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ABSTRACT
The anisotropic and heterogeneous nature of the subsurface units at offset wells gets more
complex at locations outside well control. However, qualitative and quantitative predictions of
reservoir properties and geometries beyond well control are vital to understanding the intrinsic
characteristics of subsurface formations. Supervised Multi-layer Perceptron neural network and
conditional sequential Gaussian simulation were applied to a suite of well logs data set and
three dimensional (3-D) seismic dataset acquired from P-field, Niger Delta to predict lateral
continuity of hydrocarbon reservoir properties. Multilayer perceptron neural network was used
to model effective porosity (Eϕ) at the root-mean-square error of 0.00531 with an estimated
average effective porosity of 0.2952. Furthermore, MLPNN modelling of hydrocarbon satura-
tion (Sh) at root mean square error of 0.02821 yielded an estimated average of 69.73%. The
volume of shale (Vsh) was also modelled at the root mean square error of 0.0282, with an
estimated Vsh average of 9% for the study area. It was discovered that a comparatively higher
net-to-gross (N-T-G), relatively higher effective porosity, high hydrocarbon saturation, very low
volume of shale, and high permeability were observed in the areas of interest in the study area.
A geostatistical approach was also used to model petrophysical properties. The parametric
semivariogram model shows the range of 94–5230 m, nugget effect of 0.062, and sills of 0.075,
0.093, and 0.0121. Realisations were generated and ranked using the SGS algorithm suggest
that any one of the realisations can independently represent the real picture of the subsurface
geology within the study area. The integration of these different prediction tools and analyses
of the outcomes from the research has improved our understanding of delineated reservoirs
and improved lateral variation prediction of its properties. These prediction tools served better
as a complementary tool to each other rather than as a comparison tool.
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1. Preamble

Reservoirs are sampled directly or indirectly by the use
of various geophysical exploration techniques, which
gives a presentation that is a function of the data from
which characterisation can be carried out. A major
challenge in hydrocarbon exploration lies in need for
proper mapping of the reservoir and its characterisa-
tion to determine the economic value of such a field.
Characterisation in a hydrocarbon reservoir and its
petrophysical properties in detail, such that the prop-
erties upon which the descriptions are made have
coefficients unique to the reservoir analysed. These
properties are parameters that are either quantitatively
or qualitatively derived from making good the total
outlook of the reservoir while giving a clear and reli-
able indication of its hydrocarbon potential.
Moreover, in reserve estimation and planning produc-
tion operations, hydrocarbon reservoir characterisa-
tion is essential and has played an important role in
reservoir studies, the evaluation of which could be for
different purposes. Its success can greatly enhance
a variety of decisions to be made in various fields in
which it is applicable, most importantly in

hydrocarbon exploration. The goal of any reservoir
characterisation is to typify the nature of the reservoir
and to have first-hand and reliable information pecu-
liar to it. Most of the time, due to the inaccessibility of
the reservoir of interest, predictive variables are
adopted in projects. Reservoirs are sampled directly
or indirectly by the use of various geophysical explora-
tion techniques, which give a presentation that is
a function of the data from which characterisation
can be carried out. Nonetheless, properties of hydro-
carbon-bearing reservoirs such as water saturation,
net-to-gross, porosity, and hydrocarbon saturation
can be estimated from borehole log data interpreta-
tion. Integration of log calculated reservoir properties
and seismic amplitude analysis and seismic structural
interpretation can aid an interpreter to quantify sub-
surface petroleum resources and accumulations, clas-
sify petroleum resources, delineate prospects and
leads, calculate probability of success, rank available
petroleum resources, design appraisal, and develop-
mental wells, minimise risks in exploration and
exploitation, and also boost success rate for exploitable
prospects. Due to these reasons, this study exemplifies
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how geophysical methods can help to maximise recov-
ery by identifying bypass reservoir zones and hetero-
geneities that control hydrocarbon recovery. Since
rocks have elastic properties, the response of different
rock materials to elastic waves based on density and
the velocity of motion constitutes the root of the
theories. Seismic records come with attributes that
are intrinsic to the investigated terrains. Thus, there
is a desire to know the information contained in the
wavelet and also how to extract and use the same to
characterise the rock unit (reservoir) (Caers, 2003).
The lack of data and the delicate nature of the few at
hand coupled with the significant need to come out
with a valid and unassuming exploration philosophy
for a particular terrain has informed the need to ade-
quately look inward and properly take into considera-
tion all the properties of the data set available and
judiciously incorporate one into another. Models
that are standard and peculiar to cases often result
from an interpretation carefully done from a robust
database that has taken into consideration the prove-
nance and current properties of the analysed rock
body. This study applies multi-attribute transforms
and geostatistical inversion to the three-dimension
(3D) seismic dataset and set of borehole logs data to
predict lateral homogeneity of reservoir properties as
well as quantifying the uncertainty associated with the
predictions in the study area. Moreover, according to
Chambers and Yarus (2002), the trend is towards the
interpretation of single or combined data for lateral
prediction of lithology, facies, petrophysical para-
meters, and other elastic properties of rocks such as
coefficient of compressibility (shear modulus, µ),
incompressible (bulk modulus, k), Poisson ratio (σ),
Lames’s constant (λ). Therefore, the geometric model-
ling of movement in hydrocarbon reservoirs necessi-
tates the description of the physical properties and
geometry of intricate geological formations. These
can be modelled from few or low-resolution samples
obtained from the borehole and seismic data and are
required to be dependable with geological perceptions.
A different approach for the integration of 3-D seismic
data and borehole records is to use a multilayer per-
ceptron neural network. The awareness of using many
seismic attributes to predict borehole log properties
was foremost projected by Schultz et al. (1994);
Robinson (2001). Numerous case histories have been
cited in the previous works for such prediction of
borehole logs properties using multilinear stepwise
regression and artificial neural networks (Russell
et al. 1997; Skolen et al. 2006; Fogg 2000; Tonn 2002;
Walls 2002; Pramanik et al. 2004). In this method, the
training points are considered to be well to seismic
ties. The relationship between attributes and borehole
log data is derived, quantify, and quality check statis-
tically. The method of cross justification is used to
prevent “overtraining.” It is essential to note that in

these methods of multiattribute transforms, a precise
solution is not enforced at well- to- seismic ties
(Daniel et al. 2001), but a relationship of best fit is
gotten at the tie points. This relationship is then used
for the multiple inputs attributes to produce the reser-
voir property volume. Hampson et al. (2001),
Strivastava (1994), and David et al. (2004) proposed
combining both geostatistical and multiattribute
transforms (linear or non-linear). The key to integrat-
ing seismic and well data is in establishing a significant
correlation between them. If there is no correlation
between seismic and well data, incorporation of the
former will provide no additional information over
what would be calculated with only the latter. When
some correlations exist between seismic and well data,
there will be some increase in the accuracy of the
resulting map. The most important role of geostatis-
tics in reservoir characterisation and modelling lies in
the integration of data, providing a formalism to
encode vital, possibly non-numerical facts; bring
together different data resulting in uncertainty, and
transfer such uncertainty into the final prediction.
Geostatistics is no substitute for the geologist’s experi-
ence in formulating the model properties, but it may
help in creating the model. Journel (1994) accedes that
geologists, at times, have become alarmed at the
notion of geostatisticians treading over turf and repla-
cing some of their well-thought-out deterministic
depositional models with “random numbers.”
Conversely, some engineers may have been wary of
geostatisticians lending their numerical skill to geos-
cientists to impose upon them reservoir models with
resolution far beyond that of traditional and comfor-
table layer-cake models, a resolution whose accuracy
has been questioned and which, in any case, flow
simulators cannot accommodate. Such concerns
should be put to rest as reservoirs modelling becomes
truly interdisciplinary, and geostatistics is seen not as
a self-centred discipline but as a set of tools to be used
jointly by geologists, geophysicists, and reservoir engi-
neers (Journel 1994). Webster and Oliver (2007),
Chambers et al. (1994) states that the environment is
continuous. However, it is possible to determine its
properties at a particular point of places at any time.
Somewhere else, the best that could be done is to
determine, or forecast, in a three-dimensional sense.
This forms the major reason for geostatistics analysis
as it permits an analyst to do deprived of unfairness
and with the smallest error. This allows dealing with
properties that differ in dimensions that are far from
systematic and at all spatial scales. Moreover, another
additional feature of the thing of interest is that at
some scale, the values of its properties are positively
related (statistically and physically related). Places and
locations close to one another tend to have similar
values, whereas ones that are farther apart differ
more on average. This intuitive knowledge of lateral
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variation is what geostatistics expresses quantitatively
and then uses it for prediction. Inevitably there is an
error in estimates, but by quantifying the spatial auto-
correlation at the scale of interest, errors can be mini-
mised and also estimated. Geostatistics is also very
capable of handling questions of the probability of
occurrence of properties at locations at certain pro-
portions. The era of building single best reservoir
models from seismic and well logs is passing because
a single deterministic model cannot capture seismic
and geologic uncertainties (Caers et al. 2003).
Deterministic models, generated at the scale of the
seismic data, neglect any small-scale geologic hetero-
geneity that may have a major impact on reservoir
flow performance (Robinson 2001). The resulting
high resolution (both vertical and horizontal) 3D
volume is well suited for use in building detailed
property models. The impedance realisations from
stochastic inversion can then be used to estimate the
uncertainty in reservoir property such as lithology or
porosity in the form of probability maps and volu-
metric uncertainty. The realisations can also be used to
estimate reservoir connectivity and associated con-
nected or swept volume uncertainty (Frykman and
Deutsh 2002), Strebelle (2001); Liu et al. (2004);
Hoffman and Caers (2005).

The study characterises the reservoir “P” field by
integrating a suite of wireline log and 3-dimension
seismic data volume in the study area. Numerous
diverse techniques such as geostatistical methods
using conditional sequential Gaussian simulation and
multi-layer perceptron neural network, and approach
which combines seismic inversions and multi-
attribute transform, were utilised towards the accom-
plishment of the purpose of the study in “P” field,
Niger-Delta.

1.1. Location and geological framework of the
study area

The studied area (P field) lies in the Niger Delta
petroliferous basin, a productive hydrocarbon area in
the Gulf of Guinea, southern Nigeria. The northern
part of the boundary at 300,000 km2 Niger Delta
Province is the Benin flank- an east-northeast trending
hinge line south of the West Africa basement massif.
Outcrops of the Cretaceous on the Abakaliki High
define the northeastern boundary. The east-south-
east edge is outlined by the Calabar flank- a hinge
line bordering the adjacent Precambrian. The area of
study is covering an area of 55 km2. The cross-lines
and in-lines are in the ranges of1480 to 1700 and 5800
to 6200, respectively (Figure 1). The Niger Delta oil
and gas province is situated in the Gulf of Guinea on
the west coast of Central Africa (Figure 2) After
Damuth (1994), and extends entirely over the Niger
Delta zone (Stacher 1995). The Niger Delta consists of

a generally regressive clastic succession that is
10–12 km thick. The field comprises a single recog-
nised petroleum system, which is the Tertiary Akata-
Agbada petroleum system. While the boundaries of
the province coincide with the maximum extent of the
system, the minimum petroleum system is well-
defined by oil and gas field centre points. The
Tertiary classification of Niger Delta is subdivided
into three large stratigraphic parts (Figure 3): Akata,
Agbada, and Benin Formations in the downward
direction of sedimentation. The basinward decrease
in age is a reflection of the overall regression of envir-
onments of deposition within the Niger Delta clastic
wedge province. These Formations show a massive
coarsening-upward progradational clastic wedge
(Short and Stauble 1967) deposited in fluvial, deltaic,
and marine environments (Weber 1986; Weber and
Daukoru 1975). Akata Formation: This formation is of
marine origin and comprises predominantly of over-
pressured, under-compacted shales of the pro-delta
facies. Other lithologies that are present include insig-
nificant amounts of silt, clay, and turbidite sand. Short
and Stauble 1967, described this type of section of the
Akata Formation in Akata well-1, 8000m east away
from Port Harcourt. The thickness of the Formation is
appraised to be 21,000 feet thick in the central portion
of the clastic wedge. The lithologies, probably of the
turbidite flow origin, are silts and dark grey shales with
occasional streaks of sand. The oldness of the Akata
Formation is between Palaeocene to Recent. It was
formed during low stands when terrestrial organic
matter and clay were transported to deep water areas
characterised by oxygen deficiency and small energy
circumstances. Agbada Formation: The deposition of
the Agbada Formation began in the Eocene and con-
tinues into the Recent. The formation consists of para-
lic siliciclastics over 3700 metres thick and signifies the
definite deltaic percentage of the sequence. The
depositional environments include fluvial-deltaic,
delta-topset, and delta-front systems. The Agbada
Formation overlies Akata lithostratigraphic unit.
Shale and sandstone beds were deposited in equal
proportions in the lower Agbada Formation; though,
the upper portion has minor shale interbeds with
mostly sand. The Agbada Formation is defined in the
Agbada well-2, drilled about 11 km north-northwest
of Port Harcourt (Short and Stauble 1967). The well
had a total depth of 9500 feet and did not penetrate the
base of the formation. The sand layers of the Agbada
Formation bear saline water. Considerable difficulties
came-up with the delineation of the bottom and top of
the Agbada Formation (Figure 4). Benin Formation:
The Agbada Formation is overlain by the third forma-
tion, the Benin Formation, a continental deposit of
alluvial and upper coastal plain sands that are up to
2000 m thick (Avbovbo 1978). The type section is Elele
1 well, drilled about 38 km north-northwest of Port
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Harcourt (Short and Stauble, 1967). The youngest
marine shale defines the base of the formation. The
age of the Benin Formation is from Oligocene to
Recent. The continental sands of this formation bear
freshwater.

The lithostratigraphic units constituting the Niger
Delta are derived from surface and subsurface data.
Sedimentation in the Niger Delta was favoured by the
rate of deposition, which was higher than that of sub-
sidence. Sediments that were supplied to the delta by
Niger, Benue, and Cross-River, which acted as the
drainage system. The sedimentary sequence of the
southern Nigerian basins has the origin divided into
three main tectonic phases, coupled with transgressive
and regressive movements of the ancient sea.

1.2. Hydrocarbon potential and traping
mechanism of the Niger Delta

Hydrocarbon Potential: The most useful source rocks
probably are shales interbedded with deltaic sands in

the lower part of the paralic sequence, and shales in
the upper part of the marine sequence. The lower part
of the marine sequence may contain good source rocks
as well, but oil generated from this section would have
to surmount long vertical migration path to reach the
overlying reservoirs. The Niger Delta holds enormous
petroleum reserves estimated at 30 billion barrels of oil
currently 260 trillion cubits feet of natural gas. It ranks
seventh in the world production and averages now
about 1.8 billion bbl of oil per day (BP 2014). The
Benin Formation, though mostly unaffected by gravity
tectonics, has been subjected to a regional tilting
southward as a result of down-dip subsidence along
the fault detected. Agbada Formation is the most
deformed and, as such, traps most of the hydrocarbon
that has been found hitherto. Oil found in the Agbada
Formation is of the paraffin type with deficient
Sulphur and asphaltic cement.

Trapping Mechanisms: A trap is a geological fea-
ture of a reservoir, which is capable of barring oil and
gas from moving. A closed structure in porous

Figure 1. Base map of the study area.
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Figure 3. Stratigraphic column of the three formations of in Niger Delta. (Shannon and Naylor 1989).

Figure 2. The Niger Delta continental margin showing bathymetry, zones of gravity tectonic and structural style (After
Damuth 1994).
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formations may be a trap if it has an impermeable cap
rock in an enclosed structure. It may also be a trap if
permeability variation block off the escape route of
fluids. The hydrocarbon moves through the water
both laterally and vertically until it is barred from
movement by an impervious rock layer. In the Niger
Delta, hydrocarbons are dominantly trapped by roll-
over anticline and fault closure (Evamy et al. 1978).
The traps found in the Niger Delta can be grouped

into three broad types, namely: Structural traps,
Stratigraphic traps, and Combination traps.

Structural Traps: Most of the hydrocarbon traps of
the Niger Delta are structural traps and where devel-
oped as a result of syn-sedimentary structural defor-
mation in the Niger Delta. It has given rise to a variety
of growth faults, rollover-related features separated by
regional dipping flanks. Common structural traps in
the Niger Delta are: (i) Unfaulted rollover anticline,

Figure 4. Hydrocarbon traps, source rock and migration pathways and associated with growth faults in Niger Delta (After Stacher
1995).

Figure 5. Typical interpreted seismic section (Inline 6190).
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(ii) Multiple or synthetic fault closures, (iii)Anticline
or synthetic fault closures, and (iv) Collapsed crest
structures.

Stratigraphic Trap: The stratigraphic trap occurs as
a result of lateral changes in the lithology of reservoir
rocks. They are formed when permeable bed grades
into an impermeable bed, as might result when sand-
ing grades into shale. This is due to the environmental
conditions at the time of deposition. The original
deposition of the strata may control these variations
as in the case of a channel or reef bar. A stratigraphic
trap has been defined as the one in which the chief trap
making element varies in some of the stratigraphic or
lithology or both of the reservoir rock as facies
changes, Variable local porosity, or an up-structure
termination of the reservoir rock.

Combination Traps: These traps are made up of
a combination of two or more mechanisms. Both the
structural stratigraphic elements form them. They
occur when the reservoir rock has folded into an
anticline and subsequently partly eroded and sealed
by the deposition of shale above the unconformity.
Examples are salt domes-overlying domes and fault:
salt dome cap rock and compaction anticline.

1.3. Datasets and methodology

The methodology adopted for this study was based on
the data set available. It starts with conventional well
logs analysis, computations of rocks petrophysical
properties, clustering analysis for lithofacies identifi-
cation, well logs normalisation, well logs upscaling,
time to depth conversion, conventional seismic inter-
pretation for horizons and fault, seismic attributes
computation and analysis, model building, variogram
analysis, data analysis, seismic facies, seismic inver-
sion, seismic multi-attribute analysis, and geostatisti-
cal simulation. The following data were loaded into
the project: Wellheads were imported for each of the
wells, Well path/deviation data were imported for each
of the wells, Well logs were imported for each of the
wells, Check shot data was quality-checked and
Seismic volume was imported. The sets of data acces-
sible for the research include a volume of three-
dimensional (3-D) seismic data, a base map showing
inlines, crosslines and location of wells, suites of bore-
hole log for seven (7) wells and two-way-travel time
versus depth data (check shot). The 3-D seismic data
volume has a dominant bandwidth of 65hz. It is
a post-stack data, 58 folds, zero phases, and migrated.
It consists of 201 crosslines, and 401 inlines. Gamma-
ray logs were used to delineate various lithologies in
the study area.

1.3.1. Clustering analysis
In this approach, available wells were used to build the
model for the area. The volume of shale log (Vsh), GR

log, and porosity log were used for the model because
of the non-linearity effect in their cross-plot and abil-
ity to accurately resolve lithofacies distribution. The
depth of investigation was selected in a sequential
pattern based on the understanding of the necessary
prior interpretation made on the wells. However, the
model was ultimately built to cover the whole run of
the wells. This is necessary to achieve one of the high
aims of the entire project, which is to create a valid
facie model. Having set up the input panel to suit the
distribution patterns. Cluster mode or seed clusters
were the initial maximum number of classes into
which the observed values of the input logs were dis-
tributed before the agglomeration. The Opendtect
software was used for this operation, and it was
achieved by initialising the run engine in three ways;
values can be typed manually into the grid, the seed
cluster can be randomly assigned by allowing the
machine to make the sorting and thirdly, the cross-
plot button on the cross-plot display can be used to
move pre-assigned points interactively. In the seed
cluster approach, a principal component analysis was
performed on the input data, the result sorted and
equally divided into the defined number of classes.
From the cluster classes, the low and seed points
were computed, and thus the slots were populated
for each input variable. Then the clustering run was
set for the program to calculate the standard deviation
and mode for the classes, due to the pertinence and
sensitivity of the previous step, physical examination
of the distributions commenced afterwards at this
point by deleting the row (the convergence clustering
point values) with a small mode. This helped initiate
a recalculation to optimise the analysis. The distance is
a function of the value of logs used in building the
clustering model. Histograms and cross plots out-
putted from model building assisted in physically
observing the cluster groups before the secondary
agglomeration to some smaller geologically plausible
facies.

1.3.2. Well logs upscaling
The well logs upscaling is the blocking of well logs
values into the property’s coefficient within
a simulation grid cell; this is done in a variety of
ways. When modelling petrophysical properties, the
modelled area is divided up by generating a 3D grid.
Each grid cell has a single value for each property.
Since grid cells are often more significant than the
sample density for well logs, values that fall within
the cells were averaged according to the selected algo-
rithm to produce one log value for that cell. For dis-
crete well logs (facies or zone logs), the conventional
method of “Most” is recommended. The upscaled
value then corresponds to the value which is most
represented in the log for that particular cell. The
layout and resolution of the 3D grid will control how
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many and which cell each well penetrates. For
instance, a dipping layering scheme, compared to
a horizontal system, can/may alter the results from
the scale-up of the well logs and the subsequent prop-
erty modelling. The averaging method chosen for each
type of record is a function of the nature of the logs as
it relates to its character. Also, wells are treated as
either points or li8nes. Eventually, the statistics and
histogram of the result of the upscaling operation were
checked up if there is an agreement between the raw
logs and the upscaled well logs. This quality control
step did not stop at this point, the understanding of
the raw logs upscaled well log, and the simulated
volume was visualised to see the extent of deviations
and the success of the operations.

The approach that was used for well upscaling was
in two parts. The first part was one that concentrated
on the discrete log types. These are necessarily the
facies log both from clustering operation and from
the use of cut-offs through visual observations. All
well logs were upscaled from the raw well logs and
not from well attributes or point attributes.

This is because the cell averaging taken into con-
sideration earlier in building the model. Well, attri-
butes and point attributes are point properties, not
a good representation of the vertical distribution of
properties. The cell size was fixed at 1m and the aver-
aging method of “Most of” was chosen and were also
treated as lines so that each log sample was weighted
by a factor that is proportional to its interval as the
well path passes through the earlier blocked cells in the
simulation case. The neighbour cell method property
blocking was used that averaged the log values from all
cells adjacent to the upscaled cells, and that belong to
the same layer as the upscaled cell (Figures 3.9a 3.9b).

For the continuous logs, a similar approach was
used, but an attempt was made to use the earlier
blocked (upscaled) facies log as a biased estimator
for cell population for some petrophysical records,
like porosity. The use of estimation bias did not quite
work well on continuous logs. This is because of the
nature of log (i.e., combination flaw – discrete and
continuous data). Well-Logs with more straightfor-
ward (e.g., GR and Res) physiochemical theoretical
basis was scaled up using the arithmetic and harmonic
averaging method. This was done in a way to account
for the seeming heterogeneity noticed in the well logs
analysis done, and also the anisotropy evident in lat-
eral reconciliation of similar rock properties.

1.3.3. Seismic inversion
All inversion and multi-attribute volume prediction
were done in the Opendtect Pro 6.2 software. Seven
(7) well logs and 3D seismic data volume were used for
volume inversion operation. The wells had logs with
proper signatures and were at random locations on the
field. The primary treatment on the logs was to correct

for spurious frequency and static shifts based on
check-shots. Four (4) Horizons that were previously
picked from the initial workflow from Petrel were
imported into the software (petrel and Opendtect).
A vintage seismic volume was imported for use in
the inversion program. After correcting the well logs,
trace extraction was done to correlate the well logs
with seismic trace. To achieve this, a composite trace
extracted around the wellbore was required. The
neighbourhood method was used for the composite
trace extraction around the borehole. This step was
used to optimise time-depth conversion. The next step
was to extract a statistical wavelet having an initial
zero phase, which has an amplitude spectrum derived
from raw seismic before correlation at different stages.
After obtaining the statistical wavelet, the synthetic
trace was shifted to match the character of the natural
seismic and composite traces. After achieving a good
correlation, another wavelet was extracted this time
from the wells that were being correlated to confirm
the validity of the operation, and also, a multi-well
analysis was done to see how the wavelet behaves
across the spread of the locations where there are
wells. The model-based algorithm was employed, and
the method is deterministic. The model was built
around the wells and horizons present. The neutron,
sonic, and density logs present on the wells were used
in the P impedance equation. Because seismic data
lacks the low-frequency component of the rocks, and
a correct interpolation of this frequency around the
volume from the logs was desired, and a high cut
frequency filter was applied for this method. It was
worthy of note that the model adopted was con-
strained to field geology by the horizons initially inter-
preted (Figure 5).

Sequel to model building, an analysis was done in
two stages. First, the investigation was run at well
locations to optimise the modelling parameters, and
then the whole volume was treated to the parameters
chosen in the first step. This was the analysis of the
inversion model before the actual volume inversion.
Here the time or analysis window, the target zone, the
composite trace extraction method, and the scaling
factor were set. The inversion operation was done
after proper analysis. The procedure adopted raw seis-
mic sampling rate, average block size – 4ms as in
sampling rate above, pre-whitening −1%, number of
iterations – 10, and infinitesimal spuriousness.

1.3.4. Multi-attribute volume prediction
This is an aspect of the workflow that strives to predict
volumes of subsurface rock properties from the vin-
tage raw seismic initially alone subjecting it to multi-
attribute analysis after attribute sensitivity analysis had
been carried out And subsequently inculcating the
predicted volumes as an external attribute to be
added to the suite of multi-attributes used for some
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other volume predictions. Well-logs and seismic data
were imported. The purpose of this was to predict well
log properties at points where it does not exist using
seismic data. The analysis progresses from the primary
examination of the log and seismic data at well loca-
tions to determine which set of attributes was appro-
priate, and then a relationship was derived using
multi-linear regression or multilayer perceptron
Neural Networks. The defined relationship was now
applied to 3D SEGY volume to create a volume of the
desired property. Single attribute analysis was per-
formed then followed by performing multi-attributes
analysis to see the set of combined seismic attributes
that best predicts the properties. The method of ana-
lysis was primarily least square regression (stepwise)
analysis on the well as they correlate with logs basically
to reduce uncertainty in results

output. For porosity and other petrophysical prop-
erties, a probabilistic neural network training algo-
rithm was also used. Additional external attributes
were imported to add to the prediction database and
further made the result less erroneous since post-stack
data was used. Volumes computed/predicted are por-
osity, NTG, permeability, and Hydrocarbon satura-
tion. Having derived the best combination of
attributes for each property, the best attributes set
was applied to 3D volume to predict the rock property
from the well-log and populate the volume. The aver-
age error for all well was viewed to see the agreement
of the well logs property with the set of attributes
chosen.

1.3.5. Geomodeling
The non-partitioned single zone models were made
for the field of study and the delineated regions of
interest, top middle, and base. The superficial grid of

60 × 50 x 1. The model includes both stratigraphic and
structural elements. Cell configuration (nI x nJ
x nK) = 260 x260 x400 and total number of 3D
cells = 27,040,000. This serves as a receptacle into
which all other operations were carried out. Seismic
attributes inversion volumes and prediction results
volume were resampled into the established 3-D grid
model. Geostatistical analysis and inversion –
Simulation algorithms and variogram models and
were all run on the geomodel built for the zones.
(Figure 6)

The 3-D models (Permeability, NTG, Hydrocarbon
saturation, porosity, and facies) were built similarly in
Petrel 2015 software, the main difference being the
type of log used to populate the grid cells and the
computation formulae, in deciding which wells to
use in the models, and the size of the model domain
needed to be established. If too big an area were
selected, then there would be more space in between
each well and less data control from the well logs,
which could correlate to less accurate models. Thus,
a reasonable zone model boundary was made to
enclose the zone of interest that characterises the stra-
tigraphic and structural elements in each portion.
A smaller area would yield a smaller but more detailed
model. Due to several available and useful well logs, an
area measuring ~ 55km2 was covered using seven
wells.

2. Reservoirs and rock properties prediction
using artificial neural network

This segment of the study involves the prediction of
the spatial distribution of rock and reservoir proper-
ties in the study area using Artificial Neural Networks
(ANN). Several 3D seismic attributes were used to

Figure 6. 3-D geomodel grid and structural framework.
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predict these properties (permeability, porosity, and
volume of shale and hydrocarbon saturation) away
from well control. Well-to-seismic ties were consid-
ered to be the training points for the method; both the
seismic response and the well log property were
known at the selected well locations. A statistical rela-
tionship, either linear or nonlinear, was developed at
the well sites to relate seismic response to a well log
response.

This is a supervised approach using a multilayer per-
ceptron neural network. The network found the optimal
(non-linear) mapping between seismic attributes and
target well log characteristics (porosity, net to gross,
Volume of shale, and water saturation). The network is
trained on data points extracted along the well tracks
(Figures 3.22 and 3.23). Part of the extracted points was
used as a test set to determine the optimal position to stop
training and avoid overfitting. The trained network was
applied to inverted seismic data. The input data (inverted
seismic) needs to be scaled to match the scaling of the
input data set that was used in training (logs).
Theoretically, we only need the attribute value at the
evaluation point as input to the neural network, but this
assumes that the inversion process has completely
removed the wavelet and that there is perfect alignment
of attribute and log responses along the entire well track
(Helle et al. (2001), Rafael and Reinaldo (2002). To com-
pensate for potential inaccuracies, the Extraction of more
than just the attribute value at the evaluation point was

executed. An extracted attribute in a 24ms time window
that slides along the well tracks was also done.
Furthermore, the corresponding log values from the
depth-to-time converted and resampled logs serve as
target values for the neural network. The workflow is
schematically shown in Figure 7

3. Results presentation and discussion

3.1. Petrophysical assessment of reservoirs

Figure 8 shows the lithostratigraphy correlation of wells
in the “P” field, showing the sand and shale intercalation.
The field has an average porosity of 28%, average hydro-
carbon saturation of 60%, average permeability of 721md,
the average volume of shale of 8%, The reservoirs were
characterised by a gross thickness of 120 ft, 103 ft, 112 ft,
and 115ft. Net to gross ratio is 100% in well 1, well 2,3,
and well 4, respectively. The average volume of shale is
8%, which is a clear indication that the reservoirs have
a large volume of the sand deposit than shale. The hydro-
carbon saturation in the reservoir are 70%, 72%, 70%,
72% and 70% for “P” wells 1–5 respectively

3.2. Discussion of characteristics of sand bodies in
mapped reservoirs

Low values of the gamma-ray curve observed in
the reservoirs show that these reservoirs are thick

Figure 7. Log property prediction workflow using artificial neural network.
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sand-packages with shale intercalations Figure 9.
The reservoirs A, B, and C have a generally blocky
gamma-ray log motif. It is probably a distributary
channel fill. The high value of the deep resistivity

curve in the upper section of the reservoir shows
that it is hydrocarbon-bearing. well-01 and 04
encountered gas – oil and oil-water- contacts
(G O C and O W C) at −10524ft and −10550ft

Figure 8. Depth structure map of horizon sand B.

Figure 9. Log curves of “P” −01 showing reservoir C-sand.
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TVDSS, respectively. The relatively low density
and neutron values in this reservoir point to the
presence of gas (Figure 10). In the oil pay zone,
density and neutron curves track, and their values
cluster around the sandstone matrix line on the
neutron-density cross-plot (Figure 10). Figures 11
and 12 show a typical RMS amplitude map and
fluid contact map of reservoir 2, respectively
revealing regions of interest.

3.3. Seismic structural analysis

Three (3) major growth faults, F2, F3, and F5, which are
normal, listric concave in nature), two antithetic (F1
and F4) were identified. Delineated structural closures
identified as rollover anticlines and displayed on the
time/depth structure maps; suggest probable hydro-
carbon accumulation at the upthrown side of the fault
F4. Structural time maps where values are in two-way
seismic travel time were generated for the mapped
horizons using fault polygons, boundary polygons,
and the interpreted horizon, as shown in Figure 13.
Structural depth maps were also produced, and they
show the exact position of structures and fault within
the study area for the mapped horizons corresponding
to the time-depth plot (Figures 14, 15 and 16). The
crest of the structure is structurally high; hence it is
a hydrocarbon prospect. It can be observed that the
existing wells are situated close to and on the flank of

the mapped structural high. This also confirms the
validity of the previous interpretation.

3.4. Conditional simulation of rock and reservoir
properties

The conditional simulation technique, conditioned by
prior information, is a procedure that simulates var-
ious attributes or petrophysical property of interest at
unsampled locations. These techniques constitute
a part of a broader class of simulation techniques
and are called Monte Carlo simulations. In this
study, the sequential indicator simulation algorithm
and sequential Gaussian simulation (SGS) were used
in populating for the facies modelling grids and reser-
voir properties of the zones, respectively.

3.5. Facies model results

Facies modelling is also very vital in reservoir char-
acterisation. It is used for simulating the sand bodies
in the formation. The delineated reservoirs are com-
posed mainly of sand and some amount of shale
content. The facies models for a conventional reser-
voir, reservoir two (2) is shown in Figure 17. The
sequential indicator simulation algorithm used for
the facies modelling resulted in an adequate distribu-
tion of sand and shale facies taking control from the
wellbore axis and gently spreading its influence

‘P’ - 04

Neutron-Density cross-plot- P04

Figure 10. Log curves of “P” −04 showing reservoir C-sand and the corresponding neutron-density cross-plot.
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across according to the semi-variance/autocorrela-
tion parameter used in the variogram modelling.
The models show the distribution of sand (yellow)
and shale (grey colour) lithology within the reser-
voirs. The sand is more dominant in the reservoirs.
There are advantages and disadvantages to the choice
of model boundary used. The non-partitioned model
adopted for the simulations allowed the operations
(algorithm, variogram, sequential simulation) to
assign facies values with the most freedom. No inter-
ior restraints are present to force facies assignments,

so the full range of interpretation based on the var-
iogram is displayed as all model elements are also
inculcated. Possible misallocated cell assignments
have been adequately taken care of when the vario-
gram model is well made. The uncertainty analysis is
included in the horizon making process; thus, ten
(10) equiprobable realisations of different scenarios
of the zone properties are obtained for each of the
mapped reservoirs. The realisations were ranked
based on their closeness of the actual value of
a petrophysical property of interest at well locations.

Figure 12. Fluid contact map of reservoir 2 sand unit.

Figure 11. RMS amplitude map of top of “P” horizon 2 showing regions of interest.
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Figure 14. 3-D view of depth structural map of “P” horizons.

Figure 15. Depth structure map of horizon sand A.

Figure 13. Fault polygon framework in the study area.
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Figure 4. was rated best out of the ten (10) realisa-
tions for reservoir 2. Continuity and truncations of
lithological units are seen in this Figure.

3.6. Reservoir property model results

For the continuous logs up-scaled into the simulation
case, the Sequential Gaussian Simulation (SGS) was
used in populating the grids for reservoir properties of
the zones. The variogram for each reservoir properties
made with proper consideration given to the range
and sill of each log brought out the uniqueness of

spatial distribution of these petrophysical properties.
This resulted from single run variogram modelling,
unlike the facies variogram, which was done on each
facies separately before carrying out a combined
simulation.

3.7. Effective porosity modelling

Effective Porosity is one of the primary parameters used
for evaluating the amount of hydrocarbon in a reservoir.
The computed average effective porosity from the seven
(7) wells were used to estimate the porosity at unsampled

Figure 16. Depth structure map of horizon sand B.

Figure 17. Sand 2 Facie modelling.
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locations, and the results were distributed into the
3-D grid for a property (Figure 18). The dominant
effective porosity values range from 27% – 29% (light
blue to yellow colours). On observation, it was noticed
that the porosity is evenly distributed within the study
area. It was seen that the more significant portion of
porosity property value was useful as a reservoir indica-
tor, and it was also discovered to be in the range of value
for average effective porosity derived from the logs for
the mapped reservoirs, thus making the realisations reli-
able. Based on Conditional Sequential Gaussian
Simulation algorithms, ten realisations were generated
in mapping the reservoirs lateral and vertical effective
porosity distributions. Visual observation shows that the
models are similar in terms of distribution variability.
The similarity of statistics of themodels suggests that any
one of the realisations can independently represent the
real picture of the subsurface geology within the study
area in terms of effective porosity distribution. The out-
puts are a set of probabilistic models that can serve as
a measure of uncertainty in predicting facies distribution
within the study area. Relative high effective porosity is
observed in the regions of interest in the mapped reser-
voirs. Figure 10 was ranked best out of the ten (10)
realisations in the mapped reservoir 2. There are evident
of continuity and lateral variations of effective porosity
within these lithological units

3.8. Permeability modelling

Permeability is also essential for reservoir rock character-
isation, which is also a measure of the ability of
a formation to transmit fluids. The permeability

computed from the logs for each of the reservoirs were
used to simulate the values at unsampled locations and
was distributed across the 3-D grids. The permeability
variation within the reservoirs and across fault blocks has
been observed, and the permeability values modelled for
the zone in reservoir 2 is 710md (Figure 19). This is as
delineated within the fault truncated fairly continuous
lithological units of the zones. The calculated permeabil-
ity for the four (4) reservoirs ranges from 5000mD –
915mD. From the realisations, the best-ranked realisation
has an average permeability of 832mD for reservoir 2.
The regions of interest with relatively higher permeability
coincides with areas with higher effective porosity mod-
elled zones in the field. The models underscore ethical
permeability values. The values are reflective of good
interconnectivity of pore spaces of the sand within the
reservoirs and well area and their ability to transmit
fluids. On the contrary, the region farther away from
the well locations in the south-west area of the “P” field
indicates poor to good permeability, which ranges from 1
mD to 10 mD on all the permeability models.

3.9. Net to gross ratio modelling

Net-to-gross (NTG) ratio modelling was carried out to
see the areal distribution of the volume of sand units
within the reservoirs in the study area and determine
their quality as a potential reservoir. The net to gross
ratio model for reservoirs two is shown in Figure 20.
High NTG value connotes a good quality hydrocarbon
reservoir. Figure 4 reveals useful net to gross, which falls
between 0.8 and 1 within the wells concentrated area of
the field while the region farther away from the location

Figure 18. Porosity modelling of reservoir 2.
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of the well is indicative of relatively low net to gross,
which oscillates between 0.5 and0.7. The sand formations
are mostly continuous as it was also observed on other
properties modelled, thereby confirming a high level of
homogeneous nature of the zones.

3.10. Water saturation modelling

The hydrocarbon saturation is a function of the water
saturation (Sh = 1- Sw). The water saturation computed
from the resistivity logs for each of the wells was used to

estimate the values at unsampled locations and was
distributed across the 3-D grids (Figures 21(a, b)). The
calculated water saturation for the four (4) reservoirs
ranges from 0.23–0.57. The average water saturation is
about 29% – 41%. The water saturation is uniformly
distributed, like effective porosity in the reservoirs. The
zones with low values between 0–0.38 (yellow and
green banded colours) are of interest because they
indicate regions of relatively very low water saturation,
which implies a high hydrocarbon saturation in these
regions. The regions of interest have excellent

Figure 19. Permeability modelling of reservoir 2.

Figure 20. Reservoir 2 Net-to-Gross.
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hydrocarbon saturation in areas with good concentra-
tion and in the northern parts of the field, which con-
stitute the region of interest two from all models across
the reservoirs.

4. Quantification of uncertainty in realisations

Quantification of uncertainty is dependent on the type
of problem at hand and simulation methodology.
When defining uncertainty concerning simulations,
it is ascertained that the uncertainty can be captured
with Gaussian distribution. Conditional simulation

provides for the local variability by creating alternate
equiprobable images, and uncertainty is characterised
by multiple possibilities that exhibit local variation. By
constructing multiple images, one can visualise the
differences among models that exhibit ten (10) images
of the same distribution. It is observed that the local
uncertainty is small and that brought about several
images that exhibit similar images, trend, and values
at a particular location (narrow distribution), whereas
if the local uncertainty is considerable, the differences,
in simulated values at a particular location will vary
over a wide range. By examining these images, as well

Figure 21. (a) Water saturation of the Upper part of the field in the upthrown part of the structure building fault.

Figure 21. (b) Water saturation of the lower part of the field in the downthrown part of the structure building fault.
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as the local distribution, we can ascertain the uncer-
tainty at each location. If one create a sufficient num-
ber of images, one of the images could match the real
cause. This is another difference between the conven-
tional estimation process and the simulation process.
The conventional estimation process never reproduces
reality: it is a filtering process, which removes high-
frequency information. On the other hand, in the
conditional simulation process, the high-frequency
information. as well as the low, is preserved

For Gaussian distribution, once the estimate (mean)
and the error variance is known, the entire probability
density function is. The assumption of Gaussian distribu-
tionmakes it very convenient to define the uncertainty by
using only two parameters;mean and variance. However,
one does not independently verify the validity of simula-
tions and realisations by assumption. If the distribution is
non-Gaussian, the error variance may not be enough to
represent the uncertainty distribution, which is not the
case of the data set in this project.

Some uncertainty can be tolerated even accepted,
whereas some uncertainty is undesirable. That is, the
uncertainty is weighted differently depending on the
problem. The parametric technique defines the uncer-
tainty with Gaussian distribution and also accounts for
local variability. Once the surrounding samples are well
distributed, the error variance will be proportionately
reduced. Once the local error variance is calculated, and
assume Gaussian distribution, the local uncertainty is
defined. This is consistent with the fact that the max-
imum local error variance is equal to the variance of the
sample. The advantages range from reducing the varia-
bility of the sample data set to better describing the local
uncertainty. The realisations were ranked based on the
knowledge of the estimate mean closeness to the average
of the corresponding petrophysical property from logs,

the error variance, and the entire probability density
function is known. From the realisations, reservoir 1
has average effective porosity ranges from 0.27–0.29,
with the best realisation having average effective porosity
0.28 with a variance of 0.0061. Average permeability
ranges between 500md – 900md. The best-ranked per-
meability realisation has an average permeability of
720md with a variance of 0.04231. The average net-to-
gross ranges from 0.87–0.995, with the best realisation
having an average net-to-gross of 0.98 with a variance of
0.0061.

4.1. Multilayer perceptron neural networks
prediction of reservoirs and rock properties

The three-dimensional distribution forecast of rock and
reservoir properties in field of study using Multilayer
Perceptron Neural Networks (MLPNN) encompass the
usage of 3-D seismic attributes was used as input to
forecast petrophysical properties such as permeability,
and porosity away fromwell control, and the uncertainty
in resulting maps was quantified in terms of their root
mean square error (RMSE). Root Mean Square Error is
the standard deviation of residual, which is a difference
between the predicted values and observed values, i.e.,
the input and output of the network, respectively. The
closer the results is to zero (0) indicate a fit that is more
useful for prediction. The resulting reservoir effective
porosity mapping was modelled at the root-mean-
square-error of 0.0053, with resulting average effective
porosity of 0.295. The effective porosity slice on top of
reservoirs (Figure 22) revealed the lateral variation of
effective porosity across the field with very high effective
porosity areas coincide with the delineated regions of
interests. Moreover, there are some other relatively high
effective porosity zones as observed on these near

Figure 22. Effective porosity time slice at top of reservoir 2.
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reservoirs top slices that were not evident on the seismic
attributes. The reservoir lateral permeability variation
was modelled at RMS error of 0.03053. The average
permeability of the reservoirs as modelled by MLPNN
is 735md. The permeability slice on top of reservoirs
(Figure 23) revealed the lateral variation of permeability
across the field with very high permeability areas coin-
ciding with the delineated regions of interests. The slices
revealed some thief zones (channel with high absolute
permeability) within and outside the areas with well
concentration and region of interest (Figure 23) that
were not evident on the seismic attributes. Moreover,
hydrocarbon saturation was also modelled at root mean
square error of 0.02752 with average of hydrocarbon
saturation of 0.69681. The resulting hydrocarbon

saturation maps (Figure 24) revealed the lateral variation
of hydrocarbon saturation across the field with very high
hydrocarbon saturation areas coinciding with the deli-
neated regions of interests. These maps also revealed
some other relatively high hydrocarbon saturation
zones as observed on the slices of near reservoirs top.
The Volume of shale MLPNNmapping was modelled at
RMS error of 0.023 with resulting average volume of
shale of 0.273. The volume of shale slice on top of
reservoirs (Figure 25) revealed the lateral variation of
volume of shale across the field with very low volume
of shale areas coincide with the delineated regions of
interests. Although, the mapped reservoirs are charac-
terised by low volume of shale with some relatively very
low volume of shale zones as observed on these near

Figure 23. Permeability time slice at top of reservoir 2.

Figure 24. Hydrocarbon saturation time slice at top of reservoir 2.
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reservoirs’ top slices. MLPNN modelled map of net-to-
gross (NTG) (Figure 26) at RMSE of 0.023 revealed that
82% of the reservoirs has very high of 0.78014. The
lateral variation of net to gross across the field with
relatively very high NTG values between 0.7 − 1 coincide
with the delineated regions of interests. However, the
mapped reservoirs are characterised by very low volume
of shale zones as observed on the near reservoirs’ top
slices of volume of shale MLPNN modelled zones.

4.2. Statistical comparative and complementary
analysis of MLPNN and geostatistical inversion

Comparative analysis of different techniques and tools
used in geomodelling and lateral predictions of the

petrophysical properties of interest revealed that both
tools explained and honoured well log information
satisfactorily (Figure 27(a)). They are both map-
based. Figures 4.91a- 4.91d show, Cross-correlation
function plot of raw data and multilayer perceptron
neural network geomodel data, Cross-correlation and
box plot of raw data and multilayer perceptron neural
network data, Q-Q plot of Raw data and Q-Q plot of
multilayer perceptron neural network modelled data
respectively. The multilayer perceptron neural net-
work map-based approach of geomodel petrophysical
parameters and lateral prediction provide a very high
correlation coefficient of 0.99971 with the base case,
Biased Variance 56,918.888, and T-Test 408.029
(Table 1). Figure 27(a–d) show cross-correlation

Figure 25. Volume of shale time slice at top of reservoir 2.

Figure 26. Net to gross time slice at top of reservoir 2.
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function plot of raw data and geostatistics realised
data, cross-correlation and box plot of raw data and
geostatistics realised, Q-Q plot of Raw data and
Q-Q plot of geostatistics realised data respectively.
Geostatistical inversion had a relatively higher corre-
lation coefficient of 0.99998 with the base case, biased
variance 56,918.8, and T-Test 408.0297 (Table 2) with
the raw estimated petrophysical parameters.

Therefore, geostatistics inversion provides a general
improvement in comparison to a multilayer percep-
tron neural network with raw estimated petrophysical
parameters and also dramatically reduces the pro-
blems of sparse well coverage. However, the said

improvement in the comparison is a function of the
initial set conditional parameters for the geostatistical
inversion. An inadequate or wrong initial conditional
parameters will have an adverse effect in the resulting
modelled zones, whereas a multilayer perceptron
neural network with no initial condition parameter
from the modeller or interpreter because of its “black
box” nature will provide a better result in this case.

5. Conclusion

Seismic and borehole log data have been used to
demonstrate structural features of identified sand
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Figure 27. (a)Plot of selected raw data versus MLPNN geomodel parameter and geostatistics simulated data.

Figure 27. (b) Cross correlation function plot of raw data and geostatistics realised data.
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bodies within the subsurface of the “P” field. This was
made possible by creating time and depth structural
contour maps of four horizons using the Petrel inter-
pretational tool. The time and depth structure maps

show subsurface structural geometry and possible
hydrocarbon trapping potential. Four horizons
matching to near top of delineated hydrocarbon-
bearing sands were mapped and subsequently used

Figure 27. (c). Cross correlation and box plot of Raw data and geostatistics realised.

Figure 27. (d). Q-Q plot of raw data.
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to make time maps and then depth structural maps
using appropriate check shot data. The shallower
reservoirs displayed a blocky gamma-ray log motif,
while the deeper sand packages showed a crescentic
gamma-ray curve shape. These gamma-ray log motifs
probably point to distributary channel and delta

marine fringe depositional environments, respectively.
Within the paralic Agbada Formation, relatively high
readings of deep resistivity curves in the evaluated
sand packages indicate the presence of hydrocarbons.
Computed petrophysical parameters of the reservoirs
in each of the wells show that each formation has
varying degree of petrophysical parameters; the aver-
age water saturation in these reservoirs is low, ranging
from 27% to 41% with a corresponding hydrocarbon
saturation ranging from 59% to 73% indicating that
the reservoirs contain more hydrocarbon than water
in all the seven wells. The reservoirs have the average
effective porosity ranging from 27% to 31%, which is
an indication of a reservoir with excellent porosity.
The MLPNN produced horizon cubes for the areas of
interest defined relations that correlate excellently well
with three-dimension seismic attributes. MLPNN
showed how permeability, porosity, the volume of
shale, and hydrocarbon saturation varies away from
well control across the entire field. It also revealed
some bypassed hydrocarbon sand-rich bedding and
some channels that would be of exploration and
exploitation interest. Multivariate spatial analysis car-
ried out in the study assisted in having a better under-
standing of the influence of a secondary variable in
stochastic simulation operations. Comparative analy-
sis of different techniques and tools used in geomodel-
ling and lateral predictions of the petrophysical
properties of interest revealed that the higher the
data density, the better the predictability of MLPNN
while geostatistics map-based inversion is not affected
by limited numbers of wells provided the initial con-
ditional parameters for the models are correct.
However, both tools explained and honoured the

Figure 27. (e).Q-Q plot of geostatistics realised data.

Table 1. Pearson product moment correlation of variable RAW
versus variable GEOSTATISTICS.
Pearson Product Moment Correlation – Ungrouped Data (Wessa P.,
(2017),)

Statistic: Variable RAW Versus Variable GEOSTATISTICS
Mean 152.666666666667 159.508333333333
Biased
Biased Variance 56,918.8888888889 63,391.7253472222
Biased Standard Deviation 238.576798722946 251.777134281932
Covariance 72,080.9533333333
Correlation 0.999987987359077
Determination 0.999975974862458
T-Test 408.029757558887
p-value (2 sided) 2.16454446171126e-10
p-value (1 sided) 1.08227223085563e-10
95% CI of Correlation [0.999884522091943, 0.999,998750437589]
Degrees of Freedom

Table 2. Pearson product moment correlation of variable RAW
versus variable MLPNN.
Pearson Product Moment Correlation – Ungrouped Data (Wessa P.,
(2017),)

Statistic: Variable RAW Versus Variable MLPNN
Mean 152.666666666667 141.783333333333
Biased Variance 56,918.8888888889 49,229.0013888889
Biased Standard Deviation 238.576798722946 221.876094676486
Covariance 63,503.3933333333
Correlation 0.999716745413448
Determination 0.999433571060057
T-Test 84.0106307201509
p-value (2 sided) 1.20338377998717e-07
p-value (1 sided) 6.01691889993583e-08
95% CI of Correlation [0.997280241433355, 0.99997053210023]
Degrees of Freedom 4
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well log information satisfactorily. The MLPNN map-
based approach of geomodel petrophysical parameters
and lateral prediction provide a very high correlation
coefficient of 0.99971 while geostatistics inversion had
a relatively higher correlation coefficient of 0.99998
with the raw estimated petrophysical parameters.
Therefore, geostatistics inversion provides a general
improvement in comparison of the two (2) tools
with raw estimated petrophysical parameters and
also greatly reduces the problems of sparse well cover-
age. However, the said improvement in the compar-
ison is a function of the initial set conditional
parameters for the geostatistical inversion. Some
poor or wrong initial conditional parameters will
have a negative effect in the resulting modelled
zones, whereas an MLPNN with no initial condition
parameter from the modeller or interpreter because of
its “black box” nature will provide a better result in
this case. The methods also clearly bring out the two
distinct channel features which were not evident on
structural and RMS attribute map. For better reservoir
characterisation and lateral prediction of its petrophy-
sical properties, integration of different map-based
prediction tools is encouraged because there is no
single prediction tool that can capture in entirety the
lateral inhomogeneity of subsurface in the study area.
Moreover, the different tool has different inherent
merit and demerit, so it is believed that where
a particular tool has a weak predictability or delinea-
tion deficiency, the other tool will complement and
capture the geologic feature(s) of interest. These pre-
diction tools served better as a complementary tool to
each other rather than as a comparison tool. Finally,
maps generated for lateral variations of petrophysical
properties of interest from these different methods are
better used together and integrated into decision mak-
ing as regards analysing of various producing sand
units in the study area, which will help formulate
a strategy for exploration, exploitation, and develop-
ment of hydrocarbon resources in the area of study. As
inference from the three-dimension seismic interpre-
tation, the studied area offers prospective structurally
controlled trapping mechanism/closures for hydrocar-
bon accumulation, since one well has explored and
appraised the south-western sides of the areas of the
reservoir especially, more exploitation wells should be
drilled to boost hydrocarbon production further and
the drilling of the wells should be done to a feasible
depth to at, which the OWC will be encountered and
for decent, valuable production. Moreover, it is also
advisable that the previously known approach given to
the interpretation of data set in the exploration of oil
and gas be made all-encompassing and in-depth to
account for subtle inconsistencies and discrepancies
unique to different data. Over modelling or training of
data sets is a subtle error and is often a challenge in the
geostatistical analysis because it is a prediction/

interpolation and extrapolation tool. Therefore, it is
recommended that this should be handled carefully,
and the use of correct modelling parameters must be
professionally advised. An integrated approach to data
analysis is the best, and it is therefore recommended. It
is recommended that scale variations be carefully
handled in executing a work like this.

5.1. Recommendations

A combination of suites of well-logs and 3-dimensional
seismic data in the multivariate analysis utilising geos-
tatistics and the neural network has added another
dimension in the science of interpretation of mature
oil fields. This has helped in imaging lateral and vertical
inhomogeneities of the reservoirs harbouring oil and
gas in the field. In this project, two zones designated as
a region of interests 1 and 2 have been found prospec-
tive for the drilling of development wells to increase
reserve in this field. Furthermore, the significant faults
should also be subjected to a fault seal analysis to
ascertain their trapping integrity and mechanism to
minimise the risk of drilling dry wells. Biostratigraphic
studies are also useful to map accurate lithology, deposi-
tional sequences, and environment of sediment deposi-
tion. These parameters have a significant influence on
oil and gas accumulation and production.
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