

IJT’2025, Vol.05, Issue 02. https://ijt.journals.ekb.eg

Profit Maximization of Offloading Tasks for Mobile Edge

Computing in C-RAN Using Ant Colony Algorithm

Sherif M. Aboul 1*, Hala M.Abd El Kader2, Esraa M.Eid3, Shimaa S.Ali4.

*1Communication Department, Faculty of Engineering at Shoubra, Benha

University, Electrical Department, Faculty of Engineering, MTI University,

Cairo, Egypt. s.elsayed69233@feng.bu.edu.eg
2Communication Department, Faculty of Engineering at Shoubra, Benha

University, Cairo, Egypt. hala.mansour@feng.bu.edu.eg
3Communication Department, Faculty of Engineering at Shoubra, Benha

University, Faculty of Computer Science, Benha National University, Cairo,

Egypt. esraa.soliman@feng.bu.edu.eg
4Communication Department, Faculty of Engineering at Shoubra, Benha

University, Cairo, Egypt. shimaa.salama@feng.bu.edu.eg

Abstract: Mobile Edge Computing (MEC) is vital for next-generation low-latency ser-

vices, enabling resource-constrained mobile devices to offload intensive tasks to

cloud-based infrastructure. This reduces energy consumption and latency, making MEC

a key component of future mobile networks. Utilizing the Cloud-Radio Access Network

(C-RAN) architecture, which integrates Baseband-Units (BBU) with MEC servers and

Remote-Radio-Heads (RRHs), complex tasks are executed closer to users, improving

service quality and creating new revenue streams for network operators. This paper

examines computational offloading profitability from a network operator’s perspective.

The offloading process involves optimizing radio and computational resources, posing a

non-deterministic polynomial-time (NP) hard problem. To address this complexity, four

optimization algorithms are evaluated: Ant-Colony Optimization (ACO), Nor-

mal-Genetic-Algorithm (NGA), Fast-Genetic-Algorithm (FGA), and Modified Spectrum

Efficiency-Based Joint Optimization for Offloading and Resource-Allocation (Modified

SJOORA). ACO, inspired by ant behavior, seeks optimal paths, while NGA and FGA

simulate natural selection, with FGA offering faster convergence. Modified SJOORA is

designed to optimize resource-allocation in MEC environments. The study compares

these algorithms under various conditions to identify the most effective for profit maxi-

mization. Additionally, a novel approach reduces computational time by using a strate-

gically seeded population and regression-based machine learning to estimate re-

source-allocation, maintaining accuracy while enhancing efficiency.

Keywords: Profit Maximization; Resource Allocation; Cloud Radio Access Network;

Mobile Edge Computing; Optimization Algorithms.

1. Introduction

The increasing computational demands on mobile devices, particularly from advanced multimedia applications

like online gaming, present significant challenges for the industry. As these applications require ever-greater

processing power, they contribute to faster battery depletion in user equipment (UE). However, consistent

anual advancements in battery capacity offer some mitigation for these challenges [1]. Mobile computing is

presently challenged by two major issues: narrow wireless bandwidth and insufficient battery capacity. These

Citation: Aboul, S.; Abd El Kader, M., Eid E.,
Ali, S.
Inter. Jour. of Telecommunications, IJT’2025, Vol.

05, Issue 02, pp. 1-23, 2025.

Doi: 10.21608/ijt.2025.399953.1123

Editor-in-Chief: Youssef Fayed.

Received: 29/07/2025.

Accepted date: 10/09/2025.
Published date: 10/09/2025.

Publisher’s Note: The International Journal

of Telecommunications, IJT, stays neutral

regarding jurisdictional claims in published

maps and institutional affiliations.

Copyright: © 2025 by the authors. Submitted

for possible open access publication under

the terms and conditions of the International

Journal of Telecommunications, Air Defense

College, ADC, (https://ijt.journals.ekb.eg/).

mailto:s.elsayed69233@feng.bu.edu.eg
mailto:hala.mansour@feng.bu.edu.eg
mailto:esraa.soliman@feng.bu.edu.eg
mailto:shimaa.salama@feng.bu.edu.eg
https://ijt.journals.ekb.eg/

IJT’2025, Vol.05, Issue 02. 2 of 23

limitations influence how systems are architected, how efficiently they operate, and how end-users interact

with their devices and digital services. A promising approach to manage energy constraints is offloading, which

can effectively help reduce energy consumption [2]. Two primary offloading strategies have been identified.

The first involves an UE decision-making process to determine Whether task offloading offers energy savings

can be evaluated by contrasting the power consumption of executing tasks locally with that of transmitting the

data to an edge computing server [3]. A second method adopts a centralized controller that utilizes Chan-

nel-State-Information (CSI) and comprehensive task details from all associated devices, and employs a

task-partitioning framework to select UEs for task offloading [3]. This controller also integrates a joint optimi-

zation approach to manage energy consumption, delay, and additional resource constraints [4,5]. Cloud-Radio

Access Network (C-RAN) and Mobile-Edge-Computing (MEC) are two emerging cloud technologies expected

to be essential in supporting future services for UEs. The C-RAN framework adopts a distributed architecture,

where a centralized Baseband Unit (BBU) pool is paired with several Remote-Radio-Heads (RRHs) to manage

radio access functions. In contrast, MEC is designed to provide computational resources closer to the network

edge, thereby enhancing processing capabilities near UEs. Together, these solutions support the delivery of

advanced applications and services to mobile devices. In a typical C-RAN setup, the main computational tasks

are handled within the centralized BBU pool, while RRHs act as intermediaries, transmitting signals between

BBUs and mobile users over the radio spectrum, with bidirectional communication. This setup allows for effi-

cient interference management and cancellation through coordinated processing among BBU pools [6]. Addi-

tionally, UEs can offload computation-heavy tasks to nearby edge servers [7], which are generally situated near

the BBU pool. By transferring computational workloads to external edge resources, this approach reduces en-

ergy usage on mobile devices. However, as the network grows in size, maintaining energy efficiency becomes

more computationally intensive. Consequently, a distributed multi-cell MEC optimization strategy is being

considered to address these demands [8]. MEC servers, deployed at the edge of the mobile network within Base

Stations (BSs) [9], utilize the computational and storage resources of the BBU pool. This setup benefits from the

close proximity of RRHs to mobile users within a C-RAN framework. Previous studies have examined the in-

teraction and combined potential of MEC and C-RAN architectures, revealing promising synergies for en-

hanced service efficiency and resource management.

ACO is a bio-inspired metaheuristic algorithm that mimics the foraging behavior of ants to solve optimization

problems. It relies on pheromone trails to iteratively identify and refine high-quality solutions. This approach

has been widely adopted in computational systems for tackling resource-allocation, scheduling, and routing

tasks due to its efficiency and adaptability. In 5G C-RAN environments, ACO effectively addresses the chal-

lenges of resource-allocation and task scheduling by optimizing user demand distribution across network

components. The algorithm operates by modeling resource-allocation as a multi-objective optimization prob-

lem, balancing network performance metrics like execution time and profit. Ants explore potential solutions

based on probabilistic transitions guided by pheromone intensity and heuristic information, which are influ-

enced by factors like computational capacity and network latency. ACO’s capacity to respond flexibly to

changing environments makes it especially effective for handling large-scale optimization tasks in edge com-

puting and 5G systems. Its integration with machine learning and hybrid optimization methods further en-

hances its potential to meet stringent real-time requirements, ensuring efficient resource utilization and reduced

latency. This capability positions ACO as a critical tool for optimizing task processing in modern, time-sensitive

communication systems [10].

where Yuyi et al. [2] present a detailed review of MEC, with a focus on optimizing resource-allocation and

tackling computational challenges associated with energy efficiency and latency reduction [11]. Their work

encompasses both theoretical advancements and practical methodologies. Vambe et al. [12] introduced an

MC-RAN-based solution aimed at enhancing the assignment of virtual machines (VMs) to reduce energy use in

a mobile cloning environment. He et al. [13] presented an approach involving the advance loading of task data

to lower power consumption during the processing of client operations. Acheampong et al. [14] integrated

C-RAN with MEC, focusing on the power-performance tradeoff to enhance Mobile Service Provider (MSP)

revenue through coordinated resource-allocation, while acknowledging associated cost constraints Lei Pan et

al. [15] explored a range of evolutionary and multi-objective approaches for MEC offloading, incorporating a

IJT’2025, Vol.05, Issue 02. 3 of 23

genetic algorithm enhanced by Taguchi optimization techniques. This study introduces the Multi-Objective

Clustering Evolutionary Algorithm (MCEA), which effectively optimizes cost, energy consumption, and dead-

line adherence, demonstrating superior performance compared to previous approaches. Tunga et al. [10] pro-

duces the integration of ACO with the C-RAN model. It focuses on using ACO for optimizing task offloading in

MEC to maximize profit and minimize latency. Ge et al. [16] introduce an Improved-ACO (IACO) for collabo-

rative offloading in MEC, reducing latency and energy consumption compared to traditional methods. Hussein

& Mousa. [17] ACO enhances efficiency by effectively distributing IoT tasks over fog nodes, improving re-

sponse times and load balancing, thus optimizing overall service quality. Xueli An et al. [18] presents an ener-

gy-efficient MEC solution using a two-level ACO and deep deterministic policy gradient (DDPG) framework

for task offloading, ensuring reliable task completion and scalability for IoT demands. It prioritizes energy use

over profit maximization. Leguizamon et al. [19] study adapts ACO for subset problems, enhancing its suita-

bility for tasks like the Knsack Problem by refining pheromone updating and integrating heuristic information.

This approach improves solution quality and stability, extending ACO’s applicability to complex combinatorial

optimization. Fidanova et al. [20] applies ACO to the Multiple Knapsack Problem, enhancing solution quality

through model bias for effective resource-allocation. This approach improves ACO’s adaptability to complex

subset problems. Khan et al. [21] introduce an Integer Linear Programming (ILP) based offloading algorithm for

MEC that allows the selection of execution modes between local execution and offloading task for devices. This

approach optimizes performance and low-latency tasks. Guo et al. [22] developed a flexible offloading frame-

work for MEC networks using array signal processing, allowing antennas to execute tasks at nearby computa-

tional access points (CAPs) to optimize costs. Their ACO method effectively reduces system expenses while

addressing computation offloading challenges in mobile devices. Bao et al. [23] introduce an ACO-based

method for efficient computation offloading in mobile cloud computing, enhancing task allocation between

devices and cloud resources while reducing latency and energy consumption. This approach effectively opti-

mizes resource utilization in mobile applications. Wang et al. [24] propose a resource-limited MEC system to

optimize task scheduling for latency-sensitive user equipment, aiming to minimize energy consumption while

maximizing offloaded tasks. They introduce ACO algorithm, Load Balancing ACO (LBA), to effectively address

this multi-objective optimization problem.

Limitations Despite significant advancements in the field, current research presents several limitations.

Firstly, many studies primarily focus on either minimizing energy consumption or optimizing re-

source-allocation, often neglecting the financial aspects that are crucial for mobile network operators. Secondly,

while algorithmic strategies, including the ACO, NGA, FGA and multi-objective techniques, have evolved,

limitations remain in addressing scalability and real time performance in large-scale multi-cell networks. Fi-

nally, many proposed solutions are either too complex for practical implementation or fail to consider the dy-

namics of fluctuating user demands, leading to suboptimal results in real world applications. The contributions

of this manuscript include:

 A proposed approach integrates C-RAN with MEC by utilizing a BBU pool, MEC servers and RRHs.

This approach is designed to optimize the execution of user-intensive tasks, ultimately aiming to en-

hance operational efficiency and maximize profit for network operators.

 This study introduces and evaluates four algorithms—NGA, FGA, Modified SJOORA and

ACO—designed to maximize profit in network operations. These algorithms are utilized in contexts

where decisions about task delegation and coordinated management of processing and wireless com-

munication resources are required. Each algorithm’s performance is assessed to determine its effec-

tiveness in maximizing profitability under different network conditions.

 This study presents solutions employing theNGA FGA, Modified SJOORA, ACO to address the inte-

grated optimization of computation offloading strategies and resource management. To improve the

computational speed of these algorithms, a machine learning-based regression model is applied to es-

timate resource-allocation parameters at each iteration within the evolutionary process. This approach

enhances execution efficiency while ensuring optimal performance across the optimization tasks.

IJT’2025, Vol.05, Issue 02. 4 of 23

 This study presents a distributed optimization framework tailored for multi-cellular MEC systems.

Emphasizing an offloading methodology, this approach is designed to maximize network operator

profitability while addressing key aspects of resource management. Specifically, it provides guidance

on optimizing the use of system resources, distributing network capacity effectively, and increasing

operational revenue in edge-based mobile computing platforms. This framework aims to provide ac-

tionable guidelines for balancing computational demands with resource availability to achieve optimal

performance in multicellular MEC networks.

 NGA, FGA, Modified SJOORA and ACO are utilized with more than 20 iterations, selecting the maxi-

mum iteration result to compare the performance of the algorithms. Analysis revealed that variations in

the number of UEs directly influence which solution method performs best. Based on this finding, a

mechanism is proposed where the server dynamically selects the best algorithm according to the cur-

rent number of UEs, ensuring optimal performance and resource utilization.

Sections This paper is structured as follows: Section 2 discusses the framework design and outlines the opti-

mization problem. Section 3 introduces the NGA, while Section 4 focuses on the FGA. In Section 5, the Modified

SJOORA Algorithm is presented, followed by a discussion on the ACO Algorithm in Section 6. The simulations

and results are analyzed in Section 7, and finally, Section 8 concludes the paper with a summary of the main

findings.

2. Framework Design

A task-focused C-RAN architecture integrated with MEC is proposed. The C-RAN configuration consists of a

centralized pool of BBUs and multiple remote RRHs that collectively establish the radio access layer, while the

MEC server is integrated into the BBU pool. The system’s structural configuration is initially described, after

which comprehensive explanations of both the communication system and the computational framework. The

section concludes by defining the profit optimization objective for this combined infrastructure.

 Network Layout 2.1.

This research explores a C-RAN architecture enhanced by the integration of MEC. Building on established

methodologies [25,26], the BBU pool employs two types of virtual machines (VMs): MEC servers for managing

task offloading and traditional virtual BBUs (vBBUs) for handling communication operations. The MEC servers

feature a dedicated, limited-capacity storage pool reserved for task data. The focus of this study is on executing

computation processes at the network edge and transmitting the corresponding outcomes, while excluding any

costs associated with uploading sensitive data. As shown in Figure 1, the C-RAN system design comprises

RRHs linked to a centralized the BBU pool via high speed, fiber-optic fronthaul links, collectively defined as the

set I = {1, 2, 3, . . . , I}. The RRHs are positioned according to a spatial distribution modeled by a Pois-

son-Point-Process (PPP), and each is configured with a single antenna to streamline the system architecture.

Similarly, UEs, each equipped with an individual antenna, are randomly placed throughout the C-RAN service

region and represented as J = {1, 2, 3, . . . , J}. The offloading strategy for UEs is modeled using a binary matrix A

= {ϕ j,i}J×I , where j ∈ J and i ∈ I. A matrix element ϕ j,i = 1 indicates that UEj can access the MEC server via RRHi to

perform its task, while ϕj,i = 0 signifies otherwise [27]. To guarantee that tasks are prepared for execution, it is

assumed that user equipment (UE)-generated data is stored in advance on the edge server. A specific task, de-

noted as Sj and originating from UEj is characterized as follows:

Sj = (Fj, Dj, Tj,max), j = 1, 2, . . . , J (1)

In this context

 Fj specifies the complete computational workload, measured in CPU cycles, that must be processed by

the edge server to finalize the task.

 Dj represents the amount of resulting data generated by the task, which is transmitted back to UEj after

computation on the MEC server.

 Tj,max specifies the maximum allowable time for delivering the execution result to the mobile terminal

UEj.

IJT’2025, Vol.05, Issue 02. 5 of 23

Figure 1. Integrating MEC into Mobile Cloud Systems Framework with (C-RAN) model.

 Network Communication Architecture 2.2.

 Channel State Information (CSI) Representation 2.2.1.

The CSI refers to data that characterizes the quality of the wireless communication channels and is represented

using a matrix that captures the efficiency of spectral usage

ε = {ej,i}J×I , ∀ j ∈ J and i ∈ I, (2)

each element ej,i represents the comparative value between the available channel throughput and the corre-

sponding bandwidth assigned, inking a user device UEj as well as each RRHi unit. For simulation purposes, the

entries of matrix ε are initialized with randomly generated values within the range of 0 to 5, reflecting diverse

channel conditions.

 Bandwidth Allocation Model 2.2.2.

Each RRH has a total available spectrum bandwidth denoted as B Hz. The proportion of bandwidth assigned to

a given UEj by an RRHi is represented by the set

ρ = {ρj,i}J×I , ∀ j ∈ J and i ∈ I, (3)

with the constraint

∑

 ∈

(4)

to ensure that the total allocated bandwidth does not exceed the available spectrum per RRH.

The relationship between the offloading decision and bandwidth allocation is defined to ensure consistency in

the formulation. The binary variable φj,I ∈ {0,1} indicates whether UEj is associated with RRHi, while the con-

tinuous variable ρj,i ∈ [0,1] denotes the fraction of bandwidth assigned from RRHi to UEj. To guarantee that

bandwidth is allocated only when an active association exists, the following constraint is introduced:

 ∀ ∈ ∈ (5)

This additional constraint ensures that no bandwidth is allocated to inactive links, thereby maintaining con-

sistency between the offloading matrix and bandwidth assignment.

 Instantaneous Rate Calculation 2.2.3.

The achievable instantaneous data rate (R j,i) for a UEj connected to an RRHi is determined based on the allo-

cated bandwidth fraction (ρj,i) and the corresponding spectrum efficiency (ej,i) from the CSI matrix. This rela-

tionship characterizes the effective data throughput achievable under the specified bandwidth allocation and

channel conditions:

Rj,i = B · φj,i · ρj,i · ej,i (5)

IJT’2025, Vol.05, Issue 02. 6 of 23

 Fronthaul Capacity Constraints 2.2.4.

The total data rate delivered by each RRH to its associated UEs defines a constraint on fronthaul bandwidth

capacity. This constraint is formally expressed as:

∑ ∀ ∈

 ∈

(6)

where CAPi denotes the maximum fronthaul capacity of RRHi, and Rj,i denotes the transmission rate from RRHi

to UEj. This constraint ensures that the combined data rate provided to all UEs served by an RRH does not ex-

ceed the RRH’s fronthaul capacity.

 Transmission Data Time Calculation 2.2.5.

The time required for data transmission from RRHi to UEj is determined by:

 ∈
 (7)

where φj,i denotes the proportion of the data demand Dj handled by RRHi for UEj. The denominator, ∈ ,

represents the total transmission rate obtained by summing the contributions from all RRHs providing of-

floading support to UEj.

 Computation Model 2.3.

 Task Offloading and Resource-Allocation in MEC Server 2.3.1.

After defining an offloading plan and identifying the user devices suitable for workload delegation, the edge

computing server distributes processing resources to each device in terms of computational cycles per second. If

a specific device UEj is permitted to execute the workload remotely the MEC server processes the request by

locating the required pre-stored information and initiating task execution. The total computational capacity of

the MEC server is denoted by F, representing the server’s processing speed in cycles per second.

Within this framework, the computational resources are shared among all devices (UEs) permitted for of-

floading. The fraction of computing resources allocated to each UEj is represented by cj ∈ [0, 1], with the con-

straint

∑

 ∈

 (8)

to ensure efficient resource distribution. The set of allocated resource fractions is denoted by c = {cj} ∀ j ∈ J.

 Execution Duration Calculation 2.3.2.

The duration required to execute the task Sj of UEj on the MEC server is given by:

 (9)

where:

 Fj : Total CPU cycles necessary to complete task Sj.

 cj F: Computing resources, measured in cycles per second, allocated to UEj by the edge computing

server.

 Total Offloading Time 2.3.3.

The total time cost for UEj to complete the task offloading process, combining transmission and execution times,

is expressed as:

 (10)

 Resource-Allocation Constraint for Offloading Feasibility 2.3.4.

To ensure offloading is beneficial, the computing resources for a user device located within the MEC server

must surpass the UE’s local computing capacity (
). This condition is satisfied if:

IJT’2025, Vol.05, Issue 02. 7 of 23

 ∑

 ∈

 (11)

 Profit Modeling and Objective Formulation 2.3.5.

The study aims to optimize the network operator’s profit by formulating a profit objective function that bal-

ances revenue and cost. The revenue generation aspect focuses on task processing and data caching within a

MEC server, where the network operator charges UEs based on computational and data transmission services.

Revenue Function: The total revenue for task Sj, when offloaded by UEj, is given by:

 ∑

 ∈

 (12)

where φj,i is a binary variable indicating whether UEj receives offloading support from RRHi (i.e., ∈).

Cost Function: The cost function includes the following components:

 Spectrum Cost: Based on the assigned bandwidth for UEj priced at Hb per hertz of spectrum.

 Computational Resource Cost: Determined by the processing power designated for task Sj, charged at

Hc per unit of CPU processing rate.

The total cost for offloading task S j is given by:

 ∑∑

 ∈ ∈

() (13)

where k reflects variability in pricing between bandwidth and processing resources, and ω indicates the bal-

ancing weight used to account for resource availability.

Profit Function: The profit for an offloading-enabled UEj is:

 (14)

The total profit function for all user devices with offloading capability is represented as:

 ∑ ∑
 ∈ ∈

 (15)

 Profit Maximization Problem and Constraints 2.4.

To maximize profit, the objective function is defined as:

∑∑

 ∈ ∈

 (16.a)

subject to the following constraints:

 C1: Total allocated bandwidth at each RRH does not exceed its available capacity:

∑ ∀ ∈

 ∈

 (16.b)

 C2: Limits on computational resources within the MEC server:

∑∑
 ∈ ∈

 ∀ ∈ ∀ ∈ (16.c)

 C3: Quality of Service (QoS) constraint ensuring total execution time meets latency requirements:

 ∀ ∈ (16.d)

 C4: Computational resources allocated to a UE must exceed its local capacity:

 ∀ ∈ ∀ ∈ (16.e)

IJT’2025, Vol.05, Issue 02. 8 of 23

 C5: The cumulative data rate of all UEs served by an identical RRH must not surpass the data transfer

limit of the RRH's fronthaul connection.

∑

 ∈

 ∀ ∈ (16.f)

 C6: is a binary decision variable:

 ∈ { } ∀ ∈ ∀ ∈ (16.g)

3. Applying Normal Genetic Algorithm for Efficient Task Offloading

NGAs are optimization techniques inspired by natural selection, designed to minimize objective functions by

refining candidate solutions across generations. Starting with a population of potential solutions represented as

chromosomes, NGAs evaluate each based on a fitness measure tied to the objective function. High-performing

candidates (those that achieve lower values) are selected to reproduce, with genetic operators like crossover and

mutation applied to generate offspring. Crossover combines traits from parent solutions, while mutation in-

troduces random changes, promoting diversity and helping the algorithm avoid local minima [28].

This iterative process of selection, crossover, and mutation guides the population toward solutions that mini-

mize the objective function. Termination occurs when the algorithm achieves a satisfactory solution or reaches a

set number of generations [29,30]. NGAs effectively balance exploration and refinement within the search

space, making them suitable for both constrained and unconstrained minimization problems and often yielding

competitive results compared to other optimization methods.

4. Applying Fast Genetic Algorithm for Efficient Task Offloading

The conventional NGA often requires significant computational resources, especially when applied to optimi-

zation problems that include constraints, such as maximizing a profit function. Repeatedly computing this

profit function across a large initial population can result in inefficient resource utilization. To mitigate this, a

smaller initial population is often chosen, although this conflicts with the fundamental principle of NGAs,

which generally depend on a large and diverse initial population for effective evolutionary progression. In

contrast, a fast optimization approach integrates the problem’s constraints directly into the objective function as

penalty terms [31], chosen for their simplicity and efficiency. Penalty parameters are adjusted based on the ob-

jective function’s dimensionality to discourage infeasible solutions strongly [32], allowing the algorithm to start

with a broader range of solutions and converge to an optimal population more rapidly than a traditional GA.

In the FGA, constraints are handled directly within the profit calculation, allowing for a larger initial population

and reducing computational time. The highest-ranking five candidates from the final population are evaluated

using MATLAB’s optimization solver, selecting the individual with the highest profit as the final solution. To

approximate profit in FGA, a decision tree regression model in MATLAB is used to predict wireless spectrum

allocation and computational resource distribution, ensuring accurate resource estimates. This model is built

from an optimization-specific dataset generated by solving the problem repeatedly with random offloading

strategies, filtering out infeasible results [33] , [34]. Additionally, a penalty term was added to the profit function

to address constraint violations, ensuring the required constraints (C1, C2, C6) are met. The main difference

between NGA and FGA lies in profit calculation: while the NGA uses a smaller population and optimization

solvers, the FGA employs a heuristic approach, incorporating constraints into the objective function to effec-

tively handle a larger, more diverse population.

In the simulation framework, the population size of the NGA was restricted to 15 individuals because the

evaluation of each candidate requires repeated execution of the optimization solver, which is computationally

expensive. Using larger populations under this setting would result in impractical runtimes and high resource

consumption. By contrast, the FGA incorporates constraint-handling directly into its objective function through

penalty terms, thereby avoiding repeated solver calls and substantially reducing computational complexity.

This efficiency enables FGA to employ much larger populations—up to 2000 individuals—allowing greater

search diversity and faster convergence while remaining computationally feasible based on the work by Singh

et al. [32].

IJT’2025, Vol.05, Issue 02. 9 of 23

5. Applying Modified SJOORA Algorithm for Efficient Task Offloading

The "Spectrum Efficiency (SE)-based Joint Optimization for Offloading and Resource-Allocation (SJOORA)

scheme" is developed to enhance the performance of task delegation and resource distribution within wireless

communication networks. In these systems, task delegation refers to offloading computationally demanding

processes from user devices to distant servers or cloud-based platforms. This offloading reduces the computa-

tional load on mobile devices, leading to more efficient resource usage. However, decisions regarding offload-

ing must account for various factors, including network conditions, energy consumption, and the computa-

tional capacities of both mobile devices and remote resources [35].

A modified version of the SJOORA framework was introduced in [35], where the authors proposed a spectral

efficiency-based joint optimization of radio and computing resource allocation (SJOORA) to determine the of-

floading strategy defined in (16.g). In this work, we extend that approach by employing a customized NGA to

approximate the optimal offloading strategy and compare its performance against the SJOORA scheme. The

NGA requires evaluating random populations of candidate solutions, and although the objective function in

(16.g) is computationally intensive, the algorithm enables efficient approximation of near-optimal solutions.

The Modified SJOORA scheme focuses on improving spectral efficiency by jointly optimizing task migration,

computational resource allocation, and network resource distribution. By addressing offloading and resource

management simultaneously, it enhances data transmission capabilities and improves overall system perfor-

mance.

6. Applying Ant Colony Algorithm for Efficient Task Offloading

The ACO algorithm is a nature-inspired metaheuristic technique that mimics the foraging behavior of ants to

solve complex optimization problems. It has been effectively applied in 5G C-RAN environments to address

challenges such as resource-allocation and task scheduling [36]. The algorithm’s key objective in this context is

to maximize network profit and minimize execution time by optimizing how user demands are distributed

across BBUs and RRHs. This balance is critical for ensuring high efficiency and low latency in 5G communica-

tion systems [24].

In C-RAN, the ACO algorithm models the resource-allocation problem as a multi-objective optimization task.

Each ant represents a potential solution, mapping user demands to available network resources while mini-

mizing processing delays. The probability Pi j of an ant moving from node i to node j is defined as [37,38]:

 (17)

where:

 Pi j: The probability of transitioning from node i to node j.

 τi j: The pheromone level on the path from i to j, representing the desirability of that path based on past

solutions.

 ηi j: The heuristic value of the path, which can depend on factors like the computational capacity of BBUs

or the latency of network links.

 α: A control parameter that determines the influence of the pheromone trail.

 β: A control parameter that determines the influence of the heuristic information.

 N: The set of possible next nodes.

In the context of our resource allocation problem, the ACO transition rule (Eq. 17) is adapted as follows. Each

node corresponds to a potential offloading decision, specifically the assignment of a task generated by UEj to an

RRHi with a feasible share of bandwidth and MEC computing resources. A complete ant tour therefore repre-

sents a full offloading strategy, where all UEs are sequentially associated with RRHs and their resource shares

are determined. The pheromone value τji quantifies the historical quality of assigning UEj to RRHi, while the

heuristic factor ηji captures the instantaneous channel condition, available bandwidth, and expected latency cost

for that assignment. In this way, the probabilistic transition rule governs how ants iteratively construct feasible

offloading solutions, linking the standard ACO mechanism directly to the MEC–C-RAN allocation problem.

IJT’2025, Vol.05, Issue 02. 10 of 23

The algorithm relies on pheromone updates to refine solutions. After ants complete their tours, pheromone

trails are updated using the formula:

 (18)

where:

 ∆τi j: The amount of pheromone deposited on the path from i to j.

 Q: A constant scaling factor that controls the magnitude of the pheromone deposit.

 Fitness: The quality of the solution, combining profit and execution time.

The choice of Q depends on the scale of the problem and the desired balance between exploration and exploi-

tation. In a typical C-RAN problem, Q should be chosen based on the range of fitness values in the system. For

instance, if the fitness values are expected to range from 1000 to 10,000, Q might be set in a range like 1000 to

5000. This scaling ensures that pheromone updates are significant enough to guide ants toward high-quality

solutions without overwhelming the search process. Q can also be dynamically adjusted during the execution of

the algorithm to reflect the algorithm’s progress—starting with a larger Q for exploration in the early stages and

gradually decreasing it to focus on exploitation of good solutions as the algorithm converges.

The fitness function used to evaluate solutions is:

 (19)

where:

 w1: Weight representing the importance of maximizing profit.

 w2: Weight representing the importance of minimizing execution time.

 Profit: The revenue or benefit gained from the allocated resources.

 Execution Time: The total time taken for task completion.

Weights w1 and w2 are determined based on network priorities. For instance, higher w1 emphasizes profit,

while higher w2 prioritizes reducing latency. These weights are normalized to ensure consistency and are often

tuned through experimental or automated methods like grid search [38].

The scalability and adaptability of ACO make it ideal for dynamic environments like C-RAN. It can efficiently

handle large-scale optimization problems and adapt to changes in traffic patterns or resource availability.

However, challenges such as parameter tuning (α, β, Q, and pheromone evaporation rate) must be addressed to

balance exploration and exploitation. Future enhancements, such as integrating ACO with machine learning or

hybrid optimization methods, can help meet real-time constraints and further improve performance. By lever-

aging ACO, operators can achieve efficient resource utilization, reduce energy consumption, and meet the

stringent latency requirements of 5G networks.

For clarity, the pseudocode (Algorithm 1) and the flowchart (Figure 2) of the proposed ACO scheme are pre-

sented at the end of this section. The pseudocode summarizes the main stages—initialization of pheromones

and heuristics, construction of candidate offloading solutions, fitness evaluation based on profit and latency,

and pheromone updates. The accompanying flowchart provides a visual overview of this iterative process,

showing how constraints such as bandwidth, latency, and MEC capacity are enforced. Together, they offer a

concise yet comprehensive representation of the ACO-based offloading strategy.

IJT’2025, Vol.05, Issue 02. 11 of 23

Figure 2. Flowchart of the ACO-Based Task Offloading Strategy in MEC–C-RAN Systems

7. Simulation and Results

Simulation experiments were conducted using MATLAB, with parameter values drawn from the literature [32]

to simulate a wireless system configuration. In the simulation setup, UEs were distributed randomly across the

coverage area, with the number of UEs (denoted by J) varying between 30 to 110 to fulfill the simulation re-

quirements. Ten RRHs, represented as I = 10, were used, each with a fronthaul link capacity of 50 Mbps.

Tasks were created using randomized parameters, with latency requirements ranging from 360 to 900 ms to

ensure precise control for efficient task processing. Output data size, denoted as Dj, varied between 50 and 200

IJT’2025, Vol.05, Issue 02. 12 of 23

kbytes, highlighting the need for scalable data management. The computational demand for each task, denoted

as Fj, depended on its data size and was expressed through the following relation:

 (20)

Additionally, A matrix of dimensions J by I containing values randomly selected within the range of 0 to 5 was

used to simulate varying spectrum efficiency. Additional parameters crucial for effective task management are

compiled and displayed in Table 1 [35], providing detailed insights into task optimization strategies.

For wireless access, bandwidth B for the communication channel was set to 10 MHz, while each RRH trans-

mitted at a power of 30 dBm. Additive White Gaussian Noise (AWGN) was mode led with a noise power level

of σ2 = −174 dBm/Hz. Path loss was modeled based on the formula:

 (21)

which accurately represented signal attenuation over distance in the simulated environment [39]. These pa-

rameter settings collectively provided a robust framework for assessing the performance and efficiency of task

processing and resource-allocation in a wireless network scenario.

Table 1. Additional Simulation Parameters

Parameter Value

Storage cost Qj 0.1 $

Bandwidth cost impact factor k 0.5

Computation cost impact factor ω 10

Charge unit price for computation Yf 0.03 $ / Mega cycle

Charge unit price for transmission Yt 0.3 $ / Mbit

Bandwidth unit cost Hb 0.5 $ / MHz

Computation unit cost Hc 0.005 $ / Mega cycle/s

MEC server capacity F 100 GHz

Local computational capability
 0.7 GHz

Number of individuals (NIND) 15 (Normal), 2000 (Fast)

Generation gap (GGAP) 0.8

Mutation rate (MUTR) 0.05

Maximum generations (MAXGEN) 3

 Comparison of Profits Across Iteration Counts (30, 40, and 50) for Different Numbers of Users and Ants 7.1.

(a) Number of Ants 30 (b) Number of Ants 40

IJT’2025, Vol.05, Issue 02. 13 of 23

(c) Number of Ants 50

Figure 3. Overview of profits for different numbers of ants.

This study shown in figure 3 examines the impact of iteration counts (30, 40, and 50) on profit optimization for

varying numbers of users (30, 60, and 80) and ants (10 to 100). The results indicate that increasing the number of

iterations has a negligible effect on profit optimization. Across all iteration counts, 80 users consistently achieve

the highest profits, peaking at approximately 20 ants, with maximum profits remaining nearly constant at 33.34

for both 40 and 50 iterations. Similarly, trends for 60 and 30 users show minimal variation in profits with in-

creasing iterations. This suggests that while iteration count slightly stabilizes trends, it does not significantly

enhance optimization or profitability, emphasizing that user count and the number of ants are the primary

factors influencing performance.

 Analysis of Execution Time in Relation to the Number of Ants and Users 7.2.

Figure 4. Execution Time vs Number of Ants for Different Numbers of Users

Figure 4 displays the execution time as a function of the number of ants for three different user counts (30, 60,

and 80) based on the new data. Execution time increases steadily as the number of ants grows across all user

configurations. However, a noticeable trend is that 30 users experience the shortest execution times, followed

by 60 users, with 80 users having the longest execution times for each corresponding number of ants. For ex-

ample, at 100 ants, the execution time is highest for 80 users (0.907 seconds) and lowest for 30 users (0.339 se-

conds). This pattern suggests that the efficiency of the system decreases with the number of users, likely due to

the increased computational demand as the system scales.

IJT’2025, Vol.05, Issue 02. 14 of 23

 Analysis of Franthaul Performance Across User Groups and Ant Configurations 7.3.

Figure 5. Franthaul vs. Number of Ants for Different User Densities

Figure 5 illustrates the analysis of fronthaul performance demonstrates clear trends and offers insights into

future expectations. For the 30-user group, the franthaul varies a lot, reaching a peak of 113.57 Mbps with 20

ants but dropping to 66.55 Mbps at 80 ants. This suggests that resource-allocation is inconsistent for this group.

In the 60-user group, the performance is more stable, with franthaul ranging from 142.98 Mbps to 209.97 Mbps,

indicating more efficient resource use. The 80-user group starts with the highest franthaul at 271.91 Mbps with

10 ants, but the performance drops significantly as the number of ants increases, falling to 175.73 Mbps at 100

ants. This decline could be due to resource saturation or inefficiencies in handling higher demands. As the

number of users increases, the system will face greater pressure, and franthaul demands will grow. To handle

this, it’s essential to optimize the number of ants to ensure consistent performance and avoid bottlenecks, es-

pecially as user density rises.

 Analysis of MEC Computation Times Across User Groups and Ant Configurations 7.4.

Figure 6. MEC Computation vs. Number of Ants for Different User Densities

Figure 6 illustrates the analysis of MEC computation times across varying numbers of ants for different user

groups is highlighted, showcasing distinct trends in resource utilization. For the 30-user group, computation

times fluctuate significantly, peaking at 101.27 ms with 40 ants and dropping to a minimum of 56.50 ms with 60

ants, indicating inconsistent efficiency. The 60-user group demonstrates more stable performance, with com-

putation times ranging from 156.53 ms (70 ants) to 213.35 ms (20 ants), reflecting consistent but suboptimal re-

source-allocation in certain cases. The 80-user group exhibits the highest computation times, starting at 282.36

ms with 10 ants and steadily declining to 151.75 ms with 100 ants, suggesting improved efficiency at higher ant

numbers but diminishing returns at the extremes. These results indicate that the number of ants significantly

influences MEC computation times, and optimizing this parameter is critical to achieving efficient performance,

particularly as user density increases.

IJT’2025, Vol.05, Issue 02. 15 of 23

 Analysis of Power Consumption Across User Groups and Ant Configurations 7.5.

Figure 7. Power Consumption vs. Number of Ants for Different User Densities

Figure 7 is presented, where the analysis of power consumption across varying numbers of ants for different

user groups is revealed, showing consistent trends. For all user groups (30, 60, and 80 users), power consump-

tion remains remarkably stable across the range of ants, with minimal fluctuations. In the 30-user group, power

consumption consistently hovers around 15 W, while in the 60-user group, it remains near 30 W. Similarly, for

the 80-user group, power consumption stabilizes around 40 W. This stability indicates that power consumption

is primarily determined by user density rather than the number of ants, with slight variations being negligible

in practical scenarios. The data suggests that the power consumption scales linearly with the number of users,

remaining unaffected by the configuration of ants within the tested range. These findings underscore the effi-

ciency of the system in maintaining predictable energy usage regardless of ant allocation, which is critical for

energy optimization and system reliability.

 Analysis of Power consumption vs. Number of Users 7.6.

Figure 8. Power Consumption as a Function of the Number of Users

Figure 8 illustrates the relationship between the number of users and power consumption is depicted in the

provided data and graph, showing a steady increase as the user count rises from 30 to 110. Power consumption

starts at 25.843 Watts for 30 users and grows nearly linearly, reaching 90.392 Watts for 110 users. Notable in-

crements are observed at higher user counts, such as a 12.23-Watt increase between 50 and 60 users, suggesting

potential inefficiencies or system thresholds under heavier loads. This trend highlights the proportional scaling

of power consumption with user activity, offering insights into system performance and energy demand

management.

IJT’2025, Vol.05, Issue 02. 16 of 23

 Analysis of Fronthaul Link Capacity vs. Number of Users 7.7.

Figure 9. Fronthaul Link Capacity vs. Number of Users

Figure 9 illustrates the relationship between the fronthaul link capacity (measured in Mbps) and the number of

user’s equipment (denoted as UE) within a network. The trend suggests a generally increasing capacity re-

quirement as the number of users rises. Starting from 30 users, the fronthaul link capacity begins around

2919Mbps, exhibiting fluctuations but following an upward trend overall. As the user count increases, the de-

mand on the fronthaul link capacity escalates, particularly notable at higher user counts (e.g., between 90 and

110 users), where the capacity surpasses 8000 Mbps. This increase reflects the additional data throughput

needed to accommodate more users within the network, implying a correlation between user growth and re-

quired link capacity. The graph indicates some nonlinear growth, with certain user intervals showing more

significant capacity jumps. This pattern may imply points at which network resources experience greater strain

or congestion, likely due to varying data requirements of different applications or user behaviors.

 Computational Capacity Requirements for MEC Servers Based on User Load 7.8.

Figure 10. MEC Server Computational Capacity vs. Number of Users

Figure 10 displays the relationship between the number of users equipment UEs and the re- quired computa-

tional capacity of a MEC server, measured in Giga Cycles. As the number of users increases, there is a clear

upward trend in the computational capacity requirement. The MEC computational capacity starts at around 10

Giga Cycles for 30 users, then exhibits a progressive increase, particularly sharp between 40 and 50 users. This

pattern suggests that as more users connect to the MEC server, the processing demand grows, requiring greater

computational resources to handle the increased data load. The growth, however, is not strictly linear, with

some intervals showing more rapid rises in capacity demand than others. Notable jumps, such as between 50

and 60 users, could indicate points where the MEC server experiences greater stress due to higher workloads.

This trend highlights the importance of scalable resource-allocation in MEC systems, where the computational

capacity must be managed to meet varying user demands while ensuring optimal performance.

IJT’2025, Vol.05, Issue 02. 17 of 23

 Execution Time Analysis of Optimization Algorithms 7.9.

Figure 11. Comparison of Execution Times of the Algorithms

The execution times of the algorithms in this study depend significantly on the hardware used. MATLAB ex-

periments were run on a PC with an 11th Gen Intel Core i7-11800H processor at 2.3 GHz and 16 GB RAM. This

setup provides necessary context for interpreting the reported performance results. The graph presented in

Figure 11 illustrates the execution times of four algorithms—ACO, NGA, FGA, and Modified SJOORA—over

an increasing number of UEs. The y-axis represents execution time in seconds, and the x-axis denotes the

number of UEs. A logarithmic scale has been applied to the y-axis to improve clarity, especially given the sig-

nificant variations in execution times among the algorithms.

Table 2. Comparison of Execution Times of Algorithms Across Different Numbers of UEs

Number of UEs
ACO

(seconds)

NGA

(seconds)

FGA

(seconds)

Modified

SJOORA

(seconds)

30 0.895733 62.604 3.96293 3.96293

40 0.941266 64.7591 4.70752 9.5842

50 1.12774 72.0355 5.40063 13.5278

60 1.38255 74.7224 5.63 53.168

70 1.60174 70.9226 4.62452 34.493

80 1.92797 76.7703 5.15016 48.6929

90 2.12806 71.7821 4.41826 51.0491

100 2.35468 72.0974 4.49485 109.944

110 3.36302 72.2174 4.12802 66.7694

The NGA shows relatively constant execution times, averaging around 70 seconds regardless of the number of

UEs. This behavior suggests that the performance of NGA is unaffected by UE quantity. However, the Normal

GA takes longer than the FGA due to the computational effort required for fitness evaluation through an op-

timization solver at each generation. In contrast, the FGA maintains nearly constant execution times of ap-

proximately 4 seconds. The FGA’s reduced computational time is attributed to its approximate profit calcula-

tion for offloading decisions, which requires fewer resources compared to the NGA. The Modified SJOORA

algorithm displays increased execution times as the number of UEs rises. While it initially matches the perfor-

mance of the FGA, its execution time escalates as the UE count grows, eventually exceeding 60 seconds with

higher UE counts. This increase in execution time aligns with the linear time complexity of the original SJOORA

algorithm, which becomes more apparent as UEs increase. Finally, the ACO algorithm shows a gradual increase

in execution time, yet it remains faster than the Modified SJOORA and NGA, even at higher UE counts. The

ACO’s moderate scaling behavior makes it suitable for applications where execution speed is crucial but may

not match the speed of the FGA for smaller workloads. The logarithmic scale in the plot was used to better

IJT’2025, Vol.05, Issue 02. 18 of 23

visualize the differences in execution times between the algorithms, particularly since the Normal GA and

Modified SJOORA exhibit much higher execution times than ACO and FGA. Without the log scale, the differ-

ences between these algorithms would be less discernible, making it challenging to compare performance

across the entire UE range.

 Comparison of Maximum Offloading Strategies 7.10.

Figure 12. Comparison of Maximum Offloading Strategies

Table 3. Profit Comparison of Algorithms Across Different Numbers of UEs

Number of UEs
ACO

($)

NGA

($)

FGA

($)

Modified

SJOORA

($)

30 538.578 505.706 523.48 556.645

40 684.888 589.124 665.026 646.417

50 740.046 697.778 702.255 643.888

60 763.25 703.52 691.71 651.71

70 823.62 746.109 743.788 736.049

80 851.5 775.586 775.904 799.643

90 859.39 759.2 738.495 778.53

100 889.63 822.886 793.573 789.659

110 886.18 789.681 792.624 783.232

Figure 12 illustrates the relationship between the number of UEs and the profit (in dollars) across four algo-

rithms: NGA, FGA, Modified SJOORA, and ACO. The x-axis represents the number of UEs, ranging from 30 to

110, while the y-axis shows the corresponding profit values. As the number of UEs increases, the ACO algo-

rithm demonstrates a significantly higher profit than the other three algorithms, especially at higher UE counts.

This trend indicates that ACO’s performance scales effectively with an increasing number of UEs, showing a

notable rise in profitability, reaching around $886.18 for 110 UEs. In contrast, both NGA and FGA show more

gradual profit increases as the UE count rises. NGA’s profit grows from around $506 at 30 UEs to about $790 at

110 UEs, while FGA’s profit progresses from roughly $523 to $793 across the same range. Although FGA tends

to perform slightly better than NGA at lower UE counts, both algorithms exhibit limited overall growth, with

profits stabilizing under $800. This trend suggests a less substantial response to increasing UE numbers com-

pared to ACO, indicating potential limitations in their scalability. The Modified SJOORA algorithm displays a

pattern similar to that of NGA and FGA, showing limited profit growth as UE count increases. Profit for Modi-

fied SJOORA starts at approximately $556 for 30 UEs and reaches around $783 for 110 UEs. This modest growth

and overall stability in profit values suggest that Modified SJOORA may lack the robust scalability exhibited by

ACO, as it remains well below ACO’s profit levels, even at higher UE densities. This disparity suggests that

ACO may be better suited for scenarios with high UE densities, potentially due to its optimization mechanism

IJT’2025, Vol.05, Issue 02. 19 of 23

that allows it to handle complex decision-making more efficiently than the other algorithms. The other algo-

rithms appear to have reached a saturation point where increasing the number of UEs does not yield substantial

profit improvements. This could be attributed to limitations in their optimization strategies, which might not be

as adaptive to scaling as ACO.

 Execution Time and Profit Analysis 7.11.

Figure 13. Execution time and profit for the evaluated algorithms.

Figure 13 shows box plots of execution time (blue, left axis, logarithmic scale) and profit (green, right axis, linear

scale) for ACO, NGA, FGA, and Modified SJOORA across user counts ranging from 30 to 110. Each box repre-

sents the interquartile range, the horizontal red line indicates the median, and the whiskers extend to the

minimum and maximum values. The results demonstrate that ACO consistently achieves higher profit while

maintaining substantially lower execution times than the other algorithms, confirming its efficiency and scala-

bility in high-density network scenarios.

8. Discussion

The evaluation demonstrates that algorithm choice in MEC–C-RAN resource allocation involves inherent

trade-offs between execution time, profit, scalability, and energy efficiency. Among the tested approaches, Ant

Colony Optimization (ACO) achieved the most balanced outcomes, consistently maximizing profit while

maintaining moderate execution times, making it particularly effective in dense network environments. FGA

offered the lowest runtimes but lacked scalability at higher user densities, NGA produced stable but less com-

petitive results, and Modified SJOORA showed acceptable performance only in small- to mid-scale deploy-

ments. Analysis of power consumption and fronthaul capacity further indicated that overall system load, rather

than algorithmic parameters, is the dominant factor driving computational demand and energy use.

When benchmarked against Particle Swarm Optimization (PSO) variants, namely Sticky Binary PSO (SBPSO)

and Dynamic Sticky Binary PSO (DSBPSO), ACO also demonstrated clear superiority. SBPSO employs a stick-

iness mechanism to reduce oscillations, and DSBPSO adaptively updates parameters to improve exploration;

however, both approaches exhibited scalability and convergence limitations under heavy user demand. By

contrast, ACO consistently outperformed both methods across all user equipment (UE) levels, with the per-

formance gap becoming more pronounced beyond 60 UEs.

IJT’2025, Vol.05, Issue 02. 20 of 23

Table 4. Profit comparison of ACO with recent research across different UE numbers

Number of UEs
SBPSO

Profit ($) [40]

DSBPSO

Profit ($) [40]

ACO

Profit ($)

30 445 450 550

40 530 540 680

50 610 620 740

60 640 650 765

70 700 710 810

80 740 750 840

90 780 790 855

100 810 820 870

110 835 850 890

As summarized in Table 4, the results from Singh and Kim [40] are included for comparison purposes only.

They highlight ACO’s robustness in high-density networks, surpassing DSBPSO by $30–$60 and yielding even

larger margins over SBPSO in the 70–110 UE range. This advantage is driven by ACO’s pheromone-based re-

inforcement mechanism, which balances exploration and exploitation, prevents stagnation, and maintains di-

verse search paths. Unlike SBPSO, which often converges prematurely, and DSBPSO, which only partially al-

leviates this issue, ACO ensures effective offloading and resource allocation even as system complexity rises.

Importantly, these benefits are not achieved at the expense of runtime: although ACO is slightly slower than

lightweight approximations such as FGA, it remains faster than NGA and Modified SJOORA while producing

substantially higher profits.

Several methodological innovations strengthen these results. First, our study emphasizes profit-centric opti-

mization, addressing a gap in prior MEC–C-RAN research where latency or energy minimization dominated.

By embedding a detailed economic model (Equations 8–11), profit is directly linked to operator revenue and

resource costs. Second, a novel fitness function (Equation 15) explicitly balances profit maximization and exe-

cution time, allowing tunable trade-offs based on operator priorities. Third, a dynamic pheromone update

strategy is proposed, where parameter Q is scaled according to fitness ranges and iteration progress, improving

convergence quality compared with fixed settings. Fourth, the work benchmarks ACO against diverse algo-

rithmic families (NGA, FGA, Modified SJOORA) under identical conditions, confirming ACO’s superior scala-

bility and profitability, particularly as UE counts exceed 60. Finally, the system-aware heuristic design (Equa-

tion 13) leverages C-RAN-specific parameters—including channel state information, computation capacity, and

fronthaul limits—to guide the search process toward feasible and high-performing solutions.

The scalability of ACO was further validated through extensive simulation experiments in which the system

size was varied from 30 to 110 UEs, covering both small-cell and dense urban deployment scenarios. The results

confirm that ACO scales effectively in terms of both profit and execution time. Profitability continued to rise

with increasing user density, clearly outperforming other algorithms at higher scales, reaching about $889 for

100 UEs compared with approximately $793 for FGA and $823 for NGA. At the same time, execution time in-

creased moderately with the number of UEs, from around 0.9 seconds for 30 UEs to about 3.4 seconds for 110

UEs. This manageable growth in runtime, while maintaining superior profitability, demonstrates that ACO can

provide timely and efficient decisions in real-world deployments where both speed and scalability are critical.

IJT’2025, Vol.05, Issue 02. 21 of 23

Overall, these contributions establish ACO as a robust, profit-oriented, and scalable optimization framework

for MEC–C-RAN systems, outperforming traditional GA-based, PSO-based, and heuristic approaches under

realistic deployment conditions.

9. Conclusion

This paper analyzed computational offloading and resource optimization in MEC integrated with C-RAN, fo-

cusing on profit maximization for network operators. The performance of four algorithms—ACO, NGA, FGA,

and Modified SJOORA—was evaluated under varying user densities. The results revealed that ACO consist-

ently delivered the highest profitability, particularly in high-user scenarios, due to its superior optimization of

power consumption, computational capacity, and fronthaul link usage. Power consumption increased nearly

linearly with the number of users, reaching its peak at higher densities, highlighting the need for scalable en-

ergy management solutions. Computational capacity demands also rose significantly as user load increased,

with notable jumps observed between 50 and 60 users. Similarly, fronthaul link capacity exhibited a steady

upward trend, reflecting the growing data transmission requirements in high-density environments. Execution

time analysis demonstrated that ACO achieved efficient performance with moderate scaling, making it suitable

for real-time applications. In contrast, FGA showed the lowest execution time, averaging around 4 seconds, due

to its efficient regression-based resource estimation. While NGA provided stable execution times (70 seconds), it

lacked scalability in high-user scenarios. Modified SJOORA’s execution time increased with user density,

making it less effective for large-scale deployments. These findings underline the importance of balancing

power consumption, computational capacity, and fronthaul link utilization with execution efficiency to opti-

mize network performance. Future investigations will aim to enhance the adaptability of the proposed frame-

work to real-time and dynamically changing user requirements. Moreover, hybrid optimization strategies will

be explored to strengthen scalability and improve energy efficiency within MEC environments. Additional ef-

forts will include the use of parallel computing to broaden the coverage area and support a larger number of

users, alongside the integration of artificial intelligence techniques to further advance scalability and optimiza-

tion efficiency.

10. Patents

Author Contributions: The concept for the experiment was devised collaboratively by all authors. S.M.A. and E.M.E. conducted

the measurements and processed the data, while S.M.A. executed the numerical simulations. The manuscript was drafted by

S.M.A. with input from all authors, who also participated in discussions and contributed to the interpretation of the findings.

Data Availability Statement: The datasets created and/or examined in this study can be obtained from the corresponding author

upon a reasonable request.

Conflicts of Interest: The authors confirm that no conflicts of interest are associated with this work.

References

1. Chen, C.; Li, X.; Ji, H.; Zhang, H. Energy-efficient mobile edge computing system based on full-duplex energy harvesting

relay network. Proc. IEEE Glob. Commun. Conf. (GLOBECOM) 2020, 2020, 1–6.

https://doi.org/10.1109/GLOBECOM42002.2020.9348248

2. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective.

IEEE Commun. Surv. Tutor., 2017, 19, 2322–2358. https://doi.org/10.1109/COMST.2017.2745201

3. Wang, Y.; Ge, H.; Feng, A.; Li, W.; Liu, L.; Jiang, H. Computation offloading strategy based on deep reinforcement learning in

cloud-assisted mobile edge computing. Proc. IEEE Int. Conf. Cloud Comput. Big Data Anal. (ICCCBDA) 2020, 2020, 108–113.

https://doi.org/10.1109/ICCCBDA49378.2020.9095689

4. Liu, Y.; Li, Y.; Niu, Y.; Jin, D. Joint optimization of path planning and resource allocation in mobile edge computing. IEEE

Trans. Mob. Comput. 2019, 19, 2129–2144. https://doi.org/10.1109/TMC.2019.2922316

5. Wang, K.; Yang, K.; Magurawalage, C.S. Joint energy minimization and resource allocation in C-RAN with mobile cloud.

IEEE Trans. Cloud Comput. 2018, 6, 760–770. https://doi.org/10.1109/TCC.2016.2522439

https://doi.org/10.1109/GLOBECOM42002.2020.9348248
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/ICCCBDA49378.2020.9095689
https://doi.org/10.1109/TMC.2019.2922316
https://doi.org/10.1109/TCC.2016.2522439

IJT’2025, Vol.05, Issue 02. 22 of 23

6. Datta, J.; Das, A.; Khanra, S.; Chakraborty, S.; Sen, D. Compressive sensing based uplink C-RAN channel estimation with deep

learning-aided optical fronthaul compensation. Proc. Int. Conf. Converg. Technol. (I2CT) 2021, 2021, 1–4.

https://doi.org/10.1109/I2CT51068.2021.9418196

7. Tout, H.; Mourad, A.; Kara, N.; Talhi, C. Multi-persona mobility: Joint cost-effective and resource-aware mobile-edge com-

putation offloading. IEEE/ACM Trans. Netw. 2021, 29, 1408–1421. https://doi.org/10.1109/TNET.2021.3066558

8. Zheng, R.; Xu, J.; Wang, X.; Liu, M.; Zhu, J. Service placement strategies in mobile edge computing based on an improved

genetic algorithm. Pervasive Mob. Comput. 2024, 101986. https://doi.org/10.1016/j.pmcj.2024.101986

9. Lin, H.; Zeadally, S.; Chen, Z.; Labiod, H.; Wang, L. A survey on computation offloading modeling for edge computing. J.

Netw. Comput. Appl. 2020, 169, 102781. https://doi.org/10.1016/j.jnca.2020.102781

10. Tunga, H.; Kar, S.; Giri, D. Intrinsic profit maximization of the offloading tasks for mobile edge computing with fixed memory

capacities and low latency constraints using ant colony optimization. Math. Model. Eng. Probl. 2022, 9, 668–674.

https://doi.org/10.18280/mmep.090313

11. Spatharakis, D.; Dimolitsas, I.; Dechouniotis, D.; Papathanail, G.; Fotoglou, I.; Papadimitriou, P.; Papavassiliou, S. A scalable

edge computing architecture enabling smart offloading for location based services. Pervasive Mob. Comput. 2020, 67, 101217.

https://doi.org/10.1016/j.pmcj.2020.101217

12. Vambe, W.T.; Sibanda, K. A fog computing framework for quality of service optimisation in the Internet of Things (IoT) eco-

system. Proc. Int. Multidiscip. Inf. Technol. Eng. Conf. (IMITEC) 2020, 2020, 1–8.

https://doi.org/10.1109/IMITEC50163.2020.9334083

13. He, Z.; Xu, Y.; Liu, D.; Zhou, W.; Li, K. Energy-efficient computation offloading strategy with task priority in cloud-assisted

multi-access edge computing. Future Gener. Comput. Syst. 2023, 2023, 148, 298-313.

https://doi.org/10.1016/j.future.2023.06.014

14. Acheampong, A.; Zhang, Y.; Xu, X. A parallel computing based model for online binary computation offloading in mobile

edge computing. Comput. Commun. 2023, 203, 248–261. https://doi.org/10.1016/j.comcom.2023.03.004

15. Pan, L.; Liu, X.; Jia, Z.; Xu, J.; Li, X. A multi-objective clustering evolutionary algorithm for multi-workflow computation of-

floading in mobile edge computing. IEEE Trans. Cloud Comput. 2021, 11, 1334–1351. https://doi.org/10.1109/TCC.2021.3132175

16. Ge, H.; Geng, J.; An, Y.; Feng, H.; Zhou, T.; Huang, C. Research on collaborative computational offload strategy based on

improved ant colony algorithm in edge computing. Proc. Int. Conf. Nat. Lang. Process. (ICNLP) 2023, 2023, 486–490.

https://doi.org/10.1109/ICNLP58431.2023.00093

17. Hussein, M.K.; Mousa, M.H. Efficient task offloading for IoT-based applications in fog computing using ant colony optimi-

zation. IEEE Access 2020, 8, 37191–37201. https://doi.org/10.1109/ACCESS.2020.2975741

18. An, X.; Li, Y.; Chen, Y.; Li, T. Joint task offloading and resource allocation for multi-user collaborative mobile edge computing.

Comput. Netw. 2024, 250, 110604. https://doi.org/10.1016/j.comnet.2024.110604

19. Leguizamon, G.; Michalewicz, Z. A new version of ant system for subset problems. Proc. Congr. Evol. Comput. (CEC) 1999, 2,

1459–1464. https://doi.org/10.1109/CEC.1999.782655

20. Fidanova, S. Ant colony optimization for multiple knapsack problem and model bias. Proc. Int. Conf. Numer. Anal. Appl. 2004,

2004, 3401, 280–287. https://doi.org/10.1007/978-3-540-31852-1_33

21. Khan, P.W.; Abbas, K.; Shaiba, H.; Muthanna, A.; Abuarqoub, A.; Khayyat, M. Energy efficient computation offloading

mechanism in multi-server mobile edge computing—An integer linear optimization approach. Electronics 2020, 9, 1010.

https://doi.org/10.3390/electronics9061010

22. Guo, Y.; Zhao, Z.; Zhao, R.; Lai, S.; Dan, Z.; Xia, J.; Fan, L. Intelligent offloading strategy design for relaying mobile edge

computing networks. IEEE Access 2020, 8, 35127–35135. https://doi.org/10.1109/ACCESS.2020.2972106

https://doi.org/10.1109/I2CT51068.2021.9418196
https://doi.org/10.1109/TNET.2021.3066558
https://doi.org/10.1016/j.pmcj.2024.101986
https://doi.org/10.1016/j.jnca.2020.102781
https://doi.org/10.18280/mmep.090313
https://doi.org/10.1016/j.pmcj.2020.101217
https://doi.org/10.1109/IMITEC50163.2020.9334083
https://doi.org/10.1016/j.future.2023.06.014
https://doi.org/10.1016/j.comcom.2023.03.004
https://doi.org/10.1109/TCC.2021.3132175
https://doi.org/10.1109/ICNLP58431.2023.00093
https://doi.org/10.1109/ACCESS.2020.2975741
https://doi.org/10.1016/j.comnet.2024.110604
https://doi.org/10.1109/CEC.1999.782655
https://doi.org/10.1007/978-3-540-31852-1_33
https://doi.org/10.3390/electronics9061010
https://doi.org/10.3390/electronics9061010
https://doi.org/10.1109/ACCESS.2020.2974727
https://doi.org/10.1109/ACCESS.2020.2974727

IJT’2025, Vol.05, Issue 02. 23 of 23

23. Bao, W.; Ji, H.; Zhu, X.; Wang, J.; Xiao, W.; Wu, J. ACO-based solution for computation offloading in mobile cloud computing.

Big Data & Information Analytics 2015, 1(1), 1–13. https://doi.org/10.3934/bdia.2016.1.1

24. Wang, Z.; Li, P.; Shen, S.; Yang, K. Task offloading scheduling in mobile edge computing networks. Procedia Computer Science

2021, 184, 322–329. https://doi.org/10.1016/j.procs.2021.03.041

25. Wang, K.; Yang, K. Power-minimization computing resource allocation in mobile cloud-radio access network. In Proceedings of

the 2016 IEEE International Conference on Computer and Information Technology (CIT), Nadi, Fiji, 8–10 December 2016, 667–672.

https://doi.org/10.1109/CIT.2016.64

26. Sun, Y.; Wei, T.; Li, H.; Zhang, Y.; Wu, W. Energy-efficient multimedia task assignment and computing offloading for mobile

edge computing networks. IEEE Access 2020, 8, 36702–36713. https://doi.org/10.1109/ACCESS.2020.2973359

27. Zhang, S.; Yi, N.; Ma, Y. Correlation-based device energy-efficient dynamic multi-task offloading for mobile edge computing.

In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021, 1–5.

https://doi.org/10.1109/VTC2021-Spring51267.2021.9448864

28. Guo, E.; Gao, Y.; Hu, C.; Zhang, J. A hybrid PSO-DE intelligent algorithm for solving constrained optimization problems

based on feasibility rules. Mathematics 2023, 11(3), 522. https://doi.org/10.3390/math11030522

29. Chen, Z.; Hu, J.; Chen, X.; Hu, J.; Zheng, X.; Min, G. Computation offloading and task scheduling for DNN-based applications

in cloud-edge computing. IEEE Access 2020, 8, 115537–115547.

https://doi.org/10.1109/ACCESS.2020.3004509

30. Wang, Z.; Pei, Y.; Li, J. A survey on search strategy of evolutionary multi-objective optimization algorithms. Applied Sciences

2023, 13(7), 4643. https://doi.org/10.3390/app13074643

31. Kuri-Morales, A.F.; Gutiérrez-García, J. Penalty function methods for constrained optimization with genetic algorithms: A

statistical analysis. Mex. Int. Conf. Artif. Intell. 2002, 2313, 108–117. https://doi.org/10.1007/3-540-46016-0_12

32. Singh, S.; Kim, D.H. Profit optimization for mobile edge computing using genetic algorithm. IEEE Reg. 10 Symp. (TENSYMP)

2021, 1–6. https://doi.org/10.1109/TENSYMP52854.2021.9550947

33. Huang, X.; Leng, S.; Maharjan, S.; Zhang, Y. Multi-agent deep reinforcement learning for computation offloading and inter-

ference coordination in small cell networks. IEEE Trans. Veh. Technol. 2021, 70(9), 9282–9293.

https://doi.org/10.1109/TVT.2021.3096928

34. Gao, Z.; Yang, L.; Dai, Y. Large-scale computation offloading using a multi-agent reinforcement learning in heterogeneous

multi-access edge computing. IEEE Trans. Mob. Comput. 2022, 22(6), 3425–3443. https://doi.org/10.1109/TMC.2022.3141080

35. Zhang, J.; Wu, M.; Zhao, M. Joint computation offloading and resource allocation in C-RAN with MEC based on spectrum

efficiency. IEEE Access 2019, 7, 79056–79068. https://doi.org/10.1109/ACCESS.2019.2922702

36. Fooladivanda, D.; Rosenberg, C. Joint resource allocation and user association for heterogeneous wireless cellular networks.

IEEE Trans. Wirel. Commun. 2012, 12(1), 248–257. https://doi.org/10.1109/TWC.2012.121112.120018

37. Wang, Y.; Han, Z. Ant colony optimization for traveling salesman problem based on parameters optimization. Appl. Soft

Comput. 2021, 107, 107439. https://doi.org/10.1016/j.asoc.2021.107439

38. Wu, L.; Huang, X.; Cui, J.; Liu, C.; Xiao, W. Modified adaptive ant colony optimization algorithm and its application for

solving path planning of mobile robot. Expert Syst. Appl. 2023, 215, 119410. https://doi.org/10.1016/j.eswa.2022.119410

39. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM

Trans. Netw. 2015, 24(5), 2795–2808. https://doi.org/10.1109/TNET.2015.2487344

40. Singh, S.; Kim, D.H. Joint optimization of computation offloading and resource allocation in C-RAN with mobile edge com-

puting using evolutionary algorithms. IEEE Access 2023, 11, 112693–112705. https://doi.org/10.1109/ACCESS.2023. 3322650

https://doi.org/10.3934/bdia.2015001
https://doi.org/10.3934/bdia.2015001
https://doi.org/10.1016/j.procs.2021.03.041
https://doi.org/10.1109/CIT.2016.64
https://doi.org/10.1109/ACCESS.2020.2973359
https://doi.org/10.1109/VTC2021-Spring51267.2021.9448864
https://doi.org/10.1109/VTC2021-Spring51267.2021.9448864
https://doi.org/10.3390/math11030522
https://doi.org/10.1109/ACCESS.2020.3004509
https://doi.org/10.3390/app13074643
https://doi.org/10.1007/3-540-46016-0_12
https://doi.org/10.1109/TENSYMP52854.2021.9550947
https://doi.org/10.1109/TVT.2021.3096928
https://doi.org/10.1109/TMC.2022.3141080
https://doi.org/10.1109/ACCESS.2019.2922702
https://doi.org/10.1109/TWC.2012.121112.120018
https://doi.org/10.1016/j.asoc.2021.107439
https://doi.org/10.1016/j.eswa.2022.119410
https://doi.org/10.1109/TNET.2015.2487344

