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Abstract:The necessity for effective and precise diagnostic methods to 

identify cardiac abnormalities has been highlighted by the rising prevalence 

of cardiovascular diseases. Electrocardiography (ECG), a widely used 

modality for assessing cardiovascular health, capturing the heart's electrical 

activity. However, interpreting ECG signals is often challenging 

necessitating advanced methods for reliable analysis. Therefore, this research 

proposes a novel Deep Learning (DL) approach for detecting cardiac 

afflictions in ECG imagery by integrating metaheuristic optimization 

techniques. In the initial stage preprocessing is performed, where ECG 

images are resized and denoised using Adaptive Bilateral Filtering (ABF) to 

enhance image quality. Also, Spatial Fuzzy C-Means (SFCM) Clustering 

topology is then employed for segmentation process, allowing precise 

isolation of relevant ECG signal regions. For feature extraction, the Gray-

Level Co-occurrence Matrix (GLCM) approach is utilized, capture texture 

features that are indicative of cardiac conditions. Finally, the classification 

stage is performed using a Genetic Bee Colony (GBC) algorithm optimized 

Attention-Based Convolutional Neural Network (CNN),which enables the 

system to accurately identify and classify various cardiac abnormalities. The 

system is executed in Python software, and the outcomes provide superior 

performance than conventional techniques in terms of Accuracy of (98.21%) 

and performance analysis.  
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1. Introduction 

 

Globally, Cardio Vascular Diseases (CVDs) constitute the main cause of poor public health, these 

fatal illnesses claim the lives of over 17.9 million people annually [1]. The blood and heart vessel 

problems named as CVDs contain coronary heart disease, rheumatic heart illness, and other disorders 
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[2]. The main prevalent reasons for heart illness contain unhealthy lifestyle factors like poor food, 

absence of physical action, extreme alcohol drinking, and smoking. Heart disease is also greatly 

influenced by genetic predispositions, diabetes, high cholesterol and blood pressure [3, 4]. The 

pervasiveness of heart disease highlights the necessity of developing efficient preventive measures as 

well as enhanced diagnostic and therapeutic approaches to lower the illness's death rate worldwide 

[5]. ECGs, echocardiograms, stress tests, and blood tests are among the conventional techniques used 

to diagnose cardiac disease. ECGs detect irregularities by measuring the electrical activity of heart 

[6]. The ECG graph with normal heart disease is displayed in Figure 1 [7]. Echocardiograms employ 

ultrasonography to produce images of the heart and evaluate its anatomy and physiology; however, 

quality and operator interpretation impact the accuracy of the results [8]. A built-in monitor that 

visualises the ECG signals is present in a number of commercially available ECG devices. But most 

of them unable to provide access to raw data (signal amplitude value) [9-10]. 

One potential solution to this issue is image-based analysis that processes the ECG signal [11]. 

Analysing ECG signals from image-based data is still difficult because numerous factors, including 

the visual condition of the collected data, must be considered before the classification task and the 

accuracy of conversion findings becomes crucial [12, 13]. To increase diagnostic speed and accuracy, 

computer-based approaches for cardiac disease diagnosis make use of machine learning strategies 

[14]. Artificial Intelligence (AI) is a significant factor because of tremendous developments in large 

data, technology, and knowledge collection, storage, and retrieval [15-16]. Many machine learning 

methods and their variants are employed in the cataloguing of genetic cardiac diseases and control 

subjects to forecast the initial phases of heart failure [17]. However, ML topology is biased if the 

training data is not representative and it needs a maximum amount of high-quality data [18]. In order 

to process data and detect relationships, Artificial Neural Networks (ANNs) [19] is used, which are 

designed to replicate the neural networks in the human brain. However, ANNs is computationally 

costly and require extensive tuning in order to prevent overfitting [20]. Withstanding the limitations 

of these approaches, Deep Learning approaches have potential to increase precision and dependability 

of heart disease diagnosis. Therefore, the proposed topology utilized a novel attention-based CNN 

optimized GBC algorithm for effective prediction of cardiac afflictions.           

 

 
Fig. 1: Cardiac Cycle in an ECG 
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1.1. Related Works 

This section shows related works, which utilized various classification approaches as shown in 

Table 1. The table below demonstrates the classical techniques with the dataset name used, as well 

as the accuracy and limitations for the individuals. 

 

Table 1: Related Works 

Author Approaches Dataset Accuracy Challenges 

[21] Naïve Bayes 
UIC 

Repository 
89.77% 

It struggles with interdependent features 

common in medical diagnostics, leading to 

reduced predictive precision. 

[22] CNN MIT-BIH 95% 

CNN gets often limited by fixed receptive 

fields and lack adaptive focus on 

diagnostically salient regions. 

[23] 

Multilayer 

Perceptron(MLP) 

and Deep Belief 

Network(DBF) 

MIT-BIH, 96.2% 

MLP is sensitive to signal distortion and 

noise; lacks spatial awareness in ECG texture 

representation that needs enormous tuning to 

be effective. 

[24] 
Fusion Neural 

Network 
Bench mark 89% 

This algorithm takes longer processing time 

and lack the ability to handle the different 

resolution and quality of ECG images. 

[25] 
Deep Neural 

Network 
MIT-BIH 82.3% 

DNN based classification exhibits unstable 

performance between classes of heartbeats 

because of insufficient flexibility towards 

morphology non-uniformity of signals and 

need massive sets of labelled data in order not 

to overfit. 

 

1.2 Literature Review 

Khaliq Ahmed et al (2024) [26] have proposed a two-dimensional Gaussian filter for detailed ECG 

analysis and prediction. The 2-D Gaussian filter is a low-pass filter that utilized to remove noise from 

ECG images, which is inspired by the Gaussian blur effect for photo smoothening. However, in high-

frequency diagnostic data, it reduces sensitivity in the detection of rapid waveform changes, leading 

to potential distortion of morphological detail which is crucial to accurate interpretation. 

Mohammed Moutaib et al (2023) [27] have presented K-means clustering algorithm for the 

detection of fetal ECGs. K-means algorithm is the most widely utilized clustering algorithm that 

analyses dataset characterized by set of descriptors to a group of similar data into groups or clusters. 

Nevertheless, its reliance on hard clustering, reduces its ability to overlap fetal and maternal ECGs, 

under noisy conditions, leading to misclassification and false detection of the weak traces of the fetus. 

Mostefai Lotfi et al (2025) [28] have introduced Local Binary Pattern (LBP) for extracting relevant 

features which distinctively describes the features of heartbeat activity from each person ECGs. LBP 

identifies the heartbeat activity of different subjects in the feature space, effectively captures local 

variations making it suitable for the applications involving classification of ECG signals. 

Nonetheless, it is susceptible to local timing drift due to heartbeat dynamics, reducing its discriminative 

ability on non-stationary ECG signals by misrepresenting important morphological patterns. 

Aayush Panwar et al (2025) [29] have implemented Convolutional Neural Network (CNN) 

classification approach for the ECG monitoring system in early detection of arrhythmia. CNN is 
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employed for precise both binary and multi-class classification of cardiac abnormalities, emphasizing 

the model impact on clinical practice and patient care. Yet, CNN models often require extensive 

parameter tuning, resulting in overfitting, ECG databases, and provide unstable results when deployed 

in real-world applications. 

Ana Minic et al (2023) [30] have integrated Particle Swarm Optimization (PSO) algorithm for 

attaining enhanced performance of the Recurrent Neural Network (RNN) model in detecting ECG 

data. PSO is a swarm intelligence algorithm that effectively selects optimal RNN hyperparameters 

for attaining improved ECG analysis. Though, PSO tends to converge prematurely, especially in 

large, intricate ECG feature spaces, leading to poor hyperparameter tuning in the performance of 

cardiac pathology. 

 

1.3. Problem Statement 

The traditional techniques like ECG, echocardiogram, and stress test are operator dependent, are 

overwhelmed by image quality constraints, and do not have access to raw signal data, making precise 

identification of cardiac defects challenging and unreliable. The image-based ECG analysis with 

conventional ML models have poor generalizability, low noisy ECG signal robustness, and high 

computational complexity, thus resulting in low performance when applied for image-based ECG 

classification tasks. Therefore, an efficient deep learning model and bio-inspired optimization 

algorithm is required to improve accuracy in diagnostic efficiency. 

 

1.4. Research Motivation 

The conventional ECG signal analysis approaches are not noise-resistant, immune to inter-patient 

signal variations, and spatial in homogeneities in ECG images. To overcome these limitations, this 

research proposes an ABF preprocessing filter for effective noise elimination with preservation of 

waveform details. The SFCM clustering is employed to perform precise segmentation of cardiac areas 

based on spatial relationship modelling. GLCM-based feature extraction is integrated to obtain 

texture-based variations in the morphology of ECG. An attention-based CNN, optimized using the 

GBC optimization algorithm, to detect diagnostically relevant regions and to achieve better 

generalization between heartbeat classes. 

 

1.5. Research Contributions 

Due to inter-patient variability in ECG signal image, classical approaches are unable to produce 

effective results. In addition, the growing volume of data has a detrimental impact on the effectiveness 

and precision of conventional procedures. In light of this, the developed research work's principal 

contributions for effective classification of cardiac afflictions in ECG image are given as follows,    

• Implementing ABF-based Preprocessing effectively abates different types of noises in input ECG 

image, ensuring that resized image retains high quality and reduces artifacts. It assures that critical 

waveform features remain intact, allowing more consistent segmentation and feature extraction 

for precise classification. This is significant in ECG based cardiac analysis where waveform 

subtleties denote critical irregularities.  

• Employing Spatial Fuzzy C-means Clustering for segmentation process, which enriches the 

determination of boundaries over different cardiac regions to enable superior delineation of 

affected areas. It results in more coherent region boundaries and efficient noise suppression in 

structurally correlated pixel neighbourhoods. It enhances segmentation by integrating spatial 

relationships among pixels, enabling better detection of cardiac regions.  
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• Integrating GLCM based Feature Extraction approach for capturing meaningful textural 

information relevant to different cardiac conditions. It offers a deeper representation of ECG 

signal, thereby boosting the ability of classifier to distinguish between heartbeat types. GLCM 

assures that the model obtains high discriminative input features, thereby diminishing the 

dimensionality burden and improving classification accuracy.  

• Incorporating an attention-based CNN for the classification process, which focuses on the most 

pertinent regions of the ECG image and attention mechanism enhances classification accuracy by 

highlighting informative features and decreasing the influence of irrelevant data.  

• GBC effectively fine-tunes the attention-based CNN parameters, thereby enhancing its ability to 

categorise various cardiac heartbeat conditions accurately. This automated optimization leads to 

enhanced classification accuracy and generalization across varied ECG data.  

Remaining part of paper is arranged as follows. In Section II, developed system modelling is detailed. 

Section III offers results of the experiments to validate the developed scheme and conclusions for the 

proposed system based on the outcome from the comparative analysis are shown in Section IV.  

 

 

2. Proposed System Modelling 

 

This work introduces an advanced framework that combines pre-processing, segmentation, feature 

extraction, and DL methods techniques to classify ECG signal images as represented in Figure 2. The 

dataset used includes records from varied age groups, heart conditions, and noise profiles, improving 

model exposure to real-world variability. The pre-processing step uses ABF, which receives input 

ECG signal image from dataset to eliminate noise and improve the image quality. After pre-

processing, the image undergoes segmentation using SFCM clustering technique, which partitions 

the ECG signal image into essential segments. This is essential for identifying irregularities in the 

ECG image and serves as the foundation for feature extraction.  

The segmented images undergo GLCM based feature extraction process that extracts features such 

as contrast, correlation, energy, and homogeneity representing underlying patterns in the ECG data. 

The features extracted using GLCM are arranged in the form of a 2D feature matrix where each pixel 

holds a calculated texture feature. This matrix is fed as input to the CNN model. Rather than raw 

segmented ECG image, these feature maps are processed by the CNN, enabling it to learn higher-

order spatial relationships between texture features and not raw pixel intensities. This combination of 

hand-engineered GLCM features with the CNN structure improves classification performance. The 

attention mechanism allows the model to selectively focus on diagnostically relevant areas of the 

input, optimizing its attention at inference time. The network then classifies heartbeats by making use 

of the learned representations obtained at training time, eventually separating different cardiac 

conditions with high accuracy. The CNN approach is optimized utilizing the GBC algorithm, which 

fine-tunes model parameters to advance classification accuracy of model. Also, dataset is separated 

into testing (30%) and training (70%) sets. overall, this framework is highly beneficial in clinical 

settings for the automated prediction of heart-related anomalies.    
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Fig. 2: Block diagram of cardiac prediction 

 

 

2.1. Modelling of ABF Based Preprocessing 

With the use of ABF, even in erratic images, strong noise reduction and resizing images are achieved. 

The robust ABF preserves the bilateral filter's general mechanism, as a safeguard against outliers, 

substitutes 𝑓(𝑖, 𝑗) with the mean value 𝜇(𝑖 + 𝑘̂, 𝑗 + 𝑖̂). The new parameter is computed over a 3 × 3 

kernel that is centred on pixel   (𝑖 + 𝑘̂, 𝑗 + 𝑖̂). This pixel and its eight surrounding pixels are chosen 

to create a steady intensity difference free from outlier effects. Thus 𝑘̂ and 𝑖 ̂are presented as follows, 

  

𝑘̂, 𝑖 ̂ = arg 𝑚𝑖𝑛𝑘,𝑙∈𝐴 ∑ [𝑓(𝑖 + 𝑘 + 𝑠, 𝑗 + 𝑙 + 𝑡) − 𝑓(𝑖, 𝑗)]2
𝑠,𝐿∈𝐴                                  (1) 

 

Where {−1,0,1} is represented by 𝐴. From each of the nine areas, the total of the differences’ squares 

from the processing pixels in the 3 × 3 kernel is determined. The centre of the kernel, where the sum 

of squares of the differences among them is minimised, is represented by the pixel (𝑖 + 𝑘̂, 𝑗 + 𝑖̂ ).  



JES, Vol. 54, No. 2, Pp. 54-73, March 2026            DOI: 10.21608/JESAUN.2025.392608.1541 Part B: Electrical Engineering 
 
 

______________________________________________________________________________________ 
60 

 

To find stable parameters, search the area for the least sum of squares of the difference between the 

processing pixels Equation (1). The ABF's weighting is not affected by outliers, in contrast to the 

normal bilateral filters. Because of this, the robust ABF functions reliably in ECG images by 

minimizing the noise and resizing the image effectively. Subsequently, for finding boundaries 

between different cardiac regions to facilitate superior delineation of affected areas, the segmentation 

process is essential, thus SFCM clustering approach is utilized as described below. 

 

2.2. Modelling of Spatial Fuzzy C-Means Clustering-Based Segmentation 

A crucial feature of an image is the strong correlation among adjacent pixels. On the other hand, there 

is a substantial chance that these adjacent pixels are part of the same cluster since they have similar 

feature values. An FCM algorithm does not make use of this spatial connection, despite the fact that 

it is significant for clustering. A spatial function is well-defined to take advantage of spatial information as 

 

ℎ𝑖𝑗 = ∑ 𝑢𝑖𝑘𝑘∈𝑁𝐵(𝑥𝑗)                            (2) 

 

Here, a square window centered on pixel 𝑥𝑗  in the spatial domain is denoted as𝑁𝐵(𝑥𝑗).  During this 

work, a 5 × 5 window is utilised. Like the membership function, the likelihood that pixel 𝑥𝑗 will be 

in the spatial function ℎ𝑖𝑗 under ith cluster. In terms of a pixel's spatial function, if the bulk of a 

cluster's surrounding area is contained within identical groups, a special function is integrated into 

membership that has the following functions, 

 

𝑢′𝑖𝑗 =
𝑢𝑖𝑗

𝑝,ℎ𝑖𝑗
𝑞

∑ 𝑢𝑘𝑗
𝑝,ℎ𝑘𝑗

𝑞𝑐
𝑘=1

                             (3) 

 

In this function, 𝑞 and 𝑝 specify the parameters to regulate associated significance of each function. 

When a region is homogeneous, the spatial functions reinforce the initial membership, maintaining 

the same clustering outcome. It diminishes the noisy cluster’s weighting by the labels of its adjacent 

pixels for a noisy pixel. Subsequently, erroneous blobs or imperfectly categorised pixels from noisy 

regions is readily fixed. In this context, the parameters 𝑞 and 𝑝 with spatial FCM is specified as 𝑠𝐹𝐶𝑀𝑞,𝑝. 

Every cycle involves two passes for the clustering process. The first pass used to determine the 

membership function in the spectral domain is the same as the one used in ordinary FCM. The spatial 

function is calculated in the second pass after each pixel's membership information is translated to 

the spatial domain. With the new membership integrated with the spatial function, the FCM iteration 

continues. When largest difference between two cluster centres during two consecutive iterations is 

less than a threshold (=0.02), the iteration is terminated. Following convergence, each pixel is 

assigned to a particular cluster for which the membership is utmost through the application of 

defuzzification. Overall, the introduced approach efficiently segments the features for determining 

the efficient boundaries in various cardiac regions. The classification accuracy of the developed 

classification model is highly sensitive to changes in the segmentation output, as the segmentation 

phase directly impacts the quality and relevance of extracted features from the ECG images. Accurate 

segmentation assures that the classifier receives input focused on waveform peaks and intervals.  The 

SFCM clustering is exploited because of its ability to integrate spatial dependencies that reduce 

misclassification caused by noisy or blurred boundaries. Furthermore, the enhanced homogeneity and 

contrast values in the GLCM-based texture features after segmentation prove that the delineated 

regions are more informative, leading to higher classification accuracy. Any degradation in 

segmentation adversely affects downstream feature extraction and reduce the predictive reliability of 



A Hybrid Deep Learning Framework Incorporating GBC-Optimized Attention-Based CNN and Image Processing Techniques… 
 

____________________________________________________________________________________ 
61 

 

the model. Despite this, the feature extraction process is advanced for selecting the needed features, 

thereby the classification of various cardiac are find out optimally with rapid execution time, thus the 

GLCM-based feature extraction approach is utilized in this study as discussed below.  

 

2.3. Modelling of GLCM-Based Feature Extraction 

By utilizing the GLCM approach, various features such as energy, mean, standard deviation, 

correlation and centroid is proficiently extracted from the segmented ECG image. A texture analysis 

method for greyscale images is called GLCM. Two adjacent pixels in GLCM have a relationship that 

is dictated by the greyscale intensity of a certain angle as well as distance and following Equation (5) 

expresses the GLCM,  

 

𝐺(∆𝑥,∆𝑦)(𝑎, 𝑏) = ∑ ∑ 1{𝐼(𝑖, 𝑗) = 𝑎} 𝑎𝑛𝑑 1{𝐼(+∆𝑥, 𝑗 + ∆𝑦) = 𝑏}𝑄
𝑗=1

𝑝
𝑖=1                 (4) 

 

A grey value that appears concurrently with the computation of 𝐺 (∆𝑥, ∆𝑦) (𝑎, 𝑏) is 𝐼 (𝑖, 𝑗), which is 

the grey value of column (i) and row (j) pixels. The indicator of ∆𝑥 as a direction from 𝑥 and ∆𝑦 as a 

direction of 𝑦, which is based on the distance between 𝑥 and 𝑦, is then 1{𝐼 (+∆𝑥, 𝑗 + ∆𝑦) = 𝑏}. The 

columns and rows of matching images are displayed by 𝑄 and P , the example of GLCM calculation 

is shown in Figure 3. 

 

 
Fig. 3: Example of GLCM calculation 

The GLCM matrix values are then included in the transposed outcomes after the image that is 

computed for specific distances and angles has been transposed to values acquired. The following 

formula is used to normalise the results, 

 

        𝐺𝐿𝐶𝑀𝑁𝑜𝑟𝑚 =
𝐺𝐿𝐶𝑀𝑣𝑎𝑙𝑢𝑒

∑ 𝐺𝐿𝐶𝑀𝑣𝑎𝑙𝑢𝑒
𝑁
𝑖

        (5)    

                     

Here, 𝐺𝐿𝐶𝑀𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑖𝑥𝑒𝑙 

The information obtained from the normalisation findings, including contrast, dissimilarity, 

homogeneity, ASM, energy, and correlation, is utilised to ascertain the textural qualities of the image. 

The computation of the intensity difference between neighbouring pixels throughout the full image 

serves as the function of the contrast characteristic. The measurement of dissimilarity involves 

determining how different a texture is from uniform in nature, and vice versa, where a uniform texture 
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has a small value. The function of homogeneity is to demonstrate the image's homogeneity of 

intensity changes. ASM is a method of measuring uniformity. If the pixel values are comparable to 

one another, it yields a high value; if they are dissimilar, it yields a low number. The attentiveness of 

intensity pairs in the matrix is measured by energy, and the linearity of multiple pixel pairs is 

measured by correlation.  Table 2 displays the equation needed to obtain each attribute. 

 

Table 2: GLCM characteristics equations 

GLCM characteristics Equations 

Homogeneity ∑
Pa,b

1 + (a − b)2

level−1

a,b=0

 

Contrast ∑ Pa,b(a − b)2

lavel−1

a,b=0

 

Dissimilarity ∑ Pa,b|a − b|

lavel−1

a,b=0

 

Energy √ ∑ Pa,b
2

lavel−1

a,b=0

 

ASM ∑ Pa,b
2

lavel−1

a,b=0

 

Correlation 

∑ Pa,b [
(a − μa)(b − μb)

√(σ2
a)(σ2

b)
]

lavel−1

a,b=0

 

μa = ∑ a

a

∑ Pab

b

 

μb = ∑ b

b

∑ Pab

a

 

σ2
a = ∑(a − μa)2

a

∑ Pab

b

 

σ2
b = ∑(b − μb)2

b

∑ Pab

a

 

 

Where, on GLCM matrix the value of coordinate pixel is specified as 𝑃𝑎,𝑏 and the pixel coordinates 

on the matrix are denoted as 𝑎, 𝑏 respectively. Consequently, the needed features for a modest 

classification process are proficiently extracted by adopting this approach. Besides this, for effective 

prediction of various heartbeats, the proposed work develops a novel attention-based CNN with 

Genetic Bee Colony optimization approach as described in section below. 

 

2.4. Modelling of Attention-Based CNN-Based Classification 

Arrhythmias are identified by irregularities in specific heartbeats, while ischemic events could affect 

certain segments of the waveform. The attention mechanism applies "attention scores" to the learned 

feature maps. These scores represent the importance of different regions in the ECG image. The 

network learns which parts of the ECG image are more relevant for making the classification. While 

an input cardiac ECG image is delivered into a CNN model, the feature map ℎ𝑀, which is generated 
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by the last layer before the attention mechanism, has 3 dimensions: 𝐼′ ×  𝑃′ ×  𝑄′ as specified in 

Figure 4. Where 𝐼′represents the number of channels and 𝑃′ × 𝑄′ indicates the size of the feature 

map at time frequency level.  The ℎ𝑀 dimensions are minimized from three to one in order to 

accomplish the various cardiac classifications. By calculating a weight value for each time frequency 

in ℎ𝑀, global attention pooling process determines how much of the dimension reduction process 

goes into the final predictions. 

 
Fig. 4: Structure of Attention-based CNN Classifier 

 

Figure 2 illustrates the two parts of the global attention pooling system: a convolution layer is present 

in the top component, while a convolutional layer and a normalisation operation are present in bottom 

component. The convolutional layer is configured with a class number output channel and 1 × 1 

kernels. The convolutional layer in the lowest component has the identical hyperparameters as the 

one in the top component. The values in lowest component are then corrected using an activation 

function to determine the weight tensor of ℎ𝑀.  

The values are corrected into the interval [0, 1] using the sigmoid and softmax functions. Moreover, 

the corrected feature map 𝐹 is subjected to normalisation using following equation, 

 

     𝐹∗ =
𝐹

∑ ∑ 𝐹𝑝𝑞
𝑄′

𝑄=1
𝑃′
𝑃=1

                            (6) 

 

Here, where 𝐹∗is the bottom component's output. The last layer uses a softmax function to output a 

probability distribution over the possible cardiac heartbeat conditions such as supraventricular 

unknown, non-ectopic, ventricular and fusion beats. Subsequently, for hyperparameter tuning of an 

attention-based CNN classifier, the GBC optimization algorithm is utilized in this study.  

 

2.5. Modelling of Genetic Bee Colony Optimization 

The GBC algorithm is a bio-inspired optimisation method that combines the Artificial Bee Colony 

algorithm and the Genetic Algorithm. By combining exploration (identifying new solutions) and 
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exploitation (fine-tuning existing solutions), the GBC algorithm iteratively improves the CNN's 

hyperparameters. First, a population of parameter configurations is created at random. A particular 

combination of CNN hyperparameters, including the number of convolutional filters, filter sizes, and 

attention weights, is represented by each configuration (or "solution"). The CNN is trained using raw ECG 

images and the classification accuracy, which is used as the fitness score is measured to assess these solutions. 

Employee bee phase: During the Employee Bee Phase, each bee modifies the CNN's 

hyperparameters (such as the learning rate or the number of filters) to investigate the existing solution 

space. Next, each improved solution's fitness is assessed using the CNN's classification accuracy on 

the ECG dataset. The present solution is replaced if a modified solution increases fitness; if not, the 

previous configuration is kept. With an emphasis on enhancing the best available solutions, this phase 

aids in hyperparameter fine-tuning. 

                          𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝑅𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗)             (7) 

 

Here, 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … . 𝑥𝑖𝑛] specifies the current gene indices (i.e., location vector of 𝑖𝑡ℎ bee), 𝑣𝑖 =

𝑣𝑖1, 𝑣𝑖2, … . , 𝑣𝑖𝑛 denotes the new gene indices (i.e., location vector of the bees).  

Onlooker Bee phase: The algorithm rates each solution according to its fitness (i.e., classification 

accuracy) during the Onlooker Bee Phase. When bees observe these probabilities, they choose which 

solutions to investigate further. In a crossover operation, two high-performing solutions' 

hyperparameters are blended to produce a new candidate solution from the chosen solutions. The 

following formula is used to determine the probability Pi that the observer bees will choose a specific 

solution (food source), 

 

      𝑃𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑆𝑁
𝑗=1

           (8)  

 

Scout Bee phase: Preventing local optima and stagnation is the main goal of the Scout Bee Phase. 

Scout bees are used to investigate completely different areas of the hyperparameter space if a solution 

doesn't get better after a predetermined number of tries. Randomly reinitialising a few 

hyperparameters accomplishes this, preventing the search from becoming trapped in less-than-ideal 

results. The technique is able to find new configurations that could greatly improve the CNN's 

classification performance because this phase adds unpredictability to the search. If the random 

variable is lower than the mutation probability rate  

 

𝑠𝑐𝑜𝑢𝑡𝐵𝑖𝑗 = 𝑄𝑢𝑒𝑒𝑛𝐵𝑖𝑗 + 𝑅𝑖𝑗[𝑅𝑎𝑛𝑑𝐵𝑖𝑗 − 𝑄𝑢𝑒𝑒𝑛𝐵𝑖𝑗]      (9) 

 

Whereby, the mutation process is applied to all the genes 𝑗 in the 𝑖𝑡ℎ index, where 𝑗 is between [1 

and 𝐷], and 𝑄𝑢𝑒𝑒𝑛𝐵 is the best solution, 𝑖 denotes 𝑖𝑡ℎ solution index, and 𝑅𝑎𝑛𝑑 is a randomly chosen 

solution. The outcomes in the highest classification accuracy by the configuration of GBC is chosen 

as the optimal set of hyperparameters for the attention-based CNN. 

 

 

3. Results and Discussion 

 

This section deals with the results and its description for the proposed approaches like ABF, SFCM, 

GLCM and Attention-based CNN optimized GBC to predict different cardiac heartbeats by the 
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analysis of Python software. Despite this, the comparative analysis is also done in this section based 

on the obtained outcome from the observation, which proves the performance of the proposed 

topology as discussed below. 

 

 
Fig. 5: Flowchart of GBC optimized Attention-CNN 

 

 
Fig. 6: Input MIT-BIH image dataset based on various heartbeats 

 

Figure 6 displays various heartbeat patterns extracted from the MIT-BIH arrhythmia database, 

exploited for predicting cardiac conditions. It showcases five different heartbeat types labelled as 

Fusion of ventricular (F) and normal beat, Normal sinus rhythm (N), reflecting a typical healthy 

heartbeat, Uncommon patterns (Q), possibly associated with ventricular activity, Supraventricular 

premature beat (S), indicating abnormal impulses originating from above the ventricles, Ventricular 

beat (V), often linked to premature ventricular contractions or arrhythmias. These labels correspond 

to specific cardiac waveforms or beat types, including normal and abnormal patterns. 
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Fig. 7: Class distribution for different categorizations of heartbeat 

 

The class distribution pie chart in Figure 7 presents the percentage of heartbeats associated with 

distinct categories. The largest portion, 31.7% (15,969 beats), corresponds to the "Q" class, indicating 

it is the most frequently occurring type in the dataset. Other significant classes include 22.6% (11,140 

beats) of "N" beats and 17.7% (8,070 beats) of "V" beats. Additionally, 15.8% (7,959 beats) belong 

to the "S" class, and 12.7% (6,411 beats) represent the "F" category. This distribution provides insight 

into the dataset’s composition, crucial for balancing data in predictive models for accurate 

classification of cardiac conditions. To quantify the reduction of noise, the Signal-to-Noise Ratio 

(SNR) is calculated before and after ABF filtering with the following formula: 

 

𝑆𝑁𝑅(𝑑𝐵) = 10log10 (
∑ 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

2

∑(𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙−𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑)
2)              (10) 

 

Where, 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the noisy input image and 𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 is the ABF-filtered output image. The SNR 

values are significantly increased after applying ABF, indicating a marked noise reduction with ECG 

morphology preservation. 

From the fig. 8, the raw ECG signal is taken as input, which comprises of 2-D Gaussian and impulsive 

noise, operating on pixel intensity in the whole ECG image matrix, so the ABF filtering proceeds 

spatially to smooth local intensity changes decreases noise, improving the SNR. The values of SNR, 

ranging between 3.16 dB to 5.01 dB, reflect the effectiveness of noise removal. The resulting images 

are further processed using the SFCM clustering technique segments the filtered ECG images, 

isolating key waveform regions. These segmented outputs reveal more distinct cardiac signal 

structures, facilitating accurate recognition of heartbeat patterns. This combined filtering and 

segmentation strategy is vital for reliable cardiac anomaly detection in automated diagnostic systems. 
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Fig. 8: Output of filtered and segmented image 

 

Table 3: Feature Extraction Results Using GLCM 

Various 

heartbeats 
Contrast Dissimilarity Homogeneity Energy Correlation ASM 

F 0.025368 0.025368 0.987316 0.959332 0.538410 0.920319 

N 0.012898 0.012898 0.993551 0.977632 0.590575 0.955765 

Q 0.014001 0.014001 0.992999 0.975355 0.598567 0.951317 

S 0.020343 0.020343 0.989828 0.967707 0.533552 0.936458 

V 0.017004 0.017004 0.991498 0.958040 0.740182 0.917841 

 

The Table 3 presents the feature extraction results using the GLCM technique for different heartbeat 

types: F, N, Q, S, and V. This topology analyzes the spatial relationship between pixel intensities in 

an image, helping capture patterns relevant to cardiac signals. The features extracted include Contrast, 

Dissimilarity, Homogeneity, Energy, Correlation, and ASM, each providing unique insights into the 

texture characteristics of the ECG waveforms for each heartbeat class. 
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Fig. 9: Training and validation (a) accuracy (b) Loss 

 

In Figure 9, the training and validation metrics are plotted over multiple epochs. The accuracy graph in Figure 

9(a) shows that both validation and training accuracy improve steadily over time, with training accuracy nearing 

99.8% by final epoch, while validation accuracy stabilizes at 98.21%. The loss graph in Figure 9(b) shows a 

significant reduction in both training and validation loss as epochs progress, respectively. 

 

 
Fig. 10: Confusion Matrix and ROC curve 

 

Figure 10 presents the confusion matrix and ROC curves, which offer deeper insights into model’s 

classification performance. The confusion matrix provides predicted heartbeat categories. The diagonal 

values indicate correct predictions, such as 451 correct predictions for the "Q" class and 277 for the "N" 

class. Misclassifications are minimal, ensuring better model performance. The ROC curve displays the 

model’s capability to discriminate among diverse classes based on True Positive Rate and False Positive 

Rate. The AUC values are close to unity for all classes, with the macro-average ROC score being 0.994, 

confirming excellent predictive performance. This specifies that the model is highly reliable in 

differentiating among different types, which is crucial for accurate detection of cardiac abnormalities. 

The performance metrics by utilizing the proposed attention-based CNN optimized GOA illustrate 

the performance of specificity and sensitivity across five heartbeat classes (F, N, Q, S, V), as seen in 

Figure 11.  Performance metrics outcomes imply the model reliably predicts heartbeats of each type 

with minimal false positives by showing a robust overall performance across all classes. A decision 

threshold of 0.5 is exploited to transform the output probabilities of the Attention-based CNN 
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classifier into discrete class labels. This threshold exploring metric variation across distinct thresholds 

offers a classification robustness and trade-offs. 

 

 
Fig. 11: Performance metrics value for the proposed approach 

 

Table 4: Comparison of Performance indices with conventional technique [31] 

Category 
Precision Sensitivity Specificity 

Deep CNN Proposed Deep CNN Proposed Deep CNN Proposed 

N 98.89 98.9 94.46 90 99.68 99.53 

S 87.07 100 99.34 99.4 96.53 100 

V 95.99 98 99.53 100 98.83 99.6 

F 76.56 87 99.90 97.16 93.94 97.28 

Q 88.78 100 99.96 100 96.96 100 

 

The performance indices like precision, sensitivity and specificity for various heartbeats are 

compared with the other classical Deep CNN classifiers as specified in Table 4, which illustrates that 

the proposed attention-based classifier attains higher performance compared to DCNN, respectively. 

Although attention mechanisms and deep CNN architectures inherently introduce additional 

computational load due to increased model parameters and complex operations, proposed GBC-A-

CNN framework incorporates mechanisms that help mitigate this burden. 

 

 
Fig. 12: Comparison of Accuracy 

The proposed A-CNN classifier is compared with other approaches like Wavelet Transformation 

Convolutional Neural Network (WT-CNN), Decision Tree (DT) and Fuzzy Deep Neural Network 

(FDNN) to show the proficiency of developed GBC algorithm-optimized attention-based 

convolutional neural network classifier. The attention mechanism dynamically focuses on 

diagnostically relevant regions. GBC algorithm fine-tunes hyperparameters, improving 
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generalization across variable ECG patterns. Figure 12 shows that compared to the other approaches, 

A-CNN attains a superior accuracy of 98.21%, thereby enabling the accurate prediction of various 

heartbeats. Also, Table 4 shows that with the aid of feature extraction based on GLCM and attention-

based CNN, a higher accuracy value is achieved. 

 

Table 5: Comparison of feature extraction and classifier approaches [32-34] 

Feature Extraction Approaches Classifiers Accuracy 

Gray Level Run Length Matrix (GLRLM) DT 88% 

Bidirectional Long Short-Term Memory 

Network (Bi-LSTM) 
FDNN 93.45% 

Continuous Wavelet Transform (CWT) WT-CNN 97.02% 

GLCM Attention based CNN 98.21% 

 

 
Fig. 13: Comparison of MCC 

 

The proposed A-CNN optimized GBC achieved a Matthews’s correlation coefficient (MCC) of 

0.912, demonstrating its strong predictive capabilities, as shown in Figure 13. In comparison, the 

traditional DNN and CNN showed lower MCC values as referred in [35-37], which highlights the 

effectiveness of the Attention-based CNN-GBC in capturing complex patterns within the data, 

making it a significant advancement in cardiac prediction.     

   

 
Fig. 14. Comparison of Recall and F1-score 

 

Fig. 14 presents the comparative analysis recall and F1-score for various DL approaches such as 1-

Dimensional Convolutional Neural Network (1-D CNN) [38] and Convolutional-Bidirectional Long 

Short-Term Memory (ConvBiLSTM) [39] in ECG signal analysis. From the figure, the proposed 

GBC optimized A-CNN approach achieved the highest recall and F1-score of 98.79% and 99% 
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respectively, outperforming existing deep learning methods and highlighting its superior capability 

in accurately classifying ECG signals for effective arrhythmia detection. 

The proposed model training and testing were performed using data from various origins, including 

widely used benchmark databases like the MIT-BIH Arrhythmia Database and QT Database, which 

contain recordings from heterogeneous patients and various ECG morphologies. Additionally, use of 

a broad variety of signal types such as normal beats, supraventricular arrhythmias, and T-wave 

alternans, enhances the model's robustness over physiological variability. Our results consistently 

demonstrate high performance (accuracy: 98.21%, MCC: 0.912, recall: 98.79%) across various ECG 

waveform types (P-wave, QRS, T-wave, isoelectric line), which shows the high generalizability 

ability of the model. The model performs well in dealing with intra-patient and inter-patient 

variability and thus be deployed in real-world clinical scenarios. 

 

 

4. Conclusions 

 

This research work proposes a novel attention-based CNN optimized GBC topology for the effective 

prediction of various cardiac afflictions. In the context of removing noises and resizing of input ECG 

heartbeat image ensured by the aid of ABF-based preprocessing approach. Furthermore, the 

segmentation-based SFCM clustering topology allows precise isolation of relevant ECG signal 

regions, facilitating superior delineation of affected areas. By the integration of GLCM-based Feature 

Extraction approach, the meaningful textural information relevant to different cardiac conditions is 

proficiently extracted. Besides this, the attention-based CNN classifier accurately identifies and 

classifies various cardiac abnormalities and the parameters of CNN is effectively tuned by the 

assistance of GOA technique, thereby achieving the classifier's performance with minimal 

computational time. The obtained outcome from the Python software exemplifies that the proposed 

topology attains higher performance metrics with a higher accuracy of (98.21%) for various 

heartbeats with rapid classification time compared to the other classical topologies. Overall, the 

proposed hybrid deep learning model is highly promising for clinical applications, with higher 

diagnostic performance and the ability for rapid classification of numerous cardiac diseases from 

ECG images. This potentially leads to faster diagnosis, enables earlier medical intervention, and 

enables the potential for integration into wearable or bedside monitoring devices, which results in 

improved clinical trust timely patient treatment. Nevertheless, it brings computational complexity 

that can be a resource holdup on platforms with limited resources. Above all, the system presented 

here has strong potential for clinical use in the form of accelerated diagnosis, improved accuracy, and 

potential for early detection and treatment of life-threatening cardiac disease. 
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