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Abstract:The necessity for effective and precise diagnostic methods to
B. Shamna! identify cardiac abnormalities has been highlighted by the rising prevalence
C. P. Maheswaran? of cardiovascular diseases. Electrocardiography (ECG), a widely used
A. Anitha3 modality for assessing cardiovascular health, capturing the heart's electrical
activity. However, interpreting ECG signals is often challenging
necessitating advanced methods for reliable analysis. Therefore, this research
proposes a novel Deep Learning (DL) approach for detecting cardiac
afflictions in ECG imagery by integrating metaheuristic optimization
techniques. In the initial stage preprocessing is performed, where ECG
images are resized and denoised using Adaptive Bilateral Filtering (ABF) to
Keywords enhance image quality. Also, Spatial Fuzzy C-Means (SFCM) Clustering
Adaptive bilateral topology is then employed for segmentation process, allowing precise
filtering isolation of relevant ECG signal regions. For feature extraction, the Gray-
cardiovascular diseases Level Co-occurrence Matrix (GLCM) approach is utilized, capture texture
ECG signals features that are indicative of cardiac conditions. Finally, the classification
Fuzzy C—Means stage is performed using a Genetic Bee Colony (GBC) algorithm optimized
Clustering Attention-Based Convolutional Neural Network (CNN),which enables the
GBC-CNN system to accurately identify and classify various cardiac abnormalities. The
GLCM system is executed in Python software, and the outcomes provide superior
performance than conventional techniques in terms of Accuracy of (98.21%)
and performance analysis.

1. Introduction

Globally, Cardio Vascular Diseases (CVDs) constitute the main cause of poor public health, these
fatal illnesses claim the lives of over 17.9 million people annually [1]. The blood and heart vessel
problems named as CVDs contain coronary heart disease, rheumatic heart illness, and other disorders
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[2]. The main prevalent reasons for heart illness contain unhealthy lifestyle factors like poor food,
absence of physical action, extreme alcohol drinking, and smoking. Heart disease is also greatly
influenced by genetic predispositions, diabetes, high cholesterol and blood pressure [3, 4]. The
pervasiveness of heart disease highlights the necessity of developing efficient preventive measures as
well as enhanced diagnostic and therapeutic approaches to lower the illness's death rate worldwide
[5]. ECGs, echocardiograms, stress tests, and blood tests are among the conventional techniques used
to diagnose cardiac disease. ECGs detect irregularities by measuring the electrical activity of heart
[6]. The ECG graph with normal heart disease is displayed in Figure 1 [7]. Echocardiograms employ
ultrasonography to produce images of the heart and evaluate its anatomy and physiology; however,
quality and operator interpretation impact the accuracy of the results [8]. A built-in monitor that
visualises the ECG signals is present in a number of commercially available ECG devices. But most
of them unable to provide access to raw data (signal amplitude value) [9-10].

One potential solution to this issue is image-based analysis that processes the ECG signal [11].
Analysing ECG signals from image-based data is still difficult because numerous factors, including
the visual condition of the collected data, must be considered before the classification task and the
accuracy of conversion findings becomes crucial [12, 13]. To increase diagnostic speed and accuracy,
computer-based approaches for cardiac disease diagnosis make use of machine learning strategies
[14]. Artificial Intelligence (Al) is a significant factor because of tremendous developments in large
data, technology, and knowledge collection, storage, and retrieval [15-16]. Many machine learning
methods and their variants are employed in the cataloguing of genetic cardiac diseases and control
subjects to forecast the initial phases of heart failure [17]. However, ML topology is biased if the
training data is not representative and it needs a maximum amount of high-quality data [18]. In order
to process data and detect relationships, Artificial Neural Networks (ANNs) [19] is used, which are
designed to replicate the neural networks in the human brain. However, ANNs is computationally
costly and require extensive tuning in order to prevent overfitting [20]. Withstanding the limitations
of these approaches, Deep Learning approaches have potential to increase precision and dependability
of heart disease diagnosis. Therefore, the proposed topology utilized a novel attention-based CNN
optimized GBC algorithm for effective prediction of cardiac afflictions.
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Fig. 1: Cardiac Cycle in an ECG
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1.1. Related Works
This section shows related works, which utilized various classification approaches as shown in

Table 1. The table below demonstrates the classical techniques with the dataset name used, as well
as the accuracy and limitations for the individuals.

Table 1: Related Works

Author Approaches Dataset Accuracy Challenges
UIC It struggles with interdependent features
[21] Naive Bayes Repository 89.77% common in medical diagnostics, leading to
reduced predictive precision.
CNN gets often limited by fixed receptive
[22] CNN MIT-BIH 95% fields and lack adaptive focus on
diagnostically salient regions.
Multilayer MLP is sensitive to signal distortion and
23] Perceptron(MLP) MIT-BIH 96.2% noise; lacks spatial awareness in ECG texture
and Deep Belief ’ ' representation that needs enormous tuning to
Network(DBF) be effective.
) This algorithm takes longer processing time
[24] F“;"n Nel‘iral Benchmark |  89% | and lack the ability to handle the different
etwor resolution and quality of ECG images.
DNN based classification exhibits unstable
performance between classes of heartbeats
25] Deep Neural MIT-BIH 82.3% because of insufficient flexibility towards
Network ' morphology non-uniformity of signals and
need massive sets of labelled data in order not
to overfit.

1.2 Literature Review

Khaliq Ahmed et al (2024) [26] have proposed a two-dimensional Gaussian filter for detailed ECG
analysis and prediction. The 2-D Gaussian filter is a low-pass filter that utilized to remove noise from
ECG images, which is inspired by the Gaussian blur effect for photo smoothening. However, in high-
frequency diagnostic data, it reduces sensitivity in the detection of rapid waveform changes, leading
to potential distortion of morphological detail which is crucial to accurate interpretation.

Mohammed Moutaib ez al (2023) [27] have presented K-means clustering algorithm for the
detection of fetal ECGs. K-means algorithm is the most widely utilized clustering algorithm that
analyses dataset characterized by set of descriptors to a group of similar data into groups or clusters.
Nevertheless, its reliance on hard clustering, reduces its ability to overlap fetal and maternal ECGs,
under noisy conditions, leading to misclassification and false detection of the weak traces of the fetus.

Mostefai Lotfi ez al (2025) [28] have introduced Local Binary Pattern (LBP) for extracting relevant
features which distinctively describes the features of heartbeat activity from each person ECGs. LBP
identifies the heartbeat activity of different subjects in the feature space, effectively captures local
variations making it suitable for the applications involving classification of ECG signals.
Nonetheless, it is susceptible to local timing drift due to heartbeat dynamics, reducing its discriminative
ability on non-stationary ECG signals by misrepresenting important morphological patterns.

Aayush Panwar et al (2025) [29] have implemented Convolutional Neural Network (CNN)
classification approach for the ECG monitoring system in early detection of arrhythmia. CNN is
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employed for precise both binary and multi-class classification of cardiac abnormalities, emphasizing
the model impact on clinical practice and patient care. Yet, CNN models often require extensive
parameter tuning, resulting in overfitting, ECG databases, and provide unstable results when deployed
in real-world applications.

Ana Minic et al (2023) [30] have integrated Particle Swarm Optimization (PSO) algorithm for
attaining enhanced performance of the Recurrent Neural Network (RNN) model in detecting ECG
data. PSO is a swarm intelligence algorithm that effectively selects optimal RNN hyperparameters
for attaining improved ECG analysis. Though, PSO tends to converge prematurely, especially in
large, intricate ECG feature spaces, leading to poor hyperparameter tuning in the performance of
cardiac pathology.

1.3. Problem Statement

The traditional techniques like ECG, echocardiogram, and stress test are operator dependent, are
overwhelmed by image quality constraints, and do not have access to raw signal data, making precise
identification of cardiac defects challenging and unreliable. The image-based ECG analysis with
conventional ML models have poor generalizability, low noisy ECG signal robustness, and high
computational complexity, thus resulting in low performance when applied for image-based ECG
classification tasks. Therefore, an efficient deep learning model and bio-inspired optimization
algorithm is required to improve accuracy in diagnostic efficiency.

1.4. Research Motivation

The conventional ECG signal analysis approaches are not noise-resistant, immune to inter-patient
signal variations, and spatial in homogeneities in ECG images. To overcome these limitations, this
research proposes an ABF preprocessing filter for effective noise elimination with preservation of
waveform details. The SFCM clustering is employed to perform precise segmentation of cardiac areas
based on spatial relationship modelling. GLCM-based feature extraction is integrated to obtain
texture-based variations in the morphology of ECG. An attention-based CNN, optimized using the
GBC optimization algorithm, to detect diagnostically relevant regions and to achieve better
generalization between heartbeat classes.

1.5. Research Contributions

Due to inter-patient variability in ECG signal image, classical approaches are unable to produce

effective results. In addition, the growing volume of data has a detrimental impact on the effectiveness

and precision of conventional procedures. In light of this, the developed research work's principal
contributions for effective classification of cardiac afflictions in ECG image are given as follows,

e Implementing ABF-based Preprocessing effectively abates different types of noises in input ECG
image, ensuring that resized image retains high quality and reduces artifacts. It assures that critical
waveform features remain intact, allowing more consistent segmentation and feature extraction
for precise classification. This is significant in ECG based cardiac analysis where waveform
subtleties denote critical irregularities.

e Employing Spatial Fuzzy C-means Clustering for segmentation process, which enriches the
determination of boundaries over different cardiac regions to enable superior delineation of
affected areas. It results in more coherent region boundaries and efficient noise suppression in
structurally correlated pixel neighbourhoods. It enhances segmentation by integrating spatial
relationships among pixels, enabling better detection of cardiac regions.
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e Integrating GLCM based Feature Extraction approach for capturing meaningful textural
information relevant to different cardiac conditions. It offers a deeper representation of ECG
signal, thereby boosting the ability of classifier to distinguish between heartbeat types. GLCM
assures that the model obtains high discriminative input features, thereby diminishing the
dimensionality burden and improving classification accuracy.

e Incorporating an attention-based CNN for the classification process, which focuses on the most
pertinent regions of the ECG image and attention mechanism enhances classification accuracy by
highlighting informative features and decreasing the influence of irrelevant data.

e GBC effectively fine-tunes the attention-based CNN parameters, thereby enhancing its ability to
categorise various cardiac heartbeat conditions accurately. This automated optimization leads to
enhanced classification accuracy and generalization across varied ECG data.

Remaining part of paper is arranged as follows. In Section II, developed system modelling is detailed.

Section III offers results of the experiments to validate the developed scheme and conclusions for the

proposed system based on the outcome from the comparative analysis are shown in Section IV.

2. Proposed System Modelling

This work introduces an advanced framework that combines pre-processing, segmentation, feature
extraction, and DL methods techniques to classify ECG signal images as represented in Figure 2. The
dataset used includes records from varied age groups, heart conditions, and noise profiles, improving
model exposure to real-world variability. The pre-processing step uses ABF, which receives input
ECG signal image from dataset to eliminate noise and improve the image quality. After pre-
processing, the image undergoes segmentation using SFCM clustering technique, which partitions
the ECG signal image into essential segments. This is essential for identifying irregularities in the
ECG image and serves as the foundation for feature extraction.

The segmented images undergo GLCM based feature extraction process that extracts features such
as contrast, correlation, energy, and homogeneity representing underlying patterns in the ECG data.
The features extracted using GLCM are arranged in the form of a 2D feature matrix where each pixel
holds a calculated texture feature. This matrix is fed as input to the CNN model. Rather than raw
segmented ECG image, these feature maps are processed by the CNN, enabling it to learn higher-
order spatial relationships between texture features and not raw pixel intensities. This combination of
hand-engineered GLCM features with the CNN structure improves classification performance. The
attention mechanism allows the model to selectively focus on diagnostically relevant areas of the
input, optimizing its attention at inference time. The network then classifies heartbeats by making use
of the learned representations obtained at training time, eventually separating different cardiac
conditions with high accuracy. The CNN approach is optimized utilizing the GBC algorithm, which
fine-tunes model parameters to advance classification accuracy of model. Also, dataset is separated
into testing (30%) and training (70%) sets. overall, this framework is highly beneficial in clinical
settings for the automated prediction of heart-related anomalies.
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Fig. 2: Block diagram of cardiac prediction

2.1. Modelling of ABF Based Preprocessing

With the use of ABF, even in erratic images, strong noise reduction and resizing images are achieved.
The robust ABF preserves the bilateral filter's general mechanism, as a safeguard against outliers,
substitutes f(i,j) with the mean value u(i + k, j + 1). The new parameter is computed over a 3 x 3
kernel that is centred on pixel (i + k,j + 1). This pixel and its eight surrounding pixels are chosen
to create a steady intensity difference free from outlier effects. Thus k and fare presented as follows,

kit = argming jea Lspealf(i+k+s,j+1+1t) — f@@ NI

Where {—1,0,1} is represented by A. From each of the nine areas, the total of the differences’ squares
from the processing pixels in the 3 x 3 kernel is determined. The centre of the kernel, where the sum

of squares of the differences among them is minimised, is represented by the pixel (i + k,j + ).
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To find stable parameters, search the area for the least sum of squares of the difference between the
processing pixels Equation (1). The ABF's weighting is not affected by outliers, in contrast to the
normal bilateral filters. Because of this, the robust ABF functions reliably in ECG images by
minimizing the noise and resizing the image effectively. Subsequently, for finding boundaries
between different cardiac regions to facilitate superior delineation of affected areas, the segmentation
process is essential, thus SFCM clustering approach is utilized as described below.

2.2. Modelling of Spatial Fuzzy C-Means Clustering-Based Segmentation

A crucial feature of an image is the strong correlation among adjacent pixels. On the other hand, there
is a substantial chance that these adjacent pixels are part of the same cluster since they have similar
feature values. An FCM algorithm does not make use of this spatial connection, despite the fact that
it is significant for clustering. A spatial function is well-defined to take advantage of spatial information as

hij = Xkens(x;) Uik (2)

Here, a square window centered on pixel x; in the spatial domain is denoted asNB (x;). During this
work, a 5 x 5 window is utilised. Like the membership function, the likelihood that pixel x; will be
in the spatial function h;; under ith cluster. In terms of a pixel's spatial function, if the bulk of a

cluster's surrounding area is contained within identical groups, a special function is integrated into
membership that has the following functions,

o = Mt
lj = yc
S B ug Pyl

A3)
In this function, q and p specify the parameters to regulate associated significance of each function.
When a region is homogeneous, the spatial functions reinforce the initial membership, maintaining
the same clustering outcome. It diminishes the noisy cluster’s weighting by the labels of its adjacent
pixels for a noisy pixel. Subsequently, erroneous blobs or imperfectly categorised pixels from noisy
regions is readily fixed. In this context, the parameters g and p with spatial FCM is specified as SFCM,g ,,.

Every cycle involves two passes for the clustering process. The first pass used to determine the
membership function in the spectral domain is the same as the one used in ordinary FCM. The spatial
function is calculated in the second pass after each pixel's membership information is translated to
the spatial domain. With the new membership integrated with the spatial function, the FCM iteration
continues. When largest difference between two cluster centres during two consecutive iterations is
less than a threshold (=0.02), the iteration is terminated. Following convergence, each pixel is
assigned to a particular cluster for which the membership is utmost through the application of
defuzzification. Overall, the introduced approach efficiently segments the features for determining
the efficient boundaries in various cardiac regions. The classification accuracy of the developed
classification model is highly sensitive to changes in the segmentation output, as the segmentation
phase directly impacts the quality and relevance of extracted features from the ECG images. Accurate
segmentation assures that the classifier receives input focused on waveform peaks and intervals. The
SFCM clustering is exploited because of its ability to integrate spatial dependencies that reduce
misclassification caused by noisy or blurred boundaries. Furthermore, the enhanced homogeneity and
contrast values in the GLCM-based texture features after segmentation prove that the delineated
regions are more informative, leading to higher classification accuracy. Any degradation in
segmentation adversely affects downstream feature extraction and reduce the predictive reliability of
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the model. Despite this, the feature extraction process is advanced for selecting the needed features,
thereby the classification of various cardiac are find out optimally with rapid execution time, thus the
GLCM-based feature extraction approach is utilized in this study as discussed below.

2.3. Modelling of GLCM-Based Feature Extraction

By utilizing the GLCM approach, various features such as energy, mean, standard deviation,
correlation and centroid is proficiently extracted from the segmented ECG image. A texture analysis
method for greyscale images is called GLCM. Two adjacent pixels in GLCM have a relationship that

is dictated by the greyscale intensity of a certain angle as well as distance and following Equation (5)
expresses the GLCM,

Geaxay)(ab) = X0_ B9 1{I(i,j) = a} and 1{I(+Ax, j + Ay) = b} (4)

A grey value that appears concurrently with the computation of G (Ax, Ay) (a, b) is I (i, j), which is
the grey value of column (i) and row (j) pixels. The indicator of Ax as a direction from x and Ay as a
direction of y, which is based on the distance between x and y, is then 1{I (+Ax, j + Ay) = b}. The

columns and rows of matching images are displayed by Q and P, the example of GLCM calculation
is shown in Figure 3.

41114]12])2 411141212 41114
HEBHBAE 3 3“2 HEHE
4121411911 4012141101 4121411
410113314 41113 4 411131314
1]1]1414]2 1111414012 114142
l 12 34
FIRST ORDER :]ﬁl 2Jof1]:2
STATISTICAL — ; 2 JoJ2]o]1
FEATURES § 43 [olils]t
é%” BEAR
g \
~ GLCM
FEATURES

Fig. 3: Example of GLCM calculation
The GLCM matrix values are then included in the transposed outcomes after the image that is

computed for specific distances and angles has been transposed to values acquired. The following
formula is used to normalise the results,

GLCM
GLCMNorm = Wm (5)
Here, GLCM,,41,,. = value of each pixel

The information obtained from the normalisation findings, including contrast, dissimilarity,
homogeneity, ASM, energy, and correlation, is utilised to ascertain the textural qualities of the image.
The computation of the intensity difference between neighbouring pixels throughout the full image
serves as the function of the contrast characteristic. The measurement of dissimilarity involves
determining how different a texture is from uniform in nature, and vice versa, where a uniform texture
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has a small value. The function of homogeneity is to demonstrate the image's homogeneity of
intensity changes. ASM is a method of measuring uniformity. If the pixel values are comparable to
one another, it yields a high value; if they are dissimilar, it yields a low number. The attentiveness of
intensity pairs in the matrix is measured by energy, and the linearity of multiple pixel pairs is
measured by correlation. Table 2 displays the equation needed to obtain each attribute.

Table 2: GLCM characteristics equations

GLCM characteristics Equations
level—-1
Homogeneity L
1+ (a—b)?
a,b=0
lavel—-1
Contrast Z P,p(a — b)?
a,b=0
lavel-1
Dissimilarity Z P.pla — bl
a,b=0

lavel-1

Energy Z Pa,b2
a,b=0
lavel—1

ASM Z P.p°
a,b=0

L @ i)k - )
;0 Pa"’[ m(ozb)b]
z Zpab
Correlation Wp = Z Z Pap
Z(a — )’ Z Pab
op —Z(b Mp)? zpab

Where, on GLCM matrix the value of coordinate pixel is specified as P, , and the pixel coordinates

on the matrix are denoted as a, b respectively. Consequently, the needed features for a modest
classification process are proficiently extracted by adopting this approach. Besides this, for effective
prediction of various heartbeats, the proposed work develops a novel attention-based CNN with
Genetic Bee Colony optimization approach as described in section below.

2.4. Modelling of Attention-Based CNN-Based Classification

Arrhythmias are identified by irregularities in specific heartbeats, while ischemic events could affect
certain segments of the waveform. The attention mechanism applies "attention scores" to the learned
feature maps. These scores represent the importance of different regions in the ECG image. The
network learns which parts of the ECG image are more relevant for making the classification. While
an input cardiac ECG image is delivered into a CNN model, the feature map h,,;, which is generated
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by the last layer before the attention mechanism, has 3 dimensions: I' X P’ X Q' as specified in
Figure 4. Where I'represents the number of channels and P’ X Q' indicates the size of the feature
map at time frequency level. The hj, dimensions are minimized from three to one in order to
accomplish the various cardiac classifications. By calculating a weight value for each time frequency
in hy,, global attention pooling process determines how much of the dimension reduction process
goes into the final predictions.

ATTENTION
CONV+LOCAL MAX  CONV+LOCALMAX , — — — — — — — — — -
POOLING POOLING i CONV \
| 11 1 | o
|
n I
o LT oo @ O——— 0 v
A I 'I_"' G SOFTMAX
_I | O/l»,) OI O s
INPUT ECG T ! o
IMAGE \ 0421? / N
R RTEEREL S =~ — — =7 PREDICTIONS
P 4 - \\
- S
l—-
TN
<
GBC .
OPTIMIZATION OF CONVOLUTION ., ALGORITHM
LAYERS, ATTENTION %
PARAMETERS, HIDDEN NEURONS P S 7
AND ACTIVATION FUNCTIONS Vs

Fig. 4: Structure of Attention-based CNN Classifier

Figure 2 illustrates the two parts of the global attention pooling system: a convolution layer is present
in the top component, while a convolutional layer and a normalisation operation are present in bottom
component. The convolutional layer is configured with a class number output channel and 1 x 1
kernels. The convolutional layer in the lowest component has the identical hyperparameters as the
one in the top component. The values in lowest component are then corrected using an activation
function to determine the weight tensor of hy,.

The values are corrected into the interval [0, 1] using the sigmoid and softmax functions. Moreover,
the corrected feature map F is subjected to normalisation using following equation,

F

e (6)
by 28’:1 Fpq

Here, where F*is the bottom component's output. The last layer uses a softmax function to output a

probability distribution over the possible cardiac heartbeat conditions such as supraventricular

unknown, non-ectopic, ventricular and fusion beats. Subsequently, for hyperparameter tuning of an

attention-based CNN classifier, the GBC optimization algorithm is utilized in this study.

2.5. Modelling of Genetic Bee Colony Optimization
The GBC algorithm is a bio-inspired optimisation method that combines the Artificial Bee Colony
algorithm and the Genetic Algorithm. By combining exploration (identifying new solutions) and

63



JES, Vol. 54, No. 2, Pp. 54-73, March 2026 DOI: 10.21608/JESAUN.2025.392608.1541 Part B: Electrical Engineering

exploitation (fine-tuning existing solutions), the GBC algorithm iteratively improves the CNN's
hyperparameters. First, a population of parameter configurations is created at random. A particular
combination of CNN hyperparameters, including the number of convolutional filters, filter sizes, and
attention weights, is represented by each configuration (or "solution"). The CNNis trained using raw ECG
images and the classification accuracy, which is used as the fitness score is measured to assess these solutions.
Employee bee phase: During the Employee Bee Phase, each bee modifies the CNN's
hyperparameters (such as the learning rate or the number of filters) to investigate the existing solution
space. Next, each improved solution's fitness is assessed using the CNN's classification accuracy on
the ECG dataset. The present solution is replaced if a modified solution increases fitness; if not, the
previous configuration is kept. With an emphasis on enhancing the best available solutions, this phase
aids in hyperparameter fine-tuning.

vij = X5 + Rij (i — Xij) (7)

Here, x; = [x;1, Xi2, ... Xin ] specifies the current gene indices (i.e., location vector of i, bee), v; =
Vi1, Vi, - -, Vin, denotes the new gene indices (i.e., location vector of the bees).

Onlooker Bee phase: The algorithm rates each solution according to its fitness (i.e., classification
accuracy) during the Onlooker Bee Phase. When bees observe these probabilities, they choose which
solutions to investigate further. In a crossover operation, two high-performing solutions'
hyperparameters are blended to produce a new candidate solution from the chosen solutions. The
following formula is used to determine the probability Pi that the observer bees will choose a specific
solution (food source),

_ fiti
b= 3N, ity ®

Scout Bee phase: Preventing local optima and stagnation is the main goal of the Scout Bee Phase.
Scout bees are used to investigate completely different areas of the hyperparameter space if a solution
doesn't get better after a predetermined number of tries. Randomly reinitialising a few
hyperparameters accomplishes this, preventing the search from becoming trapped in less-than-ideal
results. The technique is able to find new configurations that could greatly improve the CNN's
classification performance because this phase adds unpredictability to the search. If the random
variable is lower than the mutation probability rate

SCOutBij = QueenBij + RU[RandBU - QueenBij] (9)
Whereby, the mutation process is applied to all the genes j in the ith index, where j is between [1
and D], and QueenB is the best solution, i denotes ith solution index, and Rand is a randomly chosen
solution. The outcomes in the highest classification accuracy by the configuration of GBC is chosen
as the optimal set of hyperparameters for the attention-based CNN.

3. Results and Discussion

This section deals with the results and its description for the proposed approaches like ABF, SFCM,
GLCM and Attention-based CNN optimized GBC to predict different cardiac heartbeats by the
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analysis of Python software. Despite this, the comparative analysis is also done in this section based
on the obtained outcome from the observation, which proves the performance of the proposed
topology as discussed below.
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Fig. 5: Flowchart of GBC optimized Attention-CNN

F N Q S Vv

Fig. 6: Input MIT-BIH image dataset based on various heartbeats

Figure 6 displays various heartbeat patterns extracted from the MIT-BIH arrhythmia database,
exploited for predicting cardiac conditions. It showcases five different heartbeat types labelled as
Fusion of ventricular (F) and normal beat, Normal sinus rhythm (N), reflecting a typical healthy
heartbeat, Uncommon patterns (Q), possibly associated with ventricular activity, Supraventricular
premature beat (S), indicating abnormal impulses originating from above the ventricles, Ventricular
beat (V), often linked to premature ventricular contractions or arrhythmias. These labels correspond
to specific cardiac waveforms or beat types, including normal and abnormal patterns.
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Fig. 7: Class distribution for different categorizations of heartbeat

The class distribution pie chart in Figure 7 presents the percentage of heartbeats associated with
distinct categories. The largest portion, 31.7% (15,969 beats), corresponds to the "Q" class, indicating
it is the most frequently occurring type in the dataset. Other significant classes include 22.6% (11,140
beats) of "N" beats and 17.7% (8,070 beats) of "V" beats. Additionally, 15.8% (7,959 beats) belong
to the "S" class, and 12.7% (6,411 beats) represent the "F" category. This distribution provides insight
into the dataset’s composition, crucial for balancing data in predictive models for accurate
classification of cardiac conditions. To quantify the reduction of noise, the Signal-to-Noise Ratio
(SNR) is calculated before and after ABF filtering with the following formula:

2 P
SNR(dB) — 1010g10< Zlorlglnal ) (10)

2
Z(Ioriginal_ldenoised)

Where, 1,rigina: 18 the noisy input image and Igenpiseq 1 the ABF-filtered output image. The SNR
values are significantly increased after applying ABF, indicating a marked noise reduction with ECG
morphology preservation.

From the fig. 8, the raw ECG signal is taken as input, which comprises of 2-D Gaussian and impulsive
noise, operating on pixel intensity in the whole ECG image matrix, so the ABF filtering proceeds
spatially to smooth local intensity changes decreases noise, improving the SNR. The values of SNR,
ranging between 3.16 dB to 5.01 dB, reflect the effectiveness of noise removal. The resulting images
are further processed using the SFCM clustering technique segments the filtered ECG images,
isolating key waveform regions. These segmented outputs reveal more distinct cardiac signal
structures, facilitating accurate recognition of heartbeat patterns. This combined filtering and
segmentation strategy is vital for reliable cardiac anomaly detection in automated diagnostic systems.
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Fig. 8: Output of filtered and segmented image

Table 3: Feature Extraction Results Using GLCM

h:;i‘l:l:):;ts Contrast Dissimilarity | Homogeneity Energy | Correlation ASM
F 0.025368 0.025368 0.987316 0.959332 0.538410 0.920319
N 0.012898 0.012898 0.993551 0.977632 0.590575 0.955765
Q 0.014001 0.014001 0.992999 0.975355 0.598567 0.951317
S 0.020343 0.020343 0.989828 0.967707 0.533552 0.936458
\Y 0.017004 0.017004 0.991498 0.958040 0.740182 0.917841

The Table 3 presents the feature extraction results using the GLCM technique for different heartbeat

types: F, N, Q, S, and V. This topology analyzes the spatial relationship between pixel intensities in
an image, helping capture patterns relevant to cardiac signals. The features extracted include Contrast,
Dissimilarity, Homogeneity, Energy, Correlation, and ASM, each providing unique insights into the
texture characteristics of the ECG waveforms for each heartbeat class.
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Fig. 9: Training and validation (a) accuracy (b) Loss

In Figure 9, the training and validation metrics are plotted over multiple epochs. The accuracy graph in Figure
9(a) shows that both validation and training accuracy improve steadily over time, with training accuracy nearing
99.8% by final epoch, while validation accuracy stabilizes at 98.21%. The loss graph in Figure 9(b) shows a
significant reduction in both training and validation loss as epochs progress, respectively.
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Fig. 10: Confusion Matrix and ROC curve

Figure 10 presents the confusion matrix and ROC curves, which offer deeper insights into model’s
classification performance. The confusion matrix provides predicted heartbeat categories. The diagonal
values indicate correct predictions, such as 451 correct predictions for the "Q" class and 277 for the "N"
class. Misclassifications are minimal, ensuring better model performance. The ROC curve displays the
model’s capability to discriminate among diverse classes based on True Positive Rate and False Positive
Rate. The AUC values are close to unity for all classes, with the macro-average ROC score being 0.994,
confirming excellent predictive performance. This specifies that the model is highly reliable in
differentiating among different types, which is crucial for accurate detection of cardiac abnormalities.

The performance metrics by utilizing the proposed attention-based CNN optimized GOA illustrate
the performance of specificity and sensitivity across five heartbeat classes (F, N, Q, S, V), as seen in
Figure 11. Performance metrics outcomes imply the model reliably predicts heartbeats of each type
with minimal false positives by showing a robust overall performance across all classes. A decision
threshold of 0.5 is exploited to transform the output probabilities of the Attention-based CNN
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classifier into discrete class labels. This threshold exploring metric variation across distinct thresholds
offers a classification robustness and trade-offs.

Specificity and Sensitivity by Class Precision, Recall, and F1 Score by Class
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Fig. 11: Performance metrics value for the proposed approach

Table 4: Comparison of Performance indices with conventional technique [31]

Category Precision Sensitivity Specificity
Deep CNN Proposed Deep CNN Proposed Deep CNN Proposed
N 98.89 98.9 94.46 90 99.68 99.53
S 87.07 100 99.34 99.4 96.53 100
v 95.99 98 99.53 100 98.83 99.6
F 76.56 87 99.90 97.16 93.94 97.28
Q 88.78 100 99.96 100 96.96 100

The performance indices like precision, sensitivity and specificity for various heartbeats are
compared with the other classical Deep CNN classifiers as specified in Table 4, which illustrates that
the proposed attention-based classifier attains higher performance compared to DCNN, respectively.
Although attention mechanisms and deep CNN architectures inherently introduce additional
computational load due to increased model parameters and complex operations, proposed GBC-A-
CNN framework incorporates mechanisms that help mitigate this burden.
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Fig. 12: Comparison of Accuracy
The proposed A-CNN classifier is compared with other approaches like Wavelet Transformation
Convolutional Neural Network (WT-CNN), Decision Tree (DT) and Fuzzy Deep Neural Network
(FDNN) to show the proficiency of developed GBC algorithm-optimized attention-based
convolutional neural network classifier. The attention mechanism dynamically focuses on
GBC algorithm fine-tunes hyperparameters, improving

e
N

e

diagnostically relevant regions.
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generalization across variable ECG patterns. Figure 12 shows that compared to the other approaches,
A-CNN attains a superior accuracy of 98.21%, thereby enabling the accurate prediction of various
heartbeats. Also, Table 4 shows that with the aid of feature extraction based on GLCM and attention-
based CNN, a higher accuracy value is achieved.

Table 5: Comparison of feature extraction and classifier approaches [32-34]

Feature Extraction Approaches Classifiers Accuracy
Gray Level Run Length Matrix (GLRLM) DT 88%
Bidirectional Long Short-Term Memory o
Network (Bi-LSTM) FDNN 93.45%
Continuous Wavelet Transform (CWT) WT-CNN 97.02%
GLCM Attention based CNN 98.21%
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Fig. 13: Comparison of MCC

The proposed A-CNN optimized GBC achieved a Matthews’s correlation coefficient (MCC) of
0.912, demonstrating its strong predictive capabilities, as shown in Figure 13. In comparison, the
traditional DNN and CNN showed lower MCC values as referred in [35-37], which highlights the
effectiveness of the Attention-based CNN-GBC in capturing complex patterns within the data,
making it a significant advancement in cardiac prediction.
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Fig. 14. Comparison of Recall and F1-score

Fig. 14 presents the comparative analysis recall and F1-score for various DL approaches such as 1-
Dimensional Convolutional Neural Network (1-D CNN) [38] and Convolutional-Bidirectional Long
Short-Term Memory (ConvBiLSTM) [39] in ECG signal analysis. From the figure, the proposed
GBC optimized A-CNN approach achieved the highest recall and Fl-score of 98.79% and 99%
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respectively, outperforming existing deep learning methods and highlighting its superior capability
in accurately classifying ECG signals for effective arrhythmia detection.

The proposed model training and testing were performed using data from various origins, including
widely used benchmark databases like the MIT-BIH Arrhythmia Database and QT Database, which
contain recordings from heterogeneous patients and various ECG morphologies. Additionally, use of
a broad variety of signal types such as normal beats, supraventricular arrhythmias, and T-wave
alternans, enhances the model's robustness over physiological variability. Our results consistently
demonstrate high performance (accuracy: 98.21%, MCC: 0.912, recall: 98.79%) across various ECG
waveform types (P-wave, QRS, T-wave, isoelectric line), which shows the high generalizability
ability of the model. The model performs well in dealing with intra-patient and inter-patient
variability and thus be deployed in real-world clinical scenarios.

4. Conclusions

This research work proposes a novel attention-based CNN optimized GBC topology for the effective
prediction of various cardiac afflictions. In the context of removing noises and resizing of input ECG
heartbeat image ensured by the aid of ABF-based preprocessing approach. Furthermore, the
segmentation-based SFCM clustering topology allows precise isolation of relevant ECG signal
regions, facilitating superior delineation of affected areas. By the integration of GLCM-based Feature
Extraction approach, the meaningful textural information relevant to different cardiac conditions is
proficiently extracted. Besides this, the attention-based CNN classifier accurately identifies and
classifies various cardiac abnormalities and the parameters of CNN is effectively tuned by the
assistance of GOA technique, thereby achieving the classifier's performance with minimal
computational time. The obtained outcome from the Python software exemplifies that the proposed
topology attains higher performance metrics with a higher accuracy of (98.21%) for various
heartbeats with rapid classification time compared to the other classical topologies. Overall, the
proposed hybrid deep learning model is highly promising for clinical applications, with higher
diagnostic performance and the ability for rapid classification of numerous cardiac diseases from
ECG images. This potentially leads to faster diagnosis, enables earlier medical intervention, and
enables the potential for integration into wearable or bedside monitoring devices, which results in
improved clinical trust timely patient treatment. Nevertheless, it brings computational complexity
that can be a resource holdup on platforms with limited resources. Above all, the system presented
here has strong potential for clinical use in the form of accelerated diagnosis, improved accuracy, and
potential for early detection and treatment of life-threatening cardiac disease.
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