ±1, and ∗ denotes the involution on 𝐴. Note that 𝐼𝑚(1 − 𝑡𝑛) is closed in 𝐶𝑛(𝐴). 

The quotient complex 𝐶𝑅𝑛(𝐴) =
𝐶𝑛(𝐴)

𝐼𝑚(1−𝑡𝑛)+𝐼𝑚(1−𝑟𝑛)
 forms a subcomplex of 𝐶𝑛(𝐴) . Its 

homology, denoted 𝐻𝑅𝑛(𝐴), is known as the 𝑛-dimensional reflexive homology group of the 

unital Banach algebra 𝐴. When the involution ∗ is introduced, the resulting homology group is 

the dihedral homology group of the operator algebra 𝐴, denoted by 𝐻𝐷𝑛(𝐴). 

Let 𝐴 and 𝐵 be Banach algebras with units, and suppose both are involutive. Let 𝑓: 𝐴 →  𝐵 be 

a homomorphism between these involutive Banach algebras. We construct a free involutive 

resolution of 𝐵 over 𝑓 using the sequence 𝑓: 𝐴
𝑖
→ 𝑅

𝜋
→𝐵, where 𝜋 is a quasi-isomorphism and 

ii is the inclusion map. Then, the relative reflexive homology is 

𝐻𝑅∗ (𝐴
𝑓
→𝐵) = 𝐻∗(𝑅/(𝐴 + [𝑅, 𝑅] + 𝐼𝑚(1 − 𝑟𝜀)) , 

where[𝑅, 𝑅] denotes the commutator of the Banach algebra 𝑅, and 𝑟𝜖 represents an involution 

on 𝑅. This framework is analyzed within the context of operator algebras. 

Furthermore, if 𝑓 is a homomorphism between involutive operator algebras 𝐴 and 𝐵 over 𝐾 of 

characteristic zero, we treat 𝑅𝑓
𝐵  as a free resolution of 𝐵  over 𝑓 . ∀ 𝑟1, 𝑟2 ∈ 𝑅𝑓

𝐵 , the graded 

commutator is defined as 

[𝑟1, 𝑟2] = 𝑟1𝑟2 − (−1)|𝑟1||𝑟2|𝑟2𝑟1 

in which |𝑟𝑖| = 𝑑𝑒𝑔 𝑟𝑖 , ∀ 𝑖 = 1,2. 

Consider 𝐶 = [𝑅𝑓
𝐵, 𝑅𝑓

𝐵], which is the linear span of the commutators [𝑟1, 𝑟2] for 𝑟1, 𝑟2 ∈ 𝑅𝑓
𝐵 . 

The complex is then defined by (𝐶 = [𝑅𝑓
𝐵, 𝑅𝑓

𝐵] + 𝐼𝑚(1 − 𝑟𝜀)), where the involution 𝑟𝜖 acts 

on an element 𝑃 as 𝑟𝜀(𝑃) = 𝜀(−1)|𝑝|(|𝑝|−1)/2𝑝∗, with ∗ representing the involution on 𝑅𝑓
𝐵, and 

𝜖 being ±1. Since [𝐼𝑚 (1 − 𝑟𝜀)] is a subcomplex of 𝑅𝑓
𝐵, it follows that 

𝜕[𝑟1, 𝑟2] = 𝑟1𝑟2 − (−1)|𝑟1||𝑟2|𝑟1𝑟2 

Expanding the boundary operation, we obtain 
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𝜕[𝑟1, 𝑟2] = 𝜕𝑟1𝑟2 + (−1)|𝑟1|𝑟1𝜕𝑟2 − (−1)|𝑟1||𝑟2|(𝜕𝑟2𝑟1 + (−1)|𝑟2|𝑟2𝜕𝑟1) 

Rearranging, this simplifies to 

𝜕[𝑟1, 𝑟2] = 𝜕𝑟1𝑟2 − (−1)|𝑟2|(|𝑟1|+1)𝑟2𝜕𝑟1 − (−1)|𝑟1|(𝑟1𝜕𝑟2 − (−1)|𝑟2|(|𝑟1|+1)𝜕𝑟2𝑟1)

= [𝜕𝑟1𝑟2] + (−1)|𝑟1|[𝑟1, 𝜕𝑟2] 

where |𝜕𝑟𝑖| = |𝑟1| − 1,       𝑖 = 1,2. This confirms that [𝑅𝑓
𝐵, 𝑅𝑓

𝐵] is a subcomplex of 𝑅𝑓
𝐵 , and 

consequently, the chain complex associated with the 𝐾-module 

([𝑅𝑓
𝐵, 𝑅𝑓

𝐵] + 𝐼𝑚(1 − 𝑟𝜀)) 

also forms a subcomplex within 𝑅𝑓
𝐵. 

Definition (2-1):  

Suppose  𝑓: 𝐴 → 𝐵  is a homomorphism between F-Banach algebras 𝐴  and 𝐵  over 𝐾  with 

characteristic zero. Given a free resolution 𝑅𝑓
𝐵  of the Banach algebra 𝐵 over 𝑓, the relative 

reflexive homology is defined as: 

𝐻𝑅∗ (𝐴
𝑓
→𝐵) = 𝐻∗ (

𝑅𝑓
𝐵

𝐴 + [𝑅, 𝑅] + 𝐼𝑚(1 − 𝑟𝜀)
) 

where[𝑅, 𝑅] denotes the commutator of the Banach algebra 𝑅, and 𝑟𝜖 represents the involution 

acting on 𝑅𝑓
𝐵.  

Definition (2-2): 

Let 𝐴〈𝑡〉 be  𝐹-Banach algebra, that generated by: 

𝑎0𝑡𝑎1𝑡 … 𝑡𝑎𝑛, 𝑛 ≥ 0 

is structured as a differential graded Banach algebra by ensuring that the morphism 𝐴 → 𝐴〈𝑡〉 

of involutive differential graded Banach algebras. In this framework, the grading and 

differential properties are defined as follows: deg 𝑡 = 1,   𝜕𝑡 = 0, and 𝑡∗ = 𝑡. This structure 

allows for a deeper understanding of the algebra's behavior, incorporating both the differential 

grading and the involution properties in a consistent manner. 

Lemma (2-3): 

States that  𝐴〈𝑡〉  is a splittable Banach algebra. The Banach algebras 𝐵 = 0  over the 

homorphism 𝐴 → 0 are resolved by a free Banach algebra. 

Proof: 

We build the chain complex as follows 

𝐴
𝜕
← 𝐴𝑡𝐴

𝜕
←⋯

𝜕
← 𝐴𝑡. . 𝑡𝐴

𝜕
←⋯, 
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where 𝐾-module is formed by 𝐴𝑡. . 𝑡𝐴 (with n-times repetitions). The boundary operator 𝜕 is 

given by 

𝜕(𝑎0𝑡𝑎1𝑡. . 𝑡𝑎𝑛−1𝑡𝑎𝑛) = ∑(−1)𝑖𝑎0𝑡𝑎1𝑡. . 𝑡𝑎𝑖(𝜕𝑡)𝑡𝑎𝑖+1. . 𝑡𝑎𝑛

𝑛−1

𝑖=0 

 

since, 𝜕𝑡 = 0, this simplifies to 

𝜕(𝑎0𝑡𝑎1𝑡. . 𝑡𝑎𝑛−1𝑡𝑎𝑛) = ∑ (−1)𝑖𝑎0𝑡𝑎1𝑡. . 𝑡(𝑎𝑖𝑎𝑖+1)𝑡. . 𝑡𝑎𝑛
𝑛−1
𝑖=0 . 

By comparing this differential with the operator 𝛿𝑛: 𝐶𝑛(𝐴) → 𝐶𝑛−1(𝐴), we observe that 

𝛿𝑛(𝑎0⨂⋯⨂𝑎𝑛) = ∑ (−1)𝑖𝑎0⨂⋯⨂𝑎𝑖𝑎𝑖+1⨂⋯⨂𝑎𝑛
𝑛−1
𝑖=0 . 

As shown in (NorEldean & Gouda, 2009), the complex (𝐶𝑛(𝐴), 𝛿𝑛) is splitable. This implies 

that 𝐴〈𝑡〉 also admits a decomposition, leading to 𝐻∗(𝐴〈𝑡〉) = 0. 

Thus, we conclude that 𝐴〈𝑡〉  serves as a free Banach algebra resolution of 𝐵 = 0  over a 

homomorphism 𝐴 → 0. 

Lemma (2-4): 

The quotient (𝐴〈𝑡〉/[𝐴, 𝐴〈𝑡〉]) is the simplicial complex of a standard form. 

Proof: 

Suppose that the complex (𝐴〈𝑡〉/[𝐴, 𝐴〈𝑡〉] ) , generated by elements of the form 

𝑎0𝑡𝑎1𝑡 … 𝑡𝑎𝑛−1𝑡. The relation 

𝑎0𝑡𝑎1𝑡. . 𝑡𝑎𝑛 = 𝑎𝑛𝑎0𝑡𝑎1𝑡. . 𝑡𝑎𝑛−1𝑡         (𝑚𝑜𝑑 [𝐴, 𝐴〈𝑡〉]) 

indicates that these elements are cyclic permutations of each other. The boundary operator 𝜕 

on this complex is defined as 

𝜕(𝑎0𝑡𝑎1𝑡. . 𝑡𝑎𝑛−1𝑡𝑎𝑛) = ∑ (−1)𝑖𝑎0𝑡𝑎1𝑡. . 𝑡𝑎𝑖(𝜕𝑡)𝑡𝑎𝑖+1. . 𝑡𝑎𝑛
𝑛−1
𝑖=0 +  (−1)𝑛𝑎𝑛𝑎0𝑡𝑎1𝑡. . 𝑎𝑛−1𝑡. 

Next, for differential in the standard Hochschild complex 𝛿 , we get the following chain 

complex: 

𝐴
𝑖𝑑
← 𝐴

𝛿
← 𝐴⨂2

𝛿
←⋯

𝛿
← 𝐴⨂𝑛

𝛿
←⋯. 

The space (𝐴〈𝑡〉/[𝐴, 𝐴〈𝑡〉]𝑛+1) can be identified with 

𝐴⨂𝑛+1: 𝑎0𝑡𝑎1. . 𝑡𝑎𝑛𝑡 → 𝑎0⨂𝑎1⨂⋯⨂𝑎𝑛. 

Furthermore, the differential in (𝐴〈𝑡〉/[𝐴, 𝐴〈𝑡〉])  aligns precisely with 𝛿 . Consequently, 

(𝐴〈𝑡〉/[𝐴, 𝐴〈𝑡〉]) forms a standard simplicial complex. 
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Theorem (2-5): 

Assume that 𝐴 is an involution unital Banach algebra. Thus,  

𝐻𝑅𝑖 (𝐴
𝑓
→𝐵) = 𝐻𝑅𝑖(𝐴), where 𝐻𝑅𝑖(𝐴) indicates the reflexive homology of the 𝐹-Banach 

algebras (with characteristic 0). 

Proof: 

Let the factor complex 

(𝐴〈𝑡〉/[𝐴, 𝐴〈𝑡〉] + 𝐼𝑚(1 − 𝑟𝜀)), 

where the action of the boundary operator 𝜕 on the element 𝑎0𝑡𝑎1𝑡. . 𝑡𝑎𝑛−1𝑡 is given by 

𝑎0𝑡𝑎1𝑡. . 𝑡𝑎𝑛−1𝑡 = (−1)𝑛(𝑛−1)/2𝜀 𝑡𝑎𝑛
∗ 𝑡𝑎𝑛−1

∗ …𝑡𝑎1
∗  =   (−1)𝑛(𝑛−1)/2𝜀 𝑡𝑎0

∗𝑡𝑎𝑛
∗ …𝑡𝑎1

∗𝑡, 

here, 𝜀 = ±1, and the degrees are as follows: 

• deg 𝑎0𝑡𝑎1𝑡 … 𝑡𝑎𝑛−1𝑡 = 𝑛, 

• deg(𝑎𝑛
∗ ) = 0, 

• deg 𝑎0𝑡𝑎1𝑡 … 𝑡𝑎𝑛𝑡 = 𝑛 + 1. 

The dihedral homology of 𝐴〈𝑡〉 corresponds to the reflexive homology of the complex 

(𝐴〈𝑡〉/[𝐴〈𝑡〉, 𝐴〈𝑡〉] + 𝐼𝑚(1 − 𝑟𝜀)). 

A homomorphism 𝐶𝑅∗(𝐴 → 0) → 𝐶𝑅∗−1(𝐴)  is obtained by factoring 𝐴〈𝑡〉  firstly by the 

subcomplex 𝐴 ← 0 ← 0 ← ⋯ and then by the subcomplex (𝐴〈𝑡〉/[𝐴〈𝑡〉, 𝐴〈𝑡〉] + 𝐼𝑚(1 − 𝑟𝜀)). 

This results in an isomorphism of the reflexive homology groups 𝐻𝑅∗(𝐴 → 0) → 𝐻𝑅∗−1(𝐴). 

As a result, as needed, we have 𝐻𝑅𝑖(𝐴
𝑓
→𝐵) = 𝐻𝑅𝑖(𝐴).  

Theorem (2-6): 

Let 𝑓: 𝐴 →𝐵  be homomorphism of commutative Banach algebras over a field 𝐾  (with 

𝑐ℎ𝑎𝑟(𝐾) = 0). The resolution selection is then independent of the relative reflexive homology 

𝐻𝑅𝑖(𝐴
𝑓
→ 0). 

Proof: 

A homomorphism of chain complexes is induced by the homomorphism 𝑓:  

𝑓∗: 𝐶𝑅∗(𝐴) → 𝐶𝑅∗(𝐵) 

Here, 𝐶𝑅∗(𝐴) is a reflexive complex. Examine the following diagram: 

𝑅𝑓
𝐵

𝑖 ↓ 𝜋

𝐴 𝑓
→ 𝐵
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where𝑖 is the inclusion map, and𝑅𝑓
𝐵 is a free resolution. Since 

𝐻𝑖(𝑅𝑓
𝐵) = {

𝐵,                       𝑖 = 0
0,                        𝑖 > 0

 

the isomorphism between the homology of these complexes is produced by an isomorphism 

𝜋∗: 𝐶𝑅∗(𝑅𝑓
𝐵) → 𝐶𝑅∗(𝐵). We have: 

𝐻𝑅𝑖 (𝐴
𝑓
→𝐵) → 𝐻𝑅𝑖 (𝐴

𝑔∘𝑓
→ 𝐶) → 𝐻𝑅𝑖 (𝐴

𝑔
→ 𝐶) → 𝐻𝑅𝑖−1 (𝐴

𝑓
→𝐵) → ⋯ 

where𝑖∗: 𝐶𝑅∗(𝐴) → 𝐶𝑅∗(𝑅𝑓
𝐵) is an inclusion, and 𝑀(𝑖∗) ≈ [𝐶𝑅∗(𝑅𝑓

𝐵)/𝐶𝑅∗(𝐴)], where 𝑀(𝑖∗) 

is the cone of 𝑖. 

The following diagram is commutative: 

𝐶𝑅∗(𝑅𝑓
𝐵)

𝑖∗ ↓ 𝜋∗
𝐶𝑅∗(𝐴) 𝑓_∗

→ 𝐶𝑅∗(𝐵)
 

This shows that 𝑀(𝑓∗) ≈ [𝐶𝑅∗(𝑅𝑓
𝐵)/𝐶𝑅∗(𝐴)]. By using results from (NorEldean & Gouda, 

2011), we obtain the following: [𝐶𝐶∗(𝑅𝑓
𝐵)/𝐶𝐶∗(𝐴)] ≈ 𝑅𝑓

𝐵/𝐴 + [𝑅𝑓
𝐵, 𝑅𝑓

𝐵]],where 𝐶𝐶∗ denotes 

the Connes cyclic complex. By applying the spectral sequence𝐸𝑖𝑗
2 = 𝐻∗(𝑍/2, 𝐻∗ (𝑅𝑓

𝐵)) =

𝐻𝑅𝑖+𝑗(𝑅𝑓
𝐵), we derive:𝐶𝑅∗(𝑅𝑓

𝐵)/𝐶𝑅∗(𝐴)] ≈ 𝑅𝑓
𝐵/𝐴 + [𝑅𝑓

𝐵, 𝑅𝑓
𝐵] + 𝐼𝑚(1 − 𝑟𝜀). Thus, we have, 

𝑀(𝑓∗) ≈ 𝑅𝑓
𝐵/𝐴 + [𝑅𝑓

𝐵 , 𝑅𝑓
𝐵] + 𝐼𝑚(1 − 𝑟𝜀), which leads to the conclusion that,𝐻𝑅𝑖(𝐴

𝑓
→𝐵) is 

independent of the choice of 𝑅𝑓
𝐵, as required. 

Theorem (2-7): 

Consider the involutive Banach algebras 𝐴, 𝐵and 𝐶. Following that, the long exact sequence of 

relative reflexive homology is induced by the sequence 𝐴
𝑓
→𝐵

𝑔
→ 𝐶:  

𝐻𝑅𝑖 (𝐴
𝑓
→𝐵) → 𝐻𝑅𝑖 (𝐴

𝑔∘𝑓
→ 𝐶) → 𝐻𝑅𝑖 (𝐵

𝑔
→ 𝐶) → 𝐻𝑅𝑖−1 (𝐴

𝑓
→𝐵) → ⋯ 

Proof: 

Any homomorphism 𝒇: 𝑩 ← 𝑨  of involutive algebras in any category is identical to an 

inclusion 𝒊: 𝑹𝒇
𝑩 ← 𝑨, as demonstrated by Theorem (2-6). We have the following complex for a 

series of involutive Banach algebras 𝑨
𝒇
→𝑩

𝒈
→𝑪:  
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where𝑔and 𝑓are morphisms of the sequence. 

Examine the mapping cone sequence: 

0 → 𝑀(𝑖∗) → 𝑀(𝑖∗
′) → 𝑀(𝑖∗ ∘ 𝑖∗

′) → 0. 

The higher sequence is typically imprecise, and two morphisms will have zero composition. 

Canonically, however, the cone over the morphism 𝑀(𝑖∗) → 𝑀(𝑖∗
′)  is homotopy equal to 

𝑀(𝑖∗ ∘ 𝑖∗
′). 

As a result, the exact sequence of relative reflexive homology that follows is obtained:  

𝐻𝑅𝑖 (𝐴
𝑓
→𝐵) → 𝐻𝑅𝑖 (𝐴

𝑔∘𝑓
→ 𝐶) → 𝐻𝑅𝑖 (𝐵

𝑔
→ 𝐶) → 𝐻𝑅𝑖−1 (𝐴

𝑓
→𝐵) → ⋯ 

 

3-Main results 

Theorem (3-1):  

Let 𝐴and 𝐴′ is Banach algebras, there is an isomorphism for dihedral homology 

ℋ𝐷𝑛(𝐴 × 𝐴′)  ≅ ℋ𝐷𝑛(𝐴) ⨁ ℋ𝐷𝑛(𝐴′) . 

Proof: 

Consider that 𝐴 ×  𝐴′  is the direct product of the Banach algebras 𝐴  and 𝐴′ , has natural 

projection and inclusion maps. These maps can be structured as: 

𝐴 × 𝐴′
𝜓
→ 𝐴

↓ 𝜌 ↓ 𝜙

𝐴′
𝜓
→ 𝐴⊕𝐴′

, 

where: 

• 𝜓:𝐴 × 𝐴′ → 𝐴 and 𝜌: 𝐴 × 𝐴′ → 𝐴 are projection maps, and 

• 𝜙: 𝐴 → 𝐴⊕  𝐴′and𝜑: 𝐴′ → 𝐴⊕ 𝐴′ are inclusion maps. 

From this structure, we note that 𝑘𝑒𝑟 (𝜓) = 𝐴′ and 𝑘𝑒𝑟 (𝜌) = 𝐴. These kernels satisfy the 𝐹∗-

excision property, allowing the use of exact sequences. 

Using the structure of 𝐴, 𝐴′, and 𝐴 × 𝐴′, we consider the short exact sequence: 

0 → 𝐴 → 𝐴⊕𝐴′ → 𝐴′ → 0. 

Applying the dihedral homology functors 𝐻𝐷∗, this sequence induces a Mayer–Vietoris long 

exact sequence: 

⋯ → 𝐻𝐷𝑛+1(𝐴 ⊕ 𝐴′) → 𝐻𝐷𝑛(𝐴 × 𝐴′) → 𝐻𝐷𝑛(𝐴) ⊕ 𝐻𝐷𝑛(𝐴′) → 𝐻𝐷𝑛(𝐴 ⊕ 𝐴′) → ⋯ . 

From the properties of dihedral homology: 
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1. 𝐻𝐷𝑛(𝐴 ⊕ 𝐴′) ≅ 𝐻𝐷𝑛(𝐴) ⊕ 𝐻𝐷𝑛(𝐴′). 

This follows from the additive structure of 𝐴⊕ 𝐴′. 

2. The natural projections ψ\psi and ρ\rho induce isomorphisms: 

𝜓∗: 𝐻𝐷𝑛(𝐴 × 𝐴′) → 𝐻𝐷𝑛(𝐴),           𝜌∗: 𝐻𝐷𝑛(𝐴 × 𝐴′) → 𝐻𝐷𝑛(𝐴′). 

we obtain: 

𝐻𝐷𝑛(𝐴 × 𝐴′) ≅ 𝐻𝐷𝑛(𝐴) ⊕ 𝐻𝐷𝑛(𝐴′). 

The above process can be visualized using the following commutative diagram with exact 

rows: 

⋯ → 𝐻𝐷𝑛+1(𝐴 ⊕ 𝐴′) → 0 → ⋯

↓ 𝜙 ↓ 𝜓

⋯ → 𝐻𝐷𝑛(𝐴) ⊕ 𝐻𝐷𝑛(𝐴′) → 𝐻𝐷𝑛(𝐴 × 𝐴′ → ⋯

 

This diagram shows that all maps commute, and the isomorphism holds. 

Theorem (3-2): 

Let 𝐴, 𝐵, 𝐶 and 𝐷 is Banach algebras, and the commutative diagram 

𝐴 → 𝐵
↓ ↓ 𝑓
𝐶 → 𝐷

, 

then there is a long Mayer – Vietoris sequence of dihedral homology as a form 

⋯ → 𝐻𝐷𝑛(𝐴) → 𝐻𝐷𝑛(𝐵) ⊕ 𝐻𝐷𝑛(𝐶) → 𝐻𝐷𝑛(𝐷) → 𝐻𝐷𝑛−1(𝐴) → ⋯ 

Proof: 

Given the commutative diagram: 

𝐴 → 𝐵
↓ ↓ 𝑓
𝐶 → 𝐷

 

the maps 𝐴 →  𝐵, 𝐴 →  𝐶, 𝐵 →  𝐷, and 𝐶 →  𝐷 induce maps on the dihedral homology groups: 

𝐻𝐷𝑛(𝐴) → 𝐻𝐷𝑛(𝐵),  𝐻𝐷𝑛(𝐴) → 𝐻𝐷𝑛(𝐶), 𝐻𝐷𝑛(𝐵) → 𝐻𝐷𝑛(𝐷), 𝐻𝐷𝑛(𝐶) → 𝐻𝐷𝑛(𝐷). 

Construct a short exact sequence of chain complexes 𝐶𝑛: 

0 → 𝐶𝑛(𝐴) → 𝐶𝑛(𝐵) ⊕ 𝐶𝑛(𝐶) → 𝐶𝑛(𝐷) → 0. 

Here: 

• 𝐶𝑛(𝐴), 𝐶𝑛(𝐵), 𝐶𝑛(𝐶), and 𝐶𝑛(𝐷) denote the chain complexes associated with 𝐴, 𝐵, 𝐶, 

and 𝐷. 

• The middle map is defined by: (𝑏, 𝑐) ↦ 𝑏 − 𝑐. 

The above short exact sequence induces a long exact sequence in homology: 

⋯ → 𝐻𝑛(𝐶(𝐴)) → 𝐻𝑛(𝐶(𝐵)) ⊕ 𝐻𝑛(𝐶(𝐶)) → 𝐻𝑛(𝐶(𝐷)) → 𝐻𝑛−1(𝐶(𝐴)) → ⋯ . . 
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Replacing 𝐻𝑛  with 𝐻𝐷𝑛 , we obtain the desired long Mayer–Vietoris sequence for dihedral 

homology: 

⋯ → 𝐻𝐷𝑛(𝐴) → 𝐻𝐷𝑛(𝐵) ⊕ 𝐻𝐷𝑛(𝐶) → 𝐻𝐷𝑛(𝐷) → 𝐻𝐷𝑛−1(𝐴) → ⋯ . 

4-Conclusion 

In this study, we examined the homology properties of Banach algebras, particularly their 

Hochschild, cyclic, and dihedral homology. We established a homological framework for 

analyzing Banach algebras with involution, introducing the concept of reflexive homology and 

its relative analogs. Through explicit constructions, we demonstrated the role of free 

resolutions in defining and computing these homology groups. Our results confirmed that the 

relative dihedral homology remains invariant under homomorphisms and independent of 

resolution choices, reinforcing its stability as a homological invariant. These contributions 

enhance the understanding of Banach algebra structures and pave the way for further studies 

on the (co)homology of operator algebras and their applications in functional analysis. 
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