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ABSTRACT

In this paper, we have constructed a flat Friedmann-Robertson-Walker (FRW) cosmological model
inf(R, T) gravity. The solution of Friedmann equations has been obtained assuming the quadratic
equation of state p = ap + Bp?, where a and 8 are parameters. The model describes an accel-
erating universe with positive energy density, negative pressure and negative cosmological
constant. The behaviour of the deceleration parameter shows that the universe accelerates
after an epoch of deceleration in a good agreement with recent observations. The non-
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conventional scenario for an accelerating universe with negative cosmological constant has

been discussed.

1. Introduction and motivation

According to observations, the present universe is flat
and expanding at an accelerating rate (Perlmutter et al.
1999; Percival et al. 2001; Stern et al. 2010). The general
assumption to explain the accelerating expansion is the
existence of dark energy with negative pressure which
acts as a repulsive gravity. To understand the nature
of such exotic form of energy, several theoretical models
have been constructed including quintessence
(Tsujikawa 2013), Chaplygin gas (Kamenshchik et al.
2001), phantom energy (Caldwell 2002), k-essence
(Chiba et al. 2000), tachyon (Sen 2002), ghost conden-
sate (Arkani-Hamed et al. 2004; Ahmed and Moss 2008,
2010) and holographic models (Wei 2009; Ahmed and
Rafat 2018; Ahmed and Alamri 2019a). In addition to
scalar field models, modified gravity (Nojiri et al. 2017)
represents another important explanation approach. It
has been shown that modified gravity can explain the
galactic rotation curves without the need to dark matter
assumption (Nojiri and Odintsov 2006a; De Felice and
Tsujikawa 2010). Examples of such modified gravity
theories are f(R) gravity (Nojiri and Odintsov 2006b)
where R is the Ricci scalar, Gauss-Bonnet gravity (Nojiri
et al. 2008) and f(T) gravity (Ferraro and Fiorini 2007)
where T is the torsion scalar. Driven by the torsion
effects, f(T) gravity can explain the accelerated expan-
sion without assuming a new form of energy
(Bengochea and Ferraro 2009). f(R) gravity has been
generalised to f(R, T) gravity (Harko et al. 2011), where
T is the trace of the energy-momentum tensor. Some
cosmological aspects of f(R, T) gravity have been inves-
tigated in (Shabani and Farhoudi 2013; Pradhan et al.

2015; Xu et al. 2016; Nasr Ahmed et al. 2016; Ahmed
and Alamri 2018, 2019b).

The current work is dedicated to the study of flat
FRW cosmological solutions in f(R,T) gravity using
a quadratic equation of state. In the context of general
relativity, the effects of a quadratic equation of state have
been investigated at early times in homogenous and
inhomogeneous anisotropic cosmology (Ananda and
Bruni 2006). This was motivated by brane-world scenar-
ios where the quadratic density corrections dominate at
early times and help exploring new gravitational physics
at high energies (Olmo and Rubiera-Garciab 2015).
Quadratic deviation from the standard FRW cosmology
is an interesting feature of brane-world cosmology where
the effect of quadratic terms becomes important at the
very early time (Binetruy et al. 2000). The implications of
quadratic density corrections in brane-world scenarios
on the inflationary paradigm have been studied in (Coley
2005). The effect of quadratic density term on inflation in
the brane-world scenario has been studied in (Maartens
et al. 2000). The quadratic energy density term also
appears in modified Friedman equations resulting from
Loop quantum gravity corrections (Vandersloot 2005).
(Nojiri and Odintsov 2005) and (Capozziello et al. 2006)
studied dark energy universe with generalised equations
of state. In (Nojiri and Odintsov 2005), it has been
pointed out that using such phenomenological equations
of state is an easy way to produce dark epoch of the
universe and may help describing the phantom era. In
(Capozziello et al. 2006), observational constraints have
been set on dark energy with generalised equations of
state. So, investigating FRW cosmology through
a quadratic equation of state in different f(R, T) gravity
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reconstructions is an interesting topic. The general form
of the quadratic equation of state can be expressed as

p=po+ap+pp’ (1)

Where p,, « and 3 are parameters. This form comes
from Taylor expansion of arbitrary barotropic equa-
tion of state, p = p(p). In the current work we con-
sider p, = 0.

The paper is organised as follows: The introduc-
tion and motivation behind the current work is
included in section 1. The derivation of the modified
Friedmann equations with variable cosmological con-
stant in a specific f(R, T) gravity reconstruction is
included in section 2. The analytical solution of the
cosmological equations is given in section 3. The final
conclusion is included in section 4.

2. Field equations

The f(R, T) gravity action is given by (Harko et al. 2011)

1

S=1c Jf(R, T)/—gd*x + JLm\/:§d4x, ()

where L,, is the matter Lagrangian density. By vary-
ing the action S with respect to g, we obtain the field
equations of f(R, T) gravity as

JR(R, T)Ryy — %f(R> T)gur + (g — VuVy)fr(R, T)
= SﬂT#V —fT(R, T) TH" —fT(R, T)®!4"‘

(3)
where 0 = V¥V, )R, T) = ‘9fg§T) JSr(R,T) = ﬁffaRT'T)

and V, denotes the covariant derivative. ®,, and the
stress-energy tensor T, are given by

®yv - _ZT;W —ngw T,uv - (P +P)“y”v _pg;w' (4)
The four-velocity u, satisfies the conditions u,u* =1
and u"V,u, = 0. p and p are the energy density and
pressure of the fluid, respectively. The divergence of

the energy-momentum tensor is given by (Barrientos
and Rubilar 2014)

o fT(R7 T)
VT = 87 — fr(R, T)

1
+ Vﬂ®#v - EgﬂVVﬂT]'

[(T[w + @MV)VM lnfT(R7 T)

®)

Which represents the violation of energy-momentum
conservation in f(R, T) gravity. Different choices of
the function f(R, T lead to different theoretical mod-
els. Taking f(R,T) = fi(R) + f2(T), the gravitational
field equations (3) becomes
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(RO = 3 (R + (00 — VuVo S, (R)
= 80T+ TV + (AT 4 35(D) ) g

(6)
We simply take fi(R)=R and f£,(T)=T, so
f(R,T)=(R+T). In the case f£,(T)=0, we re-
obtain the field equations of General Relativity.
Now, equation (6) becomes

1 1
Ry — 3 gwR=8nTy+ T+ (p + 3 Tguw- (7)

This could be rearranged as

1
G — (p +E T)g,w = (8n+1)T}y. (8)

Where G, =Ry, — % gwR is the Einstein tensor.
Comparing with Einstein equations

The term (p +1T) is now related to the cosmological
constant by p +1T= — A. So, our choice of f(R, T)
gives a specific formula for the varying cosmological
constant. For the perfect fluid energy-momentum
tensor we have T} =T; =T; = —p(t) and T; =
p(t) and then the trace T = p(t) — 3p(t). So, (8) can
be written as (Ahmed and Pradhan 2014)

1

Gy — 2 (p—P)gw = 8T+ 1)T,. (10)
And the cosmological constant is written as:
1
A(t) = =5 (p(t) = p(t)) (11)

The non-conservation of energy-momentum tensor
(5) in the current model is given by

1
Vo = —5rr

[V" (Pguv) + %gWV” T] . (12)

The FRW metric is given by

dr?

1 — Kr?

ds* = —di* + az(t) { + 72d6* + r* sin® 9d¢2}

(13)

where K is either 0, —1 or + 1 for flat, open and
closed universe, respectively. Applying equation (8)
to the metric (13) and taking (11) into account, we
get the cosmological equations as

@ +K  (8nm+1)p+A()

o 3 (14)

Zz—m(/ﬂﬁpwr@.

G (15)

In this paper, we consider only the flat case (K = 0)
supported by observations (de Bernardis et al. 2000;
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Bennett et al. 2003; Spergel et al. 2003a). Equations
(14) and (15) are two differential equations in three
unknown functions a(t), p(t) and p(t). In the follow-
ing section, we provide an exact solution making use
of the quadratic equation of state (1) with p, = 0.

3. Solutions

Substituting (11) and (1) in (14), we get:

(16)

1+16
a:a\/P( + n6+a+/>’p)

Where C; and C, are arbitrary constants. We choose
C, and C, such that lim, . t(p) = 0. This condition
gives:

\/ﬁ<,4 n(l+a)+ (1 +a—167) arctan<4 H_%))

Cl = ’
2(1 +87)y/67(1 + )’

a# — 1. (19)

C,=— VB a=-1. (20)

6v/6(m + 872)”

Then, we get for a# — 1 and a = —1 respectively

74\/n(1+zx) (pﬁ)+4\/n(1+o¢)(1+16n+zx+/3p)+(16717¢x71)\/;$ (arctan (Mlliz%) 7arctan(4 ﬁﬂa))

t(p) =

| <(4n+ﬁp)\/16n+ﬁp _ \/E>

6Vo \  n(pr8np)yfpr T

Substituting (16) in (15), we get:

(1+8m)(1+a+ Bp)y/6p°(1 + 167 + a + Pp)
1+ 167+ a +2Bp

(17)
Then, using (16) and (17), we can get
__ltatlénm __lta—l6m
( ) p 6(1+oz)(1+871)(1 +« +/5P> §i+a)(1+8m) a¥t — 1.
a = -
P e‘sp;;(?wn)p*s(wsm, a=—1

While we found it difficult to write down an explicit
expression for p in terms of the cosmic time ¢ for
general o and f3, we can get an explicit expression for
t in terms of p. From (17) we get

1+ 16w+ a+2fp
(1+87m)(1 + a+ Bp)\/6p(1 + 167 + a + fBp)
(18)

Which has the solution

2(1+8m)\/6mp(1+4)’°

We can easily verify that lim,_.t(p) =0 and
lim,_o t(p) = co. Now p(t) is the inverse function
of t(p) and we can simply use Mathematica software
to plot p(t) for given values of f and a. Consequently,
we can express all cosmological parameters in terms
of p and plot them. The Hubble parameter H and the
deceleration parameter g can now be written in terms
of p as:

H_@_\/p(1+16n+a+ﬁp) 1)

Cat) V6

12(Bp +a — 1)
+[5’p+(x+16ﬂ+ 1>' @2)

Figure 1(a—c) shows a variation of pressure p, density
p and cosmological constant A versus cosmic time.
The model predicts a negative pressure in an agree-
ment with the dark energy assumption. The energy
density is positive and tends to zero when t — oo as

4/ mfp

V6(1+87) VP(1+a)
t(p) =
(47+Bp)+/16m+fp

6m(B+87B)~/6p + G

1+16n+a)\/ﬁarctan [7
24/1+1671+a+, ( B
1 _ Bp + (1+a)(1+167+a+fp) + Cl, at — 1.

2\/71(1-‘,-0()3

a=—1
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Figure 1. The behaviour of a, H, g, p, p and A verses cosmic time fora = —1and = 1.

expected. The evolution of the cosmological constant
A (Figurel(c)) shows that it reaches a very small
negative value at late-time. While observations sug-
gest a very small positive A (Perlmutter et al. 1999;
Tonry et al. 2003; Clocchiatti et al. 2006), negative A
is also possible by other observations and can present
a solution to the eternal acceleration problem which
has been shown to be a consequence of the positive A
(Vincenzo et al. 2008). The negative A approach has
been studied by many authors (Cardenas et al. 2003;
Grande et al. 2006; Gong and Wang 2007; Vincenzo
et al. 2008; Prokopec 2011; Landry et al. 2012; Maeda
and Ohta 2014; Baier et al. 2015; Ahmed and Alamri
2018; ChruAsciel et al. 2018), and it is shown to be
supported by the AdS/CFT correspondence (Aharony
et al. 2000). The possibility of observationally viable
FRW cosmologies with negative A has been shown by
(Prokopec 2011). A stable de Sitter solution with
negative A has been found in Gauss-Bonnet gravity
by (Maeda and Ohta 2014). Solutions of Einstein-
complex scalar field equations with negative A has
been presented in (ChruAsciel et al. 2018). So, the
current solution with negative A has a solid theore-
tical and observational ground.

The deceleration parameter is negative (g<0)
for an accelerating universe and positive (g>0)
for a decelerating universe. Figure 1(f) shows
a sign flipping of the deceleration parameter from
positive to negative, it lies in the range —1 <g <
0 which matches with the observations made by
(Riess et al. 1998) and (Perlmutter et al. 1999).
So, the model predicts a deceleration to accelera-
tion transition in a good agreement with observa-
tions. The behaviour of the Hubble parameter
(Figure 1(e)) shows that it tends to infinity as
time goes to zero.

4. Conclusion

A flat FRW cosmological model in which a deceleration-
to-acceleration transition happens has been presented in
a specific f(R, T) gravity reconstruction. An exact solu-
tion to Friedmann equations has been obtained with
a quadratic equation of state describing a universe
with negative cosmological constant and negative pres-
sure. The model is in a good agreement with observa-
tions, we have also shown that such a universe with
negative varying cosmological constant has a solid theo-
retical base.
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