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1. Introduction

The Log Logistic probability distribution function belongs to the family of probability functions
with non-negative variable values, which has numerous applications, especially in survival analysis
and parametric models.
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The probability density function of the Log-Logistic distribution is shown below. [15]

f (y) =
(b

a )( y
a )b−1(

1 + ( y
a )b

)2 y ≥ 0, a > 0, b > 0, (1.1)

Where a and b are non-negative parameters. The mean, median, and variance of Y are, respectively, as
follows:

E(Y) =
ab/π

sin(b/π)
(1.2)

median(Y) = a (1.3)

Var(Y) = a2

 2b/π
sin(2b/π)

−

(
b/π

sin(b/π)

)2 (1.4)

A time series model with a dependent variable following a Log-Logistic distribution leads to a new
model within the time series class, which is briefly referred to as Log Logistic Auto-Regressive Moving
Average (L-LARMA), similar to the model previously developed by Ferrari, S.L.P, and Cribari-Neto,
for the Beta distribution [7], [13]. Prior to this paper, many others paved the way for how we have
walked and came to the idea. To name a few, we can mention the papers [3], [8], and [4]. Regarding
this type of time series, one can refer to the framework definition for non-Gaussian time series models.
Generalized dynamic time series models with an exponential family distribution have been fitted [10],
[8].
The Kumaraswamy Autoregressive Moving Average (KARMA) models within the class of truncated
time series and possessing a Kumaraswamy distribution (a generalized Beta distribution), have also
been fitted [2]. The Gamma autoregressive model has been introduced with a specific type of station-
ary Gamma process [16]. The modified quasi-Newton mehod was propoed for solving the nonlinear
equation F(x)=0, which is based on a new quasi-Newton aooroach [18]. A natural generalization of the
ARCH (Autoregressive Conditional Heteroskedastic) prossess to allow for past conditional variances
was proposed [5].
Discussed a quasi-likelihood (QL) approach to regression analysis with time series data [19]. Further-
more, a closed-form for the moments of the non-central Gamma distribution with long-term memory
retention properties has been obtained [9].
The framework for our discussion is the LLARMA model described in Section 2. Estimation of model
parameters is discussed using the conditional likelihood method and building confidence intervals and
hypothesis testing are considered and deals with the description of the diagnostic analysis and fore-
casting in Section 3. The proposed model is evaluated using the simulation and real data of the stock
index in Section 4. Conclusions for the introduced model are presented, as well as a simulation and
case study of stock market data in Section 5.

2. Autoregressive Moving-Average Model with Log-Logistic Distribution (L-LARMA)

2.1. The model

Assuming that {yt} for t = 1, 2, ..., n is a non-negative stochastic process yt ≥ 0 with probability 1
and the set Ft−1 = σ{yt−1, yt−2, . . . }, be a sigma-field that is y1, y2, . . . , yt−1 are measurable and the
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conditional distribution of each yt given the prior information set Ft−1 = σ{yt−1, yt−2, . . . } follows a
Log-Logistic distribution with parameters a and b.
According to the definition of the sigma field and distribution of the process {yt} and introducing new
parameters into the conditional distribution as Yt | Ft−1 ∼ Log-Logistic(µ̃t,Φ) it has a Log-Logistic
distribution with parameters µ̃t = a and Φ = b.
The conditional density function is defined as follows:

fµ̃t(yt | Ft−1) =
Φ
µ̃t

( yt
µ̃t

)Φ−1(
1 + ( yt

µ̃t
)Φ

)2 µ̃t ≥ 0, Φ ≥ 0. (2.1)

The function g(·) is defined as a link function that maps from the interval (0,1) to R (g : (0, 1)→ R
or g−1 : R → (0, 1)), with functions such as logit or probit and log-log. In general, the Log-Logistic
Autoregressive Moving-Average (L-LARMA) model is defined as below:

ηt = g(µ̃t) = x′tβ + τt (2.2)

where β = (β1, β2 . . . , βk)′ is a set of unknown linear parameters and τt is the autoregressive moving-
average component of the model.
In general, an ARMA process of order p and q is represented by τt

τt = α +

p∑
i=1

ϕiξt−i +

q∑
j=1

θ jrt− j + rt (2.3)

where ϕi and θ j are the unknown Autoregressive and moving-average parameters, respectively α ∈ R
is constant value, and rt is the random error component.
The ARIMA models can be used to produce forecasts for time series data and have three parts. Not
all parts are always necessary, but it depends on the type of time series data at hand. The three parts
are the autoregressive (AR), the integrated (I) and lastly, the moving average (MA). Assumption for
the AR part of a time series data is that the observed value depends on some linear combinations of
previous observed values up to some maximum lags, plus an error term. Assumption for the MA part
of time series data is that the observed value is a random error term plus some linear combinations of
previous random error terms up to some maximum lags [6]. Using the σ-algebra Ft−1 and not defining
rt in it, then E(rt | Ft−1) = 0 holds, and based on this conditional expectation, the ARMA part of the
model in (2.3) is introduced as (2.4) :

τt = α +

p∑
i=1

ϕiξt−i +

q∑
j=1

θ jrt− j (2.4)

where ξt−i for i > 0 is measurable in Ft−1 and E(ξt | Ft−1) ≈ τt.
Based on the relation (2.2), ξt−i = g(yt−i) − x′t−iβ, and by subsittuting in (2.4), the result is:

τt = α +

p∑
i=1

ϕi(g(yt−i) − x′t−iβ) +
q∑

j=1

θ jrt− j (2.5)

Considering (2.2) and (2.5), the Log-Logistic Autoregressive Moving-Average (L-LARMA(p, q))
model is introduced by (2.1) and (2.6)

ηt = g(µ̃t) = α + x′tβ +
p∑

i=1

ϕi(g(yt−i) − x′t−iβ) +
q∑

j=1

θ jrt− j (2.6)
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2.2. The Consistency and Error

In this model, the error is scaled based on the moving-average part and in the sigma field Ft, Two
methods are introduced for determining model errors: the first method uses the original values of the
variable rt = yt − µt and the second method uses the forecast function, i.e., rt = g(yt) − g(µt)

In the first case, for errors E(yt − µt | Ft−1) = 0 and Var(yt − µt) = δµ̃t
2, and in the special case

E(yt − µt) = 0 results, and also for every i < j, E(yi − µi)(y j − µ j) = E(yi − µi)E((y j − µ j) | Ft−1)) = 0.
It is concluded that the errors are orthogonal.

2.3. The Sensitivity to Outliers

In statistical analysis as well as in time series, the issue of outlier data is of particular importance.
Although the outlier data is a sign of the reality of the data and the event, unfortunately, in statistical
analysis, they cause errors and biased estimates of parameters. Various ways to make this data less
effective or ineffective have been proposed, including deleting or replacing it with other data. But
another way to solve this problem is to use the median index instead of the mean. Using the median has
the advantage that even if there are outlier data, it as does not affectthe estimation of model parameters.

3. Estimation of L-LARMA Model Parameters

The model parameters are estimated based on the conditional maximum likelihood method. Con-
sidering the model structure, the parameter vector of the model is introduced as γ = (α, β′, ϕ′, θ′,Φ)′

where β = (β1, β2, . . . , βk)′ , ϕ = (ϕ1, ϕ2, . . . , ϕp)′ are the parameter vectors of the autoregressive part of
the model, and θ = (θ1, θ2, . . . , θq)′ is the parameter vector of the moving-average part of the model.

Note: The use of the conditional maximum likelihood method for the first m observations must be
defined as m = max{p, q}, and for the first m observations, the errors are assumed to be nearly zero.
Also, in the autoregressive and moving-average parts, since m = max{p, q} and q ≤ m, the first q errors
are equal to zero.

3.1. Estimation of Parameter Vector

The logarithm of the likelihood function is defined as follows:

log( fµ̃t(yt | Ft)) = lt(µ̃t,Φ)

= logΦ − log µ̃t + (Φ − 1)(log yt − log µ̃) − 2 log
(
1 + (

yt

µ̃t
)
Φ
)

(3.1)

Where l =
∑n

t=m+1 lt(µ̃t,Φ) is the conditional likelihood function.
The parameters vector is of the form Λ = (α, βl, ϕi, θ j,Φ), and the derivative concerning each of the
parameters λk ∈ Λ is shown as:

∂l
∂λk
=

n∑
t=m+1

∂lt(µ̃t, ϕ)
∂µ̃t

∂µ̃t

∂ηt

∂ηt

∂λk
(3.2)

Given that ηt = g(µt), it can be shown that:

∂µt

∂ηt
= 1/
∂ηt

∂µt
=

1
g′(µt)

(3.3)
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Theorem 1. The partial derivative of the likelihood function is equal to ∂lt(µ̃t ,Φ)
∂µ̃t

= Φ
µ̃t

yΦt −µ̃t
Φ

yΦt +µ̃t
Φ

Proof. Using (3.1):

log( f (yt | Ft−1)) = logΦ − log µ̃t + (Φ − 1)
(
log yt − log µ̃t

)
− 2 log(1 +

(
yt

µ̃t

)Φ
).

∂lt (µ̃t,Φ)
∂µ̃t

= −
1
µ̃t
−
Φ

µ̃t
+

1
µ̃t
+

2Φ( yt
µ̃t

)Φ

µ̃t(1 +
(

yt
µ̃t

)Φ
)

=

−Φ

((
yt
µ̃t

)Φ
+ 1

)
+ 2Φ

(
yt
µ̃t

)Φ
µ̃t(1 +

(
yt
µ̃t

)Φ
)

=
Φ(

(
yt
µ̃t

)Φ
− 1)

µ̃t(1 +
(

yt
µ̃t

)Φ
)

=
Φ(yΦt − µ̃Φt )
µ̃t(yΦt + µ̃Φt )

=
Φ

µ̃t

yΦt − µ̃Φt
yΦt + µ̃Φt

.

□

Considering (3.2), (3.3), and using Theorem1, we have:

∂l
∂λ
=

n∑
t=m+1

Φ

µ̃t

yΦt − µ̃t
Φ

yΦt + µ̃t
Φ

1
g′t(µt)

∂ηt

∂λk
. (3.4)

We define simple original scale error using rt = yt − µt, so that we can put rt in (2.6) for ∂ηt
∂λk

leads to
(3.4).
Since the values are non-negative in the log-Logistic distribution, the absolute values of the residuals
are used for parameter estimation. This change in the least squares error estimation does not cause any
issues because in the error squared, there is no difference in the sign of the residuals, and the goal is to
determine the least squares error. Accordingly, in this article, the fitted models use the absolute values
of the residuals

Theorem 2. In the Log-Logistic ARMA process, the estimate for each of the parameters are as follows:

∂l
∂α
= U(α) = 1′TC,

∂l
∂βl
= U(β) =M′TC,

∂l
∂ϕi
= U(ϕ) = N′TC,

∂l
∂θ j
= U(θ) = R′TC,

∂l
∂Φ
= U(Φ) =

n∑
t=m+1

1
Φ
−

yΦt − µ̃t
Φ

yΦt + µ̃t
Φ

log(
yt

µ̃t
).

where

g(µ̃t) = a + x′tβ +
p∑

i=1

ϕi(g(yt−i) − x′t−iβ) +
q∑

j=1

θ jrt− j

ct =
yΦt − µ̃Φt
yΦt + µ̃Φt

, C = (Φcm+1,Φcm+2, . . . ,Φcn)′(n−m)×1
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T = diag
{

1
g′(µm+1)

,
1

g′(µm+2)
, . . . ,

1
g′(µn)

}
(n−m)×(n−m)

M =

xtl −

p∑
i=1

ϕix(t−i)l


(n−m)×(k)

N =
{
g(yt−i) − x′t−iβ

}
(n−m)×(p)

R =
{
rt− j

}
is matrix with dimension (n − m) × q

Proof.

ηt = g(µ̃t) = a + x′tβ +
p∑

i=1

ϕi(g(yt−i) − x′t−iβ) +
q∑

j=1

θ jrt− j,

log( fµ̃t(yt | Ft)) = lt(µ̃t,Φ)

= logΦ − log µ̃t + (Φ − 1)(log yt − log µ̃t) − 2 log
(
1 + (

yt

µ̃t
)
Φ
)
,

l =
n∑

t=m+1

lt(µ̃t,Φ),

∂l
∂λk
=

n∑
t=m+1

Φ

µ̃t

yΦt − µ̃Φt
yΦt + µ̃Φt

1
g′(µt)

∂ηt

∂λk
, λk ∈ {α, βl,Φi, θ j,Φ}.

For parameter a :

∂ηt

∂a
= 1 +

q∑
j=1

θ j
∂

∂a
(yt− j − µ̃t− j),

∂l
∂a
=

n∑
t=m+1

Φ

µ̃t

yΦt −µ̃Φt
yΦt + µ̃Φt

1
g′(µt)

∂ηt

∂a
,

ct =
yΦt − µ̃Φt
yΦt + µ̃Φt

, C = (Φcm+1,Φcm+2, . . . ,Φcn)′(n−m)×1,

T = diag
{

1
g′(µm+1)

,
1

g′(µm+2)
, . . . ,

1
g′(µn)

}
(n−m)×(n−m)

,

U(a) =
∂l
∂a
=

n∑
t=m+1

Φ

µ̃t

yΦt − µ̃Φt
yΦt +µ̃Φt

1
g′(µt)

∂ηt

∂a
=1′TC.

For parameter βl :

∂ηt

∂βl
= xtl −

p∑
i=1

ϕix(t−i)l,

U(β) =
∂l
∂βl
=

n∑
t=m+1

Φ

µ̃t

yΦt − µ̃Φt
yΦt + µ̃Φt

1
g′(µt)

∂ηt

∂βl
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=

n∑
t=m+1

Φ

µ̃t

yΦt − µ̃Φt
yΦt + µ̃Φt

1
g′(µt)

(xtl −

p∑
i=1

ϕix(t−i)l) =M′TC,

M =

xtl −

p∑
i=1

ϕix(t−i)l

 is matrix with dimension (n − m) × k.

For parameter ϕi :

∂ηt

∂ϕi
= g(yt−i) − x′t−iβ,

U(ϕ) =
∂l
∂ϕi
=

n∑
t=m+1

Φ

µ̃t

yΦt − µ̃Φt
yΦt + µ̃Φt

1
g′(µt)

∂ηt

∂ϕi

=

n∑
t=m+1

Φ

µ̃t

yΦt − µ̃Φt
yΦt + µ̃Φt

1
g′(µt)

(g(yt−i) − x′t−iβ) = N′TC,

N =
{
g(yt−i) − x′t−iβ

}
is a matrix with dimension (n − m) × p.

For parameter θ j :

∂ηt

∂θ j
= rt− j,

U(θ) =
∂l
∂ϕi
=

n∑
t=m+1

Φ

µ̃t

yΦt − µ̃Φt
yΦt + µ̃Φt

1
g′(µt)

∂ηt

∂θ j

=

n∑
t=m+1

Φ

µ̃t

yΦt − µ̃Φt
yΦt + µ̃Φt

1
g′(µt)

(rt− j) = R′TC,

R =
{
rt− j

}
is matrix with dimension (n − m) × q.

For parameter Φ :

U(Φ) =
∂l
∂Φ
=

n∑
t=m+1

 1
Φ
+ (log yt − log µ̃t) −

(2 log
yt

µ̃t
) −

2 log yt
µ̃t

1 +
(

yt
µ̃t

)Φ



=

n∑
t=m+1

(
1
Φ
+
−(log yt − log µ̃t)(1 + ( yt

µ̃t
)Φ) − log yt + log µ̃t + 2 log yt − 2 log µ̃t

1 + ( yt
µ̃t

)Φ
)

=

n∑
t=m+1

 1
Φ
+ (log yt − log µ̃t)

1 − ( yt
µ̃t

)Φ

1 + ( yt
µ̃t

)Φ


=

n∑
t=m+1

(
1
Φ
+ (log yt − log µ̃t)(

µ̃Φt − yΦt
yΦt + µ̃Φt

)) =
n∑

t=m+1

(
1
Φ
−

(
yΦt − µ̃Φt
yΦt + µ̃Φt

)
log(

yt

µ̃t
)
)
.

□
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The matrix form of the parameter vector is U(γ) = (U(α),U′(β),U′(ϕ),U′(θ),U(Φ))′. The pa-
rameters are estimated using the conditional maximum likelihood method and solving the equation
U(γ) = 0, which can be solved using numerical methods such as Newton’s method and the EM algo-
rithm.
Note that U(γ) = 0 is a matrix equation, a column vector with dimension k + p + q + 2. Hence, condi-
tional maximum likelihood estimates should be obtained by using numerical methods such as Newton
or Quasi-Newton nonlinear optimization or the EM algorithm [18].

3.2. Fisher information matrix

In this section, the Fisher information matrix is calculated. According to Theorem 3, the condition
of the zero derivative of the Fisher information function is established. Therefore, to calculate the
Fisher information matrix, the second derivative of each of the model parameters defined in (3.4) is
used and is shown as follows:

∂2lt(µ̃t,Φ)
∂λi∂λ j

=

n∑
t=m+1

∂

µ̃t

(
∂lt(µ̃t,Φ)
∂µ̃t

∂µ̃t

∂ηt

∂ηt

∂λi

)
∂µ̃t

∂ηt

∂ηt

∂λ j
=

=

n∑
t=m+1

(
∂2lt(µ̃t,Φ)
∂µ̃2

t

∂µ̃t

∂ηt

∂ηt

∂λ j
+
∂lt(µ̃t,Φ)
∂µ̃t

(
∂

µ̃t

(
∂µ̃t

∂ηt

∂ηt

∂λ j

)))
∂µ̃t

∂ηt

∂ηt

∂λ j
.

(3.5)

In general case, the expected value of (3.5) can be shown as:

n∑
t=m+1

E
(
∂2lt (µ̃t,Φ)
∂µ̃2

t
| Ft−1

) (
∂µ̃t

∂ηt

)2
∂ηt

∂λi

∂ηt

∂λ j
. (3.6)

Theorem 3. The condition that the expectation is zero for the first derivative of the Fisher information
function also holds for the probability density.

E
(
∂ f (yt,Φ, µ̃t)
∂µ̃t

)
= 0.

Proof.

∂ f (yt,Φ, µ̃t)
∂µ̃t

=
Φ

µ̃t

(
yΦt − µ̃Φt
yΦt + µ̃Φt

)
= Ct.

let W = yΦt −µ̃Φt
yΦt +µ̃Φt

then FW (w) = P(W ≤ w) = P(yΦt −µ̃Φt
yΦt +µ̃Φt

≤ w),

P
(
yΦt − µ̃

Φ
t ≤ wyΦt + wµ̃Φt

)
= P

(
(1 − w) yΦt ≤ (1 + w) µ̃Φt

)
= P

(
yΦt ≤

1 + w
1 − w

µ̃Φt

)
= P(yt ≤

Φ

√
1 + w
1 − w

|µ̃t|)
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fW(w) is probability density function of W.

fW(w) =
2µ̃t

(
1+w
1−w

) 1
Φ

Φ(1 − w2)

Φ
µ̃t

(
µ̃t( 1+w

1−w )
1
Φ

µ̃t

)Φ−1

(1 +
(
µ̃t( 1+w

1−w )
1
Φ

µ̃t

)Φ
)2

=
2
(

1+w
1−w

) 1
Φ
(

1+w
1−w

)1− 1
Φ

(1 − w2)(1 + 1+w
1−w )2

=
21+w

1−w(
1 − w2) ( 2

1−w )2 =
1
2
.

fW(w) = 1
2 for −1 < w < 1 so that E (W) = 0 or E

(
yΦt −µ̃Φt
yΦt +µ̃Φt

)
= 0 or E(Ct) = 0

E
(
∂ f (yt,Φ, µ̃t)
∂µ̃t

)
= 0.

□

Using Theorem 3, relation (3.6) can be expressed as follows:(refer to Theorem 4)

E
(
∂2lt (µ̃t,Φ)
∂µ̃2

t
| Ft−1

)
=
Φ2

2µ̃2Φ
t
−

3µ̃Φt − 2

µ̃Φ/2t

= wt (3.7)

Theorem 4. In the Log-Logistic Autoregressive Moving-Average model, the relation (3.7) is estab-
lished.

Proof.

E
(
∂2lt (µ̃t,Φ)
∂µ̃2

t
| Ft−1

)
= E

(
Φ2µ̃Φ−2

t

yΦt + µ̃Φt

)
− E

(
yΦt − µ̃Φt
yΦt + µ̃Φt

)
+ E

Φ2µ̃Φ−2
t (yΦt − µ̃

Φ
t )

(yΦt + µ̃Φt )2


Let W = 1

yΦt +µ̃Φt
. So that, P(W ≤ w) = P( 1

yΦt +µ̃Φt
≤ w) and P(yΦt ≥

1−wµ̃Φt
w ) = 1 − P(yt ≤

Φ

√
1−wµ̃Φt

w )

fW(w) =
−

(
wµ̃Φt −1

w

) 1
Φ
−1

Φw2

Φ
µ̃t

(

(
1−wµtΦ

w

) 1
Φ

µ̃t
)Φ−1

(1 +

(
1−wµ̃Φt

w

) 1
Φ

µ̃t
)2

= −µ̃t
Φ

fW(w) = µ̃Φt , 0 ≤ w ≤
1
µ̃Φt
, E(W) =

1
2µ̃t

2Φ

To prove that E
(
Φ2µ̃Φ−2

t (yΦt−µ̃
Φ
t )

(yΦt +µ̃Φt )2

)
=

3µ̃Φt −2

3µ̃
Φ
2

t

, let W = yΦt −µ̃Φt
(yΦt +µ̃Φt )2 = 1 − 2µ̃Φt

(yΦt +µ̃Φt )2 , so

P(W ≤ w) = P

1 − 2µ̃Φt
(yΦt + µ̃Φt )2 ≤ w

 = 1 − P

 2µ̃Φt
(yΦt + µ̃Φt )2 ≤ 1 − w


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P

 2µ̃Φt
(yΦt + µ̃Φt )2 ≤ 1 − w

 = P


√

2µ̃
Φ
2
t

yΦt + µ̃Φt
≤
√

1 − w


= P

(√
2µ̃

Φ
2
t ≤ yΦt

√
1 − w + µ̃Φt

√
1 − w

)
= P

yΦt ≤
√

2µ̃
Φ
2
t

√
1 − w

− µ̃Φt

 = P

yt ≤


√

2µ̃
Φ
2
t

√
1 − w

− µ̃Φt


1
Φ

 .

fW(w) =
µ̃
Φ
2
t

2
√

2(1 − w)
, 1 −

2
µ̃Φt
≤ w ≤ 1, E (W) = 2

√
2
µ̃Φt
−

2
3

√
(

2
µ̃Φt

)
3

E

Φ2µ̃Φ−2
t (yΦt − µ̃Φt )

(yΦt + µ̃Φt )2

 = E
(
Φ2µ̃Φ−2

t W
)
=

3µ̃Φt − 2

3µ̃
Φ
2
t

E
(
yΦt − µ̃Φt
yΦt + µ̃Φt

)
= 0

E
(
∂2lt (µ̃t,Φ)
∂µ̃2

t
| Ft−1

)
=
Φ2

2µ̃2Φ
t
−

3µ̃Φt − 2

µ̃Φ/2t

= wt.

□

Based on (3.6) and (3.7), the conditional Fisher information matrix is defined as follows:

K(γ) = E
(
∂2lt(µ̃t,Φ)
∂λi∂λ j

| Ft−1

)
= −

n∑
t=m+1

 Φ2

2µ̃2
t
−

3µ̃Φt − 2

µ̃Φ/2t

 1
g′(µ̃t)

∂ηt

∂λi

∂ηt

∂λ j

=

n∑
t=m+1

wt
∂ηt

∂λi

∂ηt

∂λ j
.

(3.8)

Theorem 5. In the L-LARMA model, the components of the conditional Fisher’s information matrix
are calculated as follows:

Kαα = −tr(W), Kαβ = K′βα = −M′W1, Kαϕ = K′ϕα = −N′W1
Kαθ = K′θα = −R′W1, KαΦ = K′Φα = −tr(DW), Kββ = −MWM
Kβϕ = K′ϕβ = −M′WN, Kβθ = K′θβ = −M′WR, KβΦ = K′Φβ = −M′DW1

Kϕϕ = −N′WN, Kϕθ = K′θϕ = −N′WR, KϕΦ = K′Φϕ = −N′DW1
Kθθ = −R′WR, KθΦ = K′Φθ = −RDW1, KΦΦ = −tr(D2W).

Proof. Note that the matrices, M,N, and R were defined in the Theorem 3, to define matrices D,W
and proving this Theorem ,

∂l
∂λk
=

n∑
t=m+1

Φ

µ̃t

yΦt − µ̃Φt
yΦt + µ̃Φt

1
g′(µt)

∂ηt

∂λk
=

n∑
t=m+1

wt
∂ηt

∂λk
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ηt = g(µ̃t) = a + x′tβ +
p∑

i=1

ϕi(g(yt−i) − x′t−iβ) +
q∑

j=1

θ jrt− j

Kαα = E(
∂2l
∂α2 ) = −

n∑
t=m+1

wt
∂ηt

∂α

∂ηt

∂α
= −

n∑
t=m+1

wt = −tr(W)

Kαβ = K′βα = E(
∂2l
∂α∂β

) = −
n∑

t=m+1

wt
∂ηt

∂α

∂ηt

∂β

= −

n∑
t=m+1

wt(xtl −

p∑
i=1

ϕix(t−i)l) = −M′W1.

Kαϕ = K′ϕα = E(
∂2l
∂α∂ϕ

) = −
n∑

t=m+1

wt
∂ηt

∂α

∂ηt

∂ϕ
= −

n∑
t=m+1

wt(g(yt−i) − x′t−iβ) = −N′W1.

Kαθ = K′θα = E(
∂2l
∂α∂ϕ

) = −
n∑

t=m+1

wtrt− j = −R′W1.

KαΦ = K′Φα = E(
∂2l
∂α∂Φ

) = −
n∑

t=m+1

wt

−ΦµΦ−1
t (log µt)y−Φt + µ

Φ−1
t (Φ log(yt) − 1) + 1

µt

2g′(µt)

= −

n∑
t=m+1

wtdt = −tr(DW).

Kββ = E(
∂2l
∂β2 ) = −

n∑
t=m+1

wt
∂ηt

∂β

∂ηt

∂β

= −

n∑
t=m+1

wt

xtl −

p∑
i=1

ϕix(t−i)l

 xtl −

p∑
i=1

ϕix(t−i)l

 = −M′WM.

Kβϕ = K′ϕβ = E(
∂2l
∂β∂ϕ

) = −
n∑

t=m+1

wt
∂ηt

∂β

∂ηt

∂ϕ

= −

n∑
t=m+1

wt

xtl −

p∑
i=1

ϕix(t−i)l

 (g(yt−i) − x′t−iβ) = −M′WN.

Kβθ = K′θβ = E(
∂2l
∂β∂θ

) = −
n∑

t=m+1

wt
∂ηt

∂β

∂ηt

∂θ

= −

n∑
t=m+1

wt

xtl −

p∑
i=1

ϕix(t−i)l

 rt− j = −M′WR.

KβΦ = K′Φβ = E(
∂2l
∂β∂Φ

) = −
n∑

t=m+1

wt
∂ηt

∂β

∂ηt

∂Φ
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= −

n∑
t=m+1

wt

xtl −

p∑
i=1

ϕix(t−i)l

 dt = −M′DW1.

Kϕϕ = E(
∂2l
∂ϕ∂ϕ

) = −
n∑

t=m+1

wt
∂ηt

∂ϕ

∂ηt

∂ϕ

= −

n∑
t=m+1

wt(g(yt−i) −Kt−iβ)(g(yt−i) − x′t−iβ) = −N′WN.

Kϕθ = K′θϕ = E(
∂2l
∂ϕ∂θ

) = −
n∑

t=m+1

wt
∂ηt

∂ϕ

∂ηt

∂θ
= −

n∑
t=m+1

wt(g(yt−i) −K′t−iβ)rt− j = −N′WR.

KϕΦ = K′Φϕ = E(
∂2l
∂ϕ∂Φ

) = −
n∑

t=m+1

wt
∂ηt

∂ϕ

∂ηt

∂Φ
= −

n∑
t=m+1

wt(g(yt−i) − x′t−iβ)rt− jdt = −N′DW1.

Kθθ = E(
∂2l
∂θ2

) = −
n∑

t=m+1

wtr2
t− j = −R′WR.

KθΦ = K′Φθ = E(
∂2l
∂θ∂Φ

) = −
n∑

t=m+1

wtdtrt− j = −RDW1.

KΦΦ = E(
∂2l
∂Φ2 ) = −

n∑
t=m+1

wtd2
t = −tr(D2W).

□

All model parameters, it is calculated, and the conditional Fisher information matrix is formed as
follows (see Theorem 5).

K(γ) =


Kαα K′βα K′ϕα K′θα K′

Φα

Kαβ Kββ K′ϕβ K′θβ KΦβ
Kαϕ Kβϕ Kϕϕ K′θϕ K′

Φϕ

Kαθ Kβθ Kϕθ Kθθ K′
Φθ

KαΦ KβΦ KϕΦ KθΦ KΦΦ


(k+p+q+2)×(k+p+q+2)

(3.9)

Based on the common conditions in the maximum likelihood method, for large samples, it follows a
Normal distribution [2] therefore , we have:

γ̂ ∼ Nk+p+q+2(γ,K−1). (3.10)

Where γ̂ = (α̂, β̂,ϕ̂, θ̂,Φ̂)′ is the vector of estimated model parameters by the conditional maximum
likelihood estimation (CMLE) method, respectively for α, β, ϕ, θ,Φ.

3.3. The confidence interval and hypothesis testing

In this model, assuming that and based on what was said in the previous section if i-the element
from the parameter vector γ and Ki j(γ) is equal to the element of row i and column j of the matrix K−1

we have:
γ̂i − γi√
Ki j (γ̂)

D
→N(0, 1) (3.11)
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Moreover, for large samples, a confidence interval for γi is follows:

γ̂i − z1−α/2

√
Kii(γ̂)< γi < γ̂i + z1−α/2

√
Kii(γ̂) (3.12)

In the limit and approximately for large samples, the test statistic with known value γ0
i for the parameter

γı̈ for testing H0 : γi = γ
0
i against H1 : γi , γ

0
i is the same as the Wald test.Under H0, the limit

distribution of Z is standard Normal [17].

Z =
γ̂i − γ

0
i√

Ki j(γ̂)
(3.13)

3.4. Model fit and forecast

This section introduces model fit criteria and forecast models. Important indicators of model fit
criteria include Akaike’s Information Criterion (AIC) [1], Bayesian Information Criterion [12], and
Schwarz’s Criterion (SIC) [14]. Residuals are good indicators for detecting model fit. Various types
of residuals are available for different classes of fitted models [11]. Standardized residuals have been
used for the proposed model [8].

Based on the Conditional Maximum Likelihood Estimation(CMLE ) method, estimates
ˆ̃µm+1, ˆ̃µm+2, . . . , ˆ̃µn,can be obtained as forecast steps .

ˆ̃µt = g−1(α̂ + x′tβ̂ +
p∑

i=1

ϕ̂i(g (yt−i) − xt−iβ̂) +
q∑

j=1

θ̂ jrt− j. (3.14)

And rt = g(yt) − g( ˆ̃µt) for t ∈ {m + 1, m + 2, . . . , n} and h = 1, 2, . . . , h0.
In general, for h steps ahead, the forecast model is obtained as follows:

ˆ̃µn+h = g−1(α̂ + x′n+hβ̂ +

p∑
i=1

ϕ̂i(g (yn+h−i) − x′n+h−iβ̂). (3.15)

Where rt = 0 for t > n and we have:

g(yt) =

g( ˆ̃µt), t > n,

g(yt), t ≤ n.

4. Simulation and Modeling of Real Data

4.1. Simulation

Simulated data were created using the method of transforming the Log-Logistic probability distri-
bution function to a Uniform distribution function. The execution and generation of simulated data
were performed using the R software and data modeling in C# software. Considering the introduced
model, in the specific case the LLARMA(0.4,0.3) model with 1000 and 10000 observations, it was
simulated (Figure 1b), and for the known parameters of the model, the parameter estimates were ob-
tained. The results obtained confirm that the estimates are consistent with the parameters, especially in
larger sample sizes; this consistency is more evident (Table 1).
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Table 1. The estimate of parameters in LLARMA(0.4,0.3) for different size samples

Known parameter Φ = 0.3 α = 0.8 β1 = 2 ϕ1 = 0.4 θ1 = 0.3
n Est.parameter Φ̂ α̂ β̂1 ϕ̂1 θ̂1

100
Estimate 0.6032 0.4547 4.9804 0.3024 0.3974

Standard error 0.2154 0.1523 1.2851 0.3722 0.2547

500
Estimate 0.5178 0.8425 3.3564 0.4103 0.3703

Standard error 0.2813 0.3587 1.5241 0.0590 0.0592

1000
Estimate 0.4258 0.6537 3.6987 0.3724 0.3569

Standard error 0.1942 0.2571 1.0024 0.0458 0.0464

5000
Estimate 0.3690 0.7021 3.0870 0.4138 0.2926

Standard error 0.1764 0.3458 1.2175 0.0206 0.0218

10000
Estimate 0.2894 0.7908 2.2501 0.3974 0.3094

Standard error 0.1005 0.3054 0.9857 0.0144 0.0217
Box-Ljung test X squared = 0.02726 p value = .868

Additionally, in addition to conjunction with tests, estimates, and goodness-of-fit measures, the
structure and cumulative frequency plot can also confirm the fitted model. The Ljung-Box test is used
to check if residuals from a time series model exhibit serial correlation (autocorrelation). It assesses
whether the model has adequately captured the data’s structure or if there’s remaining autocorrelation
in the residuals, indicating a potential lack of fit. Essentially, it tests if the residuals behave like white
noise. It is observed that in this model, the simulation results from the LLARMA(1,1) series, where
the dependent variable follows the log-logistic distribution, are observed (Figure 1).
In large sample sizes, the accuracy of the estimate is higher, indicating the consistency of the model
parameter estimates. Especially in the case of the 10000 sample size, there is no significant difference
between the parameter estimates and the exact parameter values (Table 1).
One of the preliminary criteria for model identification is the observation and examination of the au-
tocorrelation coefficient and the partial autocorrelation coefficient, which this model, considering the
structure and simulation from the LLARMA(1,1) series these two indices adequately indicate the accu-
racy of the simulation and the desirable estimation of the model parameters for a sample with a volume
of 10,000 (Figure 2).
The aim of efficiency and superiority of the proposed LLARMA model, and comparison to ARMA
model with Normal distribution two simulations. Although the loglikelihoods index in both models
are nearly same, but according to the BIC index, the LLARMA model has been optimized (Table 2).

Table 2. The estimation of parameters in LLARMA(1,1)(Log-Logistic ARMA) and
ARMA(1,1)(Normal) for n=10000

Known parameter Φ = 0.3 α = 0.8 β1 = 2 ϕ1 = 0.4 θ1 = 0.3 log likelihood
Distribution Est. parameter Φ̂ α̂ β̂1 ϕ̂1 θ̂1 BIC

LLARMA(1,1)
Estimate 0.2894 0.7908 2.2501 0.3974 0.3094 -14228.06

Standard error 0.1005 0.3054 0.9857 0.0144 0.0217 24357.37

ARMA(1,1)
Estimate 0.4130 0.2829 -14092.44

Standard error 0.0146 0.0155 28192.87
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(a) n = 1000 (b) n = 10000

Figure 1. Cumulative frequency chart of the simulated LLARMA(1,1) series for samples of
1000 and 10000.

(a) ACF of Data (b) PACF of Data

(c) ACF of Residuals (d) PACF of Residulas

Figure 2. Autocorrelation and partial autocorrelation chart of the simulated LLARMA(1,1)
series for data and residuals in a sample with a volume of 10,000

4.2. Application in Modeling and Forecasting of the Overall Stock Market Index

One of the important indicators of the stock market is the overall stock index. This index, also
known as the price and cash return index, actually shows whether, on average, the price of stocks and
cash dividends in the securities exchange has decreased or increased. Modeling and forecasting this
index are of special importance in determining the condition of the stock market of any country. Con-
sidering the growth trend of this index in recent years and referring to the charts related to the growth
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or changes of this index, and drawing the cumulative frequency chart and its probability distribution,
the assumption of its normality is weak, and it may deviate from the Normal distribution and follow
other distributions. One of them, which is used in economic issues, is the Log-Logistic distribution,
from which, for example, the Gini coefficient index is calculated.

(a) Total Stock Exchange Index (b) Cumulative Frequency

(c) Log of the Total Stock Index
(d) Diff Log of the Total Stock In-
dex

Figure 3. Functions applied to the total stock market index

The data used in this research are the overall index of the Tehran Stock Exchange in Iran from
April 2008 to July 2022, which has been collected and extracted weekly from the Iran Stock Exchange
information website.The trend of the data shows a nonlinear pattern of the stock index during the
research period. (Figure 3a); the cumulative probability distribution function also shows a structure
other than the Normal distribution, and the structure and form of the chart graphically resemble the
cumulative distribution of the Log-Logistic distribution to a great extent. (Figure 3b).

Considering the time series chart of the overall stock index, the non-stationarity in the mean is
apparent; therefore, by using logarithm operators and differencing once, the non-stationary series in
the mean has been transformed into a stationary series (Figures 3c and 3d). Autocorrelation and partial
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autocorrelation indices of the data (Figure 4a and 4b) and transformed by using logarithm operators
and differencing once of the overall stock market index, were determined.(Figure 4c and 4d). Also,
according to ACF and PACF in Figure 4c and 4d, model LLARIMA(2,2) can be considered suitable.

Residual’s plot, ACF and PACF of residuals of model (LLARIMA(2,2) indicate that the fitted model
has maintained the goodness of fit criteria (Table 3, Table 4 and Figure 5).

Noteworthy, since the values of the Log-Logistic distribution are only non-negative data, negative
values are createdin logarithmic transformations and differencing. To resolve this issue, the absolute
function is applied to negative values.

The model fitting on the observations with logarithmic transformation and the estimation of model
parameters using numerical methods based on the conditional likelihood method, particularly the
Newton-Raphson method, were obtained. The resulting model is optimized and unique. Given the
structure of the Log-Logistic Autoregressive Moving-Average model, besides the overall stock index,
which serves as an auxiliary dependent variable in the model, the overall industry index is included as
another important index as an independent variable in the model (Table 3). The criterion of stationary
was confirmed, and the presence of a unit root was rejected, which favors the appropriateness of the
model (Table 4). Related to the autocorrelation and partial autocorrelation coefficients of the data and
residuals, and also demonstrate the accuracy of the model fit.

After determining and fitting the model to the observations, forecasting is one of the matters of
interest in data analysis and models. In this model, forecasts have also been made for another 100 and
500 times using the forecast function. It should be mentioned that the forecast was calculated after
applying changes and transformations to the original function, and the resulting charts in this regard
show the actual data on the stock index without the need for retransformation (Figure 6).

Table 3. The model fit criteria

Test name Statistics Null hypothesis P-value
Dickey-Fuller -11.223 non-stationary 0.01

Dickey-Fuller-unit root test -37.1407 presence of a unit root 0.000

Table 4. The estimation of parameters of LLARMA(2,2) for the Overall Stock Market Index

MODEL Es/Par Φ̂ α̂ β̂1
Φ = (ϕ1, ϕ2, ..., ϕp) θ = (θ1, θ2, ..., θq)

BIC AIC AICc
ϕ̂1 ϕ̂2 θ̂1 θ̂2

LLARiMA(2,1,2)
Estimate 1.084 11.02 0.0009 0.6672 0.2367 -0.2510 -0.4901

-21383.45 -21420.04 -21420.01
Standard error 0.034 0.095 0.05 0.069 0.0494 0.0666 0.0335

5. Conclusions

In time series analysis, the assumption of normality of residuals does not always hold; they may fol-
low other distributions. This issue makes the analysis of non-Gaussian series of interest to researchers.
Another important matter is the nature of the data and the pattern and probability distribution of data
in different subjects, which may not follow conventional patterns or models in time series analysis. In
analyzing stock market data, especially the overall index, it is clear from the cumulative probability
distribution chart that it does not follow a Normal distribution and shows a considerable match with the
Log-Logistic distribution. Therefore, with this resemblance, the time series model, assuming that the
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(a) ACF of Total Stock Index (b) PACF of Total Stock Index

(c) ACF of Diff Log of the Total
Stock Index

(d) PACF of Diff Log of the Total
Stock Index

Figure 4. Chart of autocorrelation (ACF) and partial autocorrelation (PACF) for the raw total
stock index and for the first-difference of its logarithm.

dependent values of the time series follow the Log-Logistic distribution, the new model introduced in
this research was fitted to the data of the overall stock market index. The forecasts made by this model
for the overall stock index are accurate and closely match the actual value of the index.
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(a) Standardized Diff Log of the
Total Stock Index

(b) Residual’s plot

(c) Residual’s ACF (d) Residual’s PACF

Figure 5. ACF and PACF of Residuals plot
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(a) Forecast for 100 future periods
by stationary model

(b) Forecast for 500 future peri-
ods by stationary model

(c) Forecast for 100 future peri-
ods by original data

(d) Forecast for 100 future peri-
ods by original data

Figure 6. Forecast of the overall stock market index for 100 and 500 future periods (days).
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