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Abstract: Cancer affecting the colorectal region (CRC) is a leading contributor to world-

wide cancer-associated mortality, where timely and precise diagnosis is critical for en-

hancing patient prognosis. Although histopathology remains the benchmark for diagnos-

tic accuracy, its manual assessment is time-consuming and subject to variability among 

pathologists. To address these challenges, this paper proposes a novel optimization 

framework “CrcMRFA,” based on the Manta Ray Foraging Optimization (MRFO) algo-

rithm to fine-tune convolutional neural nets initialized with learned weights from prior 

training for histopathological image classification. Three architectures-VGG16, ResNet50, 

and DenseNet121 were optimized with respect to key hyperparameters, encompassing 

parameters such as learning rate, batch size, dropout rate, and the number of trainable 

layers. Experimental evaluation leveraging the Kather_texture_2016_image_tiles_5000 

dataset demonstrated significant performance enhancements across all metrics. The op-

timized ResNet50 achieved the best results, with accuracy improving from 90.32% to 

95.97% and the Weighted Sum Metric (WSM) exceeding 96.77%. These findings highlight 

the potential of MRFO in automating CNN optimization for robust and efficient CRC 

tissue classification. 

Keywords: Histopathological; Colorectal Cancer (CRC); Convolutional Neural Network 

(CNN); Manta Ray Foraging Optimization (MRFO); Transfer Learning (TL). 

 

1. Introduction 

Cancer involves the abnormal and uncontrolled proliferation of cells, which can infiltrate and harm nearby 

tissues [1]. Colorectal cancer (CRC), often known as colon cancer, originates in the colon a 1.5-meter-long 

muscular component of the digestive system. Many of these cancers begin as noncancerous adenomatous 

polyps in the colon lining, which can progress to malignancy if not detected and removed [2]. 
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As of 2020, CRC has emerged as the third most common cancer on a worldwide scale, with around 1.93 million 

newly diagnosed cases, and was the second leading cause of cancer-related mortality, accounting for close to 

one million deaths [3]. Projections indicate that by 2040, the number of new CRC cases everywhere will rise to 

3.2 million [4]. 

 

CRC can be identified using both indirect methods, such as blood tests assessing liver and kidney function, and 

direct visualization techniques, including colonoscopy and computed tomography (CT) scans. Despite the 

availability of these tools, histopathological examination of tissue biopsies remains the definitive diagnostic 

method. [5]. This process involves pathologists inspecting tissue samples under a microscope to evaluate cel-

lular architecture, morphology, and detect potential anomalies [6]. However, such manual evaluations are often 

labor-intensive, expensive, and subject to individual interpretation, depending significantly on the pathologist’s 

experience. [7]. Consequently, the reliance on automated diagnostic systems is rising, driven by the need for 

speed, consistency, and objectivity in medical assessments [8]. 

 

Recent progress in artificial intelligence (AI) has enabled the development of deep learning (DL) techniques, 

particularly Convolutional Neural Networks (CNNs), that have shown superior performance in the analysis of 

medical images [9]. CNNs are especially effective for tasks involving feature extraction and image classification 

[10]. Their applications cover various areas of medical imaging, such as detecting skin cancer [11], identifying 

lung and brain tumors [12], diagnosing liver conditions [13], and recognizing breast cancer [14]. Additionally, 

CNNs have proven to be highly accurate in classifying colorectal cancer (CRC) histopathological images, often 

requiring minimal preprocessing [15]. 

 

Enhancing the performance of such models often relies on optimization strategies. Metaheuristic algorithms are 

particularly favored due to their flexibility and efficiency in fine-tuning model parameters [16]. Prominent 

examples of these algorithms include the Grasshopper Optimization Algorithm (GOA) [17], Owl Search Algo-

rithm (OSA) [18], Cuckoo Search (CS) [19], Whale Optimization Algorithm (MOA) [20], gorilla troops optimi-

zation algorithm (GTO) [21], and Mayfly Optimization Algorithm (MOA) [22]. 

 

Among various optimization methods, Manta Ray Foraging Optimization (MRFO) [23] distinguishes itself 

through its unique chain, cyclone, and somersault foraging mechanisms, which provide a dynamic and adap-

tive balance between exploration and exploitation. Unlike Particle Swarm Optimization (PSO), which may 

prematurely converge due to limited diversity in the swarm, or Genetic Algorithms (GA), which often require 

extensive parameter tuning and incur higher computational cost, MRFO introduces flexible search phases that 

maintain population diversity while steadily guiding solutions toward optimal regions. This dynamic behavior 

enables MRFO to avoid stagnation at a local minimum, a common challenge in high-dimensional search spaces. 

Such characteristics are particularly advantageous for convolutional neural network (CNN) hyperparameter 

optimization in medical imaging, where the parameter space is complex, non-convex, and prone to overfitting. 

By leveraging its adaptive exploration–exploitation trade-off, MRFO facilitates more efficient identification of 

robust hyperparameter configurations, making it especially suitable for applications such as [24], [25]. 

 

Primary Contributions to this Study 

 Establishment of Baseline Metrics: Pre-trained CNN models are assessed using the 

Kather_texture_2016_image_tiles_5000 dataset to provide a reference for performance comparison. 

 MRFO-Based Hyperparameter Optimization: Critical training parameters—including optimizer 

choice, batch size, layer freezing configuration, and dropout rate—are adaptively optimized via MRFO 

for three popular pre-trained architectures. 

 Efficiency Analysis: The study assesses the influence of MRFO on training efficiency, considering 

convergence validation accuracy. 

 Comparative Benchmarking: The proposed MRFO-enhanced approach is benchmarked against con-

temporary methods to underscore its performance gains in accuracy and computational efficiency. 
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The rest of this paper is organized as follows: Section 2 explains relevant research on colorectal cancer image 

classification. Section 3 provides an in-depth exposition of the adopted methodology. Behind the CrcMRFA 

architecture and its components. Section 4 details results and comparative analysis. Section 5 concludes the 

study and proposes directions for future work. 

 

2. Related Work 

Recent advances in colorectal cancer (CRC) histopathology classification have explored a variety of strategies. 

One of the first examples of applying convolutional neural networks (CNNs) to colorectal cancer histopathol-

ogy is presented in [26], which proposed the Accurate, Reliable, and Active (ARA) image classification frame-

work using a Bayesian CNN (ARA-CNN). The model integrates uncertainty estimation through variation 

dropout-out-based entropy to detect mislabeled samples and enhance training efficiency. It achieved a 45% 

faster learning rate, a classification accuracy of 92.44% under 10-fold cross-validation, and an AUC of 99.5%. 

The research presented in [27] Proposed a novel feature representation approach that integrates multiple tex-

ture-based descriptors within the complex Shearlet domain. The method focuses on extracting four prominent 

descriptors: texture features from co-occurrence matrices, LBP, LOSIB, and segmentation-driven fractal analysis, 

enabling robust modeling of local and global image properties. The method leverages both the magnitude and 

relative phase components of Shearlet coefficients and employs Principal Component Analysis (PCA) for di-

mensionality reduction. Evaluated using Support Vector Machine (SVM) and Decision Tree Bagger (DTB) clas-

sifiers, the approach achieved a state-of-the-art accuracy of 92.56% on the Kather histopathological dataset. 

This study [28] proposed a transfer learning-based approach that leverages multiple convolutional neural 

network (CNN) architectures to generate an ensemble of models. Particle Swarm Optimization (PSO) is em-

ployed to dynamically select a relevant subset of these models, which are then combined using voting or av-

eraging strategies. Validated on a histopathological dataset with seven CNN architectures, the method achieved 

an accuracy of 94.52% using ResNet121 in conjunction with a voting scheme, demonstrating the effectiveness of 

dynamic ensembling for improving classification performance. 

The research presented in [29] Developed a customized convolutional neural network (CNN) model and vali-

dated its performance on the Kather-5000 dataset. A comparative analysis involving twenty machine learning 

models based on manually extracted features demonstrated that the proposed CNN achieved the lowest clas-

sification error rate of 22.7%, highlighting its effectiveness over traditional approaches. 

The study presented in [30] Utilized the Colorectal Histology dataset, which consists of 5,000 images collected 

from the University Medical Center Mannheim. The proposed approach involves two main steps: (1) Feature 

learning facilitated by convolutional filters within neural architectures via transfer learning, and (2) classifica-

tion using various machine learning algorithms, including Bayes Multilayer, k-Nearest Neighbors, Random 

Forest, Naive Bayes, and Support Vector Machine (SVM). Among the 108 evaluated feature extractor–classifier 

combinations, the pairing of DenseNet169 with an SVM using the RBF kernel yielded the best results, achieving 

an accuracy of 92.08%, an F1-score of 92.117%, and maintaining a low computational cost.  

The study presented in [31] Evaluated five machine learning algorithms—SVM, biologically inspired networks 

(ANN), proximity-based learners (KNN), probabilistic discriminants with quadratic boundaries (QDA), and 

hierarchical partitioning techniques (CDT)—on a dataset of 3,504 training and 1,496 testing images. The study 

shows that combining texture-based representations from multichannel color features improves classification 

performance. QDA achieved the highest accuracy, exceeding 97% on both sets, particularly with the RGB color 

space. This method outperforms prior approaches that rely solely on grayscale features. 

The results reported in [32] Suggest that the proposed ensemble techniques using the product rule and E-CNN 

using majority voting—are effective for colorectal cancer histopathology classification. The framework employs 

fine-tuned pre-trained models with block-wise adaptation, along with added dense and dropout layers to en-
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hance feature learning. The ensemble aggregation significantly improves classification performance, achieving 

accuracies of 95.20% on the Stoean dataset (357 images) and 94.52% on the Kather dataset (5,000 images), out-

performing existing methods. As reported in [33], a hybrid deep learning framework combining a dilated 

ResNet-101 with an attention module for feature extraction. Neighborhood Component Analysis (NCA) is used 

for feature reduction, observed by classification using a Deep Support Vector Machine (DeepSVM) inside an 

ensemble strategy. Validated on the CRC-5000 dataset, the model achieved 98.75% accuracy, demonstrating 

superior efficiency and generalizability over existing methods. 

In a recent study, [34] introduced a computationally efficient snapshot ensemble approach using MobileNet-V2, 

capturing model snapshots at different epochs to extract deep features from the final layer. Particle Swarm 

Optimization (PSO) is employed for dimensionality reduction, achieving a 53.75% reduction in feature space 

while preserving high classification performance. The method achieved state-of-the-art results on a public CRC 

dataset, with 97.60% accuracy and a 97.61% F1-score. 

The existing literature primarily emphasizes feature extraction, ensemble learning, transfer learning, and model 

selection, with limited focus on systematically optimizing hyperparameters of pretrained deep learning models. 

Although techniques like PSO and Neighborhood Component Analysis (NCA) have been applied for feature 

selection and ensembling, the use of advanced hyperparameter optimization (HPO) methods remains under-

explored in histopathological image classification. 

To address this gap, our study explores the impact of HPO using the Manta Ray Foraging Optimization (MRFO) 

algorithm for pretrained models. Unlike traditional manual or heuristic-based tuning, MRFO provides a more 

adaptive and robust search strategy. The subsequent section outlines the core concepts and algorithms under-

pinning the proposed approach.  

3. Materials and Methods 

3.1. Dataset and Preprocessing 

In this study, we utilize the Kather_Texture_2016_Image_Tiles_5000 collection of texture images [35], which 

consists of 5,000 high-resolution, non-overlapping image patches (150 × 150) extracted from hematoxylin and 

eosin (H&E)-stained colorectal cancer tissue slides. These images are categorized into eight histologically 

meaningful classes that reflect key components of the tumor microenvironment. The TUMOR class represents 

malignant epithelial regions with abnormal cell growth, while STROMA corresponds to the connective tissue 

framework that supports tumors. COMPLEX regions exhibit mixed or intricate structures combining tumor, 

stromal, and other elements. LYMPHO denotes areas of lymphocytic infiltration, highlighting the immune 

system’s interaction with cancer cells, and DEBRIS captures necrotic or degenerated tissue resulting from cell 

death. The MUCOSA class represents the normal epithelial lining of the gastrointestinal tract, whereas ADI-

POSE depicts fat tissue that may influence tumor progression. Finally, the EMPTY class corresponds to back-

ground regions without meaningful tissue content, often representing artifacts or slide gaps. Figure 1 illustrates 

representative examples of each category. 

 

Figure 1. Randomly selected tiles from the Kather_Texture_2016_Image_Tiles_5000 dataset showcase distinct histological patterns 

across eight tissue classes. Adipose and lymphoid tissues exhibit clear morphological signatures—vacuolated fat cells and dense 

immune nuclei, respectively. Tumor regions display pleomorphic, irregular structures, while mucosa and stroma reveal organized 

epithelial and fibrous frameworks. Complex and debris tiles highlight mixed and degraded tissue zones, and empty tiles represent 

non-informative backgrounds. This visual diversity supports robust multi-class classification in histopathology. 
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In fact, this dataset has been widely employed in numerous investigations, particularly in the development of 

deep learning algorithms for the automatic detection and classification of tissue features related to colorectal 

cancer. Despite being introduced in 2016, it remains one of the most used benchmarks in colorectal cancer his-

topathology, ensuring comparability with prior studies. Recent works [34], [36], [37] continue to adopt this da-

taset, underscoring its enduring relevance for evaluating both deep learning and optimization methods in CRC 

classification. 

 

To address class imbalance, under-sampling was applied to ensure equal representation across all classes [38]. 

The dataset was randomly partitioned into training (80%), validation (10%), and test (10%) sets [39], yielding 

4000, 496, and 496 images, respectively. This split ensures unbiased distribution across subsets and supports 

effective model training, while providing adequate data for performance evaluation and hyperparameter tun-

ing [40]. All images were pre-processed by up-sampling to 224×224 and padded using bilinear interpolation. 

This resizing ensures compatibility with pre-trained CNN architectures, balancing computational efficiency 

and accuracy [41], while the interpolation preserves structural consistency and minimizes artifacts—aligning 

with standard practices in histopathological image analysis [42], [43]. 

 

3.2. Proposed methodology 

The proposed method employs deep learning techniques for histopathological image classification by 

leveraging multiple convolutional neural network (CNN) architectures through a transfer learning framework. 

In this study, transfer learning is applied in two phases to improve classification performance, utilizing three 

pretrained models: VGG16, ResNet50, and DenseNet121. These networks were initially trained using the 

ImageNet dataset, serve as robust feature extractors tailored for large-scale image classification tasks. VGG16 is 

a 16-layer CNN comprising 13 convolutional and 3 fully connected layers, structured into five blocks. It 

employs 3×3 filters to enhance feature localization and depth while maintaining manageable complexity. Its 

simplicity and transfer learning efficacy make it a reliable baseline [44]. 

ResNet50 is a 50-layer deep CNN organized into 16 residual blocks. It uses identity shortcuts to mitigate 

vanishing gradients, enabling stable training of deeper networks and effective hierarchical feature extraction 

[45]. DenseNet121 consists of 121 layers with dense connectivity, where each layer receives inputs from all 

preceding layers. This promotes feature reuse and efficient gradient flow, with four dense blocks separated by 

transition layers to manage dimensionality and computational cost [46]. As shown in Figure 2, the framework 

adopts a two-phase transfer learning approach. In Phase 1, pretrained CNNs act as fixed feature extractors by 

freezing all layers and replacing the original classification head with a custom fully connected (FC) layer. 

VGG16 includes two intermediate FC layers with ReLU and dropout; other models incorporate normalization 

and dropout before the final layer to improve generalization. In Phase 2, selective fine-tuning is applied by 

unfreezing a subset of pretrained layers based on a transfer learning (TL) ratio hyperparameter. This enables 

gradual adaptation to the target dataset while retaining dropout-based regularization to mitigate overfitting. To 

boost performance during Phase 2, the Manta Ray Foraging Optimization (MRFO) algorithm is applied to tune 

key hyperparameters. As detailed in Algorithm 1, MRFO efficiently searches for optimal values of optimizer 

type, TL ratio, dropout rate, and batch size. This guided tuning enhances model accuracy and generalization on 

the target dataset. 

Algorithm 1: Manta Ray Foraging Optimization Deep Learning Approach (CrcMRFA) 

Input: model_names, NO_ITERATION, population, ranges 

Output: bestSolutions, bestScores 

1 For model_name in model_names:  

2      Initialize bestSolutions, bestScores 

3  For iteration = 1 to NO_ITERATION: 

4   score_list ← [fitnessFunction(ind) for ind in population] 

5   population ← populationUpdate(population, score_list) 

6   Update bestSolutions and bestScores 
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Figure 2. Graphical overview of the proposed two-phase deep learning pipeline for multi-class tissue classification. In the first 

phase, three pre-trained models (VGG16, ResNet50, and DenseNet121 ) are trained and evaluated on an under-sampled 

histopathological dataset (5000 images across 8 classes), establishing baseline metrics using Accuracy, Precision, Recall, F1 Score, 

and Weighted Scoring Metric (WSM). The second phase applies population-based hyperparameter optimization (HPO) to refine 

model configurations, followed by re-evaluation using the same metrics and data partitions. This abstraction highlights the 

performance gains achieved through systematic optimization and supports reproducible benchmarking across architectures. 
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Figure 3 illustrates the operational flowchart of the Manta Ray Foraging Optimization (MRFO) algorithm, out-

lining its key procedural steps. Intuitively, MRFO simulates the intelligent foraging strategies of manta rays, 

including chain foraging, cyclone foraging, and somersault foraging, which balance exploration of the search 

space with exploitation around promising solutions. This balance makes MRFO particularly suitable for 

high-dimensional medical imaging tasks, where it is essential to avoid local-minima while efficiently refining 

promising hyperparameter regions. The corresponding pseudocode is presented in Algorithm 2, which has 

been adapted from the original MATLAB implementation and rewritten in Python for integration into our 

pipeline. Unlike traditional metaheuristic optimizers such as Particle Swarm Optimization (PSO) and Genetic 

Algorithms (GA), which may prematurely converge or require extensive tuning, MRFO introduces dynamic 

movement strategies that improve population diversity and search efficiency. This distinction underlines the 

novelty of our approach in applying MRFO for hyperparameter optimization in colorectal cancer histopatho-

logical image classification. The original MATLAB source code is publicly available at [47]. 

 

Algorithm 2: pseudocode of the Manta Ray Foraging Optimization algorithm 

Input: Population size N, maximum iterations T, bounds [Lb,Ub], problem dimension D 

Output: optimal solution xbest 

1 Initialize population size {  }   
 , randomly within [Lb,Ub]  

2 Set iteration counter t   0 

3 Evaluate fitness f(xi) for each manta ray 

4 Set the initial best solution xbest (t) 

5 While t ≤ T: 

6  For each manta ray i = 0, ……., N: 

7   Generate random numbers r, r1   [0,1] 

        (    
     

 
)                #Cyclone Foraging 

            √|      |            #Chain Foraging 

8   If r < 0.5:                               #Cyclone Foraging 

9    c   t / T                            # Coefficient 

If c > r: 

10       If i = 0: 

11      xi(t+1) = xbest(t) + (r + β ) (xbest(t) - xi(t)) 

12     Else: 

13      xi(t+1) = xbest(t) + β (xbest(t) - xi(t)) + r (xi-1(t) - xi(t)) 

14    Else: 

15     If i = 0: 

16      xi(t+1) = xrand(t) + β (xrand(t) - xi(t)) + r (xbest(t) - xi(t)) 

17     Else: 

18      xi(t+1) = xrand(t) + β (xrand(t) - xi(t)) + r ( xi-1 (t) - xi(t)) 

19   Else: 

20    If i = 0:                                  #Chain Foraging 

21     xi(t+1) = xi(t) + α (xbest(t) - xi(t)) + r (xbest(t) - xi(t)) 

22    Else: 

23     xi(t+1) = xi(t) + α (xbest(t) - xi(t)) + r (xi-1(t) - xi(t)) 

24   Evaluate fitness f(xi(t+1)) 

25   If f(xi(t+1)) > f(xbest), update xbest   xi(t+1) 

26   xi(t+1) = xi(t) + s   (r2   xbest - r3   xi(t))    # Somersault Foraging 

27   Evaluate fitness f(xi(t+1)) 

28   If f(xi(t+1)) > f(xbest), update xbest   xi(t+1) 

29  Increment t   t+1 
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This structured approach, combining transfer learning and hyperparameter optimization, improves the relia-

bility and effectiveness of deep models for histopathological image categorization in colorectal cancer staging. 

A loop is executed for each pretrained CNN model, following these steps:  

 

1) Population Initialization: The initial population consists of ten solutions, each representing four hyperpa-

rameters to be optimized. This forms a (10, 4) matrix, with each value randomly initialized between 0 and 1. 

These values are then mapped to their respective hyperparameter ranges.  

 

2) Calculating Fitness Scores: For each solution, fitness scores are computed as outlined in Algorithm 3. The 

solutions are mapped to their corresponding hyperparameters, which are used in training the selected 

pre-trained convolutional model trained for a specific number of iterations. After training, the model’s Predic-

tive capability is evaluated using five metrics: accuracy, precision, recall, F1-score, and area under the curve 

(AUC) for each class [48]. The results are stored in the population scores list. 

 

Algorithm 3: Fitness Function 

Input: solution 

Output: score 

1 Map solution parameters to batch size, optimizer, TL ratio, and dropout 

2 Initialize data loaders for train, validation, and test with appropriate shuffling 

3 Build a model with mapped hyperparameters 

4 Define the loss function and optimizer 

5 Train model and record metrics 

6 Evaluate model on test set to obtain score 

Since the dataset is balanced, accuracy serves as a reliable indicator of overall model performance, representing 

the proportion of correctly classified samples, as shown in Equation (1) To evaluate class-wise performance, we 

compute precision, recall, and F1-score using standard (macro or weighted) averaging. 

Precision captures the extent to which predicted instances within each class are correctly identified, as shown in 

Equation (2). Recall, shown in Equation (3), quantifies the proportion of actual instances correctly identified by 

the model. Finally, the F1-score brings together how often the model is right (precision) and how often it finds 

all the right answers (recall), offering a fair overall score, as described in Equation (4). 

         
∑    

 
   

∑                      
 
   

 (1) 

where  n  is the total number of classes, i is the class we are currently evaluating, TPi is the true positives for 

class i (correctly predicted samples of class i), FPi is the false positives for class i (samples incorrectly predicted 

as class i), TNi  is the true negatives for class i (samples not in class i that were also not predicted as i).  FNi is the 

false negatives for class i (samples of class i incorrectly predicted as another class). 



IJT’2025, Vol.05, Issue 02.        9 of 20 
 

 

 
Figure 3. Flowchart illustrating the Manta Ray Foraging Optimizer (MRFO), a nature-inspired metaheuristic algorithm modeled 

on the foraging strategies of manta rays. The process begins with random population initialization and iteratively applies three 

biologically motivated behaviors: chain foraging for local exploration, cyclone foraging for global search (including spiral move-

ment for exploitation), and somersault foraging to intensify convergence around promising solutions. Random coefficients guide 

behavioral transitions, and fitness evaluations update the best solution. This abstraction captures the balance between exploration 

and exploitation, enabling robust optimization in high-dimensional search spaces. 

                    ∑(
        

∑            
 
   

   
   

        
)

 

   

 (2) 
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                   ∑(
        

∑           
 
   

   
         

      
)

 

   

 (4) 

Where j all classes when computing total dataset size, Pi precision for class i (Pi = 
   

        
), and Ri recall for class i 

(Ri = 
   

        
).  

We also calculate AUC-ROC using a One-vs-Rest (OvR) strategy, which evaluates the model’s capability to 

differentiate each class based on probability scores. These metrics provide a robust evaluation of the model’s 

classification performance on a balanced dataset. To synthesize multiple performance indicators into one com-

prehensive fitness value [49], we apply the Weighted Sum Approach (WSM) [50], we assign equal weights (wi = 

0.2) are assigned to all five metrics in Equation (5) to ensure balanced optimization across accuracy, precision, 

recall, F1, and AUC. This reflects (a) the lack of clinical or modeling rationale for favoring any single metric, (b) 

the need to prevent dominance and promote fair evaluation, and (c) standard multi-criteria decision-making 

(MCDM) practice when preferences are uniform or unspecified, especially since all metrics are monotonic with 

“higher-is-better” behavior. 

     ∑        
 
                , ∑   

 
      (5) 

where wi is the weight of the metric i, n is the total number of metrics and Mi value of the ith evaluation metric 

(e.g., Accuracy, Precision, Recall, F1-score, AUC). 

3) Population Updating: Once fitness values are determined, the population evolved to the next generation 

using the MRFO procedure discussed earlier. This process is repeated until MRFO optimization is completed. 

3.3. Experimental setup 

The experimental setup consists of two phases: baseline evaluation and hyperparameter optimization. The 

general configurations applied to both phases are summarized in Table 1. 

Table 1. Experimental Configurations for Both Phases. 

Parameter Value 

Dataset Kather_Texture_2016_Image_Tiles_5000 

Categories 
TUMOR, STROMA, COMPLEX, LYMPHO, DEBRIS, MUCOSA, ADIPOSE, 

EMPTY 

Splitting Ratio 80% (train), 10% (validation), 10% (test) 

Dataset Size 5000 

Preprocessing Methods Resizing (224×224), Bilinear Interpolation 

Learned Models VGG16, ResNet50 and DenseNet121 

Initialization weights ImageNet  

Output Classification 

Function 
SoftMax 

Total training cycles 60 

Early Stopping Patience 3 

Performance Metrics Accuracy, Precision, F1-score, AUC, Recall 

Maximum iteration Num- 15 
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ber 

Population Size 10 

Learning Environment 
Dell Precision 7920 Tower, Intel Xeon Gold 6248R CPU (3.00 GHz, 48 cores), 

64 GB RAM, NVIDIA RTX A4000 (16 GB VRAM) 

Programming Language Python 

Python Packages PyTorch, NumPy, OpenCV, Pandas, Matplotlib 

 

In the first phase, the pretrained models are evaluated using default settings. Table 2 provides a summary of 

the hyperparameter settings for this phase. 

Table 2. Hyperparameter Settings for the First Phase. 

Parameter Value 

Optimizer Adam 

Learning Rate Default (lr = 0.001) 

Transfer Learning Strategy Classifier layers only 

Batch Size 8 

Dropout Ratio VGG16: 50%. 

 

To enhance model performance, hyperparameter optimization is performed in the second phase. Various 

optimizers, learning rates, transfer learning ratios, batch sizes, and dropout rates are explored, as summarized 

in Table 3. 

Table 3. Hyperparameter Ranges for the Second Phase. 

Parameter Range 

Optimizers 
Adam, Adafactor, Adadelta, AdamW, Nadam, Adagrad, ASGD, SGD, 

RMSprop 

Learning Rate 
Default (Adam, AdamW, and SGD (0.001), Nadam (0.002), RMSprop, Adag-

rad, Adafactor, and ASGD (0.01), and Adadelta (1.0)) 

Transfer Learning Ratios [0:5:80]% 

Batch Sizes 4, 8, 16 

Dropout Ratios [0:60]% 

4. Findings and Implications 

The effectiveness of MRFO was validated through a comparative analysis of baseline models and their 

MRFO-optimized versions. 

 

4.1. Quantitative and Qualitative Analysis 

As shown in Table 4, ResNet50 outperformed DenseNet121 and VGG16 in the baseline evaluation, establishing 

it as the most effective model for histopathological image classification. Following MRFO-based optimization in 

Table 5, all models demonstrated substantial performance gains, with ResNet50 maintaining its superiority. 

These results underscore the benefits of optimization in enhancing model accuracy and overall classification 

robustness and highlight ResNet50 as the most reliable choice for this task. 

Table 4. Performance Evaluation of Baseline Models. 

Model Accuracy Precision Recall F1 Score AUC-ROC WSM Score 

DenseNet121 88.10% 88.14% 88.10% 87.95% 0.9859 90.18% 
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ResNet50 90.32% 90.73% 90.32% 90.14% 0.9924 92.15% 

VGG16 86.29% 87.89% 86.29% 86.15% 0.9791 88.91% 

 

Table 5. Performance Evaluation of MRFO-Optimized Models. 

Model Accuracy Precision Recall F1 Score AUC-ROC WSM Score 

DenseNet121 94.96% 95.00% 94.96% 94.93% 0.9974 95.92% 

ResNet50 95.97% 96.16% 95.97% 95.98% 0.9975 96.77% 

VGG16 94.96% 94.99% 94.96% 94.96% 0.9964 95.90% 

These improvements validate the effectiveness of the MRFO optimization strategy in fine-tuning model 

hyperparameters, thereby enhancing the overall classification capability in histopathological image analysis 

tasks. The statistical analysis further confirmed this observation. Normality checks on the paired differences 

(optimized – baseline) using Shapiro–Wilk, Anderson–Darling, and in Figure 4 the QQ-plots indicated no 

substantial deviation from normality, despite the small sample size (n = 3). Accordingly, the paired t-test results 

were considered more reliable in this setting and confirmed significant gains in Accuracy (p = 0.015), Precision 

(p = 0.006), Recall (p = 0.015), F1 score (p = 0.014), and WSM score (p = 0.014). The improvement in AUC-ROC (p 

= 0.085) was not statistically significant, likely because the baseline models already achieved very high AUC 

values. Although the Wilcoxon signed-rank test did not detect significance due to the limited number of paired 

observations, the paired t-test—appropriate under the observed normality of differences—demonstrated 

consistent improvements across nearly all metrics. Overall, these findings indicate that optimization 

significantly enhanced performance in classification-related measures, while AUC improvements remained 

modest given the strong baseline values. 

To obtain a more comprehensive view of the ResNet50 functionality, a confusion matrix in Figure 5 

demonstrates that the model demonstrates strong performance with notable accuracy across most classes. 

ADIPOSE (TP = 61) and DEBRIS (TP = 61) show perfect classification, while EMPTY (TP = 61) also performs well 

with only one incorrectly identified instance (FP = 1). The MUCOSA (TP = 62) class achieves flawless results. 

However, STROMA shows eight misclassification (FN = 8) and three missed detections (FP = 3), indicating a 

potential overlap with other classes like COMPLEX and DEPRIS. The counts of correctly classification (TN) 

remain high across all classes, suggesting that the model is effectively rejecting irrelevant categories in most 

cases. In the Figure 6 The ROC curves revealed near-perfect separability, with AUC values approaching the 

upper bound of 1.00, underscoring the model's strong discriminative capability—even in complex categories 

such as TUMOR and COMPLEX. Complementing this, the PR curves exhibited high precision sustained over a 

wide recall range, Reflecting minimal false positives and stable accuracy in true case recognition, these metrics 

collectively affirm the model’s robustness, sensitivity, and applicability to histopathological image 

classification. In clinical settings, black-box predictions are insufficient; pathologists and regulatory bodies 

demand transparency. Integrating explainable AI (XAI) techniques—such as class activation maps (CAMs), 

Grad-CAM, or attention-based visualizations—could help elucidate which histological features drive model 

predictions, especially in borderline cases like STROMA, where misclassifications were observed. Such insights 

are critical for building trust and enabling collaborative decision-making between AI systems and clinicians. 
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Figure 4: QQ-plots of the paired performance differences (optimized – baseline) for all evaluation metrics (Accuracy, Precision, 

Recall, F1 score, AUC, and WSM). The plots show that the data points largely follow the theoretical normal distribution line, 

indicating no substantial deviations from normality. This supports the use of the paired t-test for statistical comparison despite the 

small sample size (n = 3). 

 

Figure 5. Confusion matrix illustrating the classification performance of the Optimized ResNet50 model across eight histological 

tissue classes. Strong diagonal dominance indicates high predictive accuracy, with perfect or near-perfect classification for 

ADIPOSE, EMPTY, MUCOSA, and TUMOR. Minor misclassifications occur primarily between structurally similar classes such as 

STROMA and COMPLEX, suggesting potential overlap in feature representations.  
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Figure 6. Performance curves for the Optimized ResNet50 model on multi-class tissue classification. Top panel: Precision-Recall 

curves demonstrate high discriminative power across most tissue classes, with ADIPOSE, LYMPHO, MUCOSA, STROMA, and 

TUMOR achieving near-perfect precision and recall. The COMPLEX class shows reduced performance, indicating classification 

challenges due to structural ambiguity. Lowest panel: ROC curves reveal strong sensitivity and specificity, with most classes 

approaching the top-left corner, signifying excellent true positive rates and minimal false positives. These curves validate the 

model’s robustness and reliability following hyperparameter optimization. 
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4.2. Performance Comparison with Advanced Models 

Table 6 Presents a performance-oriented comparison between the introdced method relative to contemporary 

advanced techniques on the Kather_texture_2016_image_tiles_5000 dataset, ranked by accuracy in descending 

order. The results demonstrate that the proposed method outperforms all others, achieving the highest values 

across four evaluation metrics and ranking second in F1-score. 

Table 6. Performance Comparison with Advanced Models 

Ref. Method 
Feature Extraction + Classifi-

er 
Accuracy Precision Recall F1 Score 

AUC-R

OC 

[51] ML LPQ + BSIF + NN 74.22% - - - - 

[32] DL 

E-CNN (DenseNet121, Mo-

bileNetV2, InceptionV3, and 

VGG16) – Product Fusion 

91.28% - 79.97% - - 

[30] Hybrid DenseNet169 + SVM (RBF) 92.08% - - 92.12% - 

[26] DL ARA-CNN 92.44% - - - 0.995 

[27] ML 
Fusion of CM, LBP, LOSIB, 

SFTA, and CM dot + SVM 
92.54% 92.67% 92.54% - 0.9906 

[52] DL 

Ensemble weights (Dense-

Net121, InceptionResNetV2, 

Xception, + custom CNN) 

92.83% 92.83% 93.11% 96.16% 0.9616 

[53] DL Customized CNN model 93.50% 94.12% 93.62% 93.86% 0.9573 

[31] ML 

Haralick features using 3D 

co-occurrence matrices in LAB 

color space + QDA 

94.04% - 94.00% - - 

[28] DL 

Modified ResNet121 with 

added layers + PSO for model 

selection + voting 

94.52% - - - - 

[54] ML 

WPT, Gabor filters, LBP, 

GLCM, FOS & HOS + ANO-

VA test + ANN 

95.32% - - - - 

[55] Hybrid VGG19 + NN 95.46% - - 94.00% - 

P
ro

p
o

se
d

 

M
et

h
o

d
 Opti-

mized 

DL 

CrcMRFA (ResNet50) 95.97% 96.16% 95.97% 95.98% 0.9975 

4.3. Study limitations  

This study has several limitations. First, the dataset size is minor compared to large-scale medical imaging 

benchmarks, which may restrict the full learning capacity of deep models. Second, only a single dataset 

(Kather_2016) was employed, limiting the diversity of tissue variations captured. Third, the absence of external 

validation across independent datasets or clinical centers constrains the assessment of generalizability. Fourth, 

the statistical analysis was based on only three paired backbone models (DenseNet121, ResNet50, and VGG16), 

which reduced the power of non-parametric tests such as the Wilcoxon signed-rank test. Nevertheless, nor-

mality checks supported the use of paired t-tests, which confirmed significant improvements across most met-

rics. Future work will focus on validating the proposed approach on multi-center datasets and expanding the 

set of backbone models to further confirm robustness and clinical applicability. 
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5. Conclusions 

This research highlights the effectiveness of integrating Manta Ray Foraging Optimization (MRFO) with the 

classification of histopathological data that is advanced using convolutional neural networks. The significant 

performance gains—particularly the 95.97% accuracy and 96.77% WSM score achieved by MRFO-optimized 

ResNet50—underscore the impact of bio-inspired optimization on medical image analysis. These results affirm 

the proposed framework’s ability to extract rich, discriminative features while maintaining computational effi-

ciency, which is critical for practical diagnostic use. 

 

The proposed approach holds promise for deployment in computer-aided diagnosis (CAD) systems, digital 

pathology workflows, and automated screening platforms, where accurate and scalable image interpretation 

is essential. It can assist pathologists by reducing workload, improving consistency, and accelerating diagnosis, 

especially in resource-constrained settings. 

 

Building on the identified limitations, future work will focus on evaluating model generalizability across larger 

and more diverse multi-source datasets, with particular emphasis on external validation across independent 

cohorts and clinical centers. To address the constraint of limited backbone models and statistical power, the 

study will be expanded to include a broader range of architectures, enabling more robust comparative analysis. 

Furthermore, incorporating domain adaptation strategies will help mitigate dataset-specific biases, while the 

integration of advanced mechanisms such as attention modules, transformer-based architectures, or hybrid 

fusion frameworks may enhance both interpretability and classification precision. Finally, the development of 

lightweight model variants will be explored to support real-time implementation on edge devices, thereby fa-

cilitating practical clinical adoption. 

 
Data Availability Statement: The 'Kather_texture_2016_image_tiles_5000' dataset used in this work is open and 

available at https://zenodo.org/records/53169. 
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