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ABSTRACT
Innovation in the ground and space-based instruments has taken us into a new age of 
spectroscopy, in which a large amount of stellar content is becoming available. So, automatic 
classification of stellar spectra became subjective in the last three decades due to the avail
ability of large observed spectral database as well as the theoretical spectra. In the present 
paper, we develop an Artificial Neural Network (ANN) algorithm for automated classification of 
stellar spectra. The algorithm has been applied to extract the fundamental parameters of the 
optical spectra of some hot helium-rich white dwarf stars observed by the Sloan Digital Sky 
Survey (SDSS) and B-type spectra observed at Onderjove observatory. We compared the 
present fundamental parameters and those from a minimum distance method to clarify the 
accuracy of the present algorithm where we found that the predicted atmospheric parameters 
for the two samples are in good agreement for about 50% of the samples. A possible explana
tion for the discrepancies found for the rest of the samples is discussed.
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1. Introduction

While most stars are very similar in structure based on 
their temperatures, there are systematic differences in 
stellar spectra. There is a spectrum for a typical star 
consisting of a continuous set of colours overlaid with 
dark lines. The temperature, density, gravitational 
fields, velocity, and other properties of the star deter
mine the positions, strength, and shapes of these lines. 
It is helpful to categorise stars with those that have 
similar properties to be able to systematically analyse 
stars. This is the basis of the astronomers’ classification 
scheme used.

Secchi (1866) observed by eye about 4000 stars 
using prism spectra and divided stars by common 
spectral absorption features into 4 large spectral 
groups. The Henry Draper Memorial Survey at 
Harvard performed a systematic photographic survey 
of stellar spectra over the entire sky between 1886 and 
1897. An initial attempt at spectral classification was 
made by Pickering (1890) and Fleming (1890). Via 
decreasing Hydrogen absorption-line power, they 
sorted stars. The problem with this technique is that 
it did not suit the other lines in this series. Cannon 
(1901) noticed that the primary distinguishing feature 
between different spectra was stellar temperature. 
Then, she refined her method of spectral classification 
by dividing each class into 10 subclasses with num
bers. The luminosity of the star was introduced by 
Morgan et al. (1943) as a second classification para
meter. Luminosity Groups are designated in the order 

of decreasing luminosity by the Roman numerals 
I through V.

A huge quantity of stellar spectra is nowadays 
found in large-scale sky surveys. This large number 
of stellar spectra ensures that spectral data must be 
parameterised automatically, which allows investigat
ing carefully the characteristics of atmospheric 
parameters.

In the last decade of the previous century, machine 
learning techniques have been used to automate stellar 
spectra. One of these techniques, Artificial Neural net
works (ANNs) has acquired a very good reputation in 
this operation. Over the past decades, it is also well 
known that ANNs have acquired an eminent role in 
many human activity areas and have found applica
tions in a broad range of scientific topics, including 
microbiology, astronomy, environment sciences, and 
geophysics Ozard and Morbey (1993), Almeida and 
Noble (2000), Tagliaferri et al. (2003), Faris et al. 
(2014), Elminir et al. (2007). It was widely used in 
the areas of prediction, function approximation, pat
tern recognition, data classification, signal processing, 
medical diagnosis, modelling, and control, etc., El- 
Mallawany et al. (2014), Al-Shayea (2011), Leshno 
et al. (1993), Lippmann (1989), Zhang (2000), Nouh 
et al. (2020). The ANN is mathematical models hinted 
by biological neural systems and composed of neuron 
models that are connected in a distributed and parallel 
style to imitate the knowledge acquisition and infor
mation processing of the human nervous system. The 
computations of the ANNs are performed at a very 
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high speed because of their massively parallel nature. 
They possess the self-organisation and learning cap
abilities that can pick up and memorise a mapping 
between an input and an output vector space and 
synthesise an associative memory that restores the 
proper output when the input is introduced and gen
eralises when other inputs are introduced, Basheer and 
Hajmeer (2000). ANN was used in astronomy in many 
fields such as adaptive optics, star/galaxy separation as 
well as galaxy classification.

Because of their premium properties of self- 
learning, fault tolerance, nonlinearity and adaptivity, 
ANNs were used extensively for stellar spectral classi
fications, Weaver and Torres-Dodgen (1995), Weaver 
and Torres-Dodgen (1997), Weaver (2000), Gulati and 
Gupta (1995), Vieira and Ponz (1998), Bailer-Jones 
et al. (1997). In these researches, different spectral 
classifications for different wavelength ranges and dif
ferent spectral resolutions were performed for differ
ent spectral types by the use of ANN techniques. The 
goal was to use ANN instead of human experts to 
automatically classify stellar spectra in large spectral 
surveys, which were motivated by the advent of 
a combination of digital computers, high-efficiency 
CCD cameras, and spectrographs with fibre optics 
multiplexing. At the time of those researches, the 
processing power of computers was limited. As 
a result, various researchers used Principal 
Components Analysis (PCA) with ANN to reduce 
and compress the amount of data feed to the network, 
Bailer-Jones et al. (1996), Singh et al. (1998), Bailer- 
Jones et al. (1998), Tagliaferri et al. (1999). Nowadays, 
the processing power of computers has doubled many 
times and the advancement occurred in the resolving 
power of telescopes as well as attached instruments, 
together with the advancement in detectors’ efficien
cies have the motivation of producing large-scale sky 
surveys. In these surveys, an enormous number of 
stellar spectra are found. Many stellar spectra mean 
that spectral data are properly parameterised so that 
the stellar fundamental parameters can be thoroughly 
examined. Examples of such surveys are the Large Sky 
Area MultiObject Fibre Spectroscopic Telescope 
(LAMOST; Luo et al. 2015) and Sloan Digital Sky 
Survey (SDSS, Alam et al. 2015).

A possible approach for spectral classification using 
automatic methods is to tie the observed spectrum up 
to the synthetic spectrum based on theoretical stellar 
atmospheric models to understand the physical phe
nomena in stars. Instead of empirical libraries, 
researchers used the theoretical stellar spectra, 
Kurucz (1995) for example, which has the advantage 
that they can be calculated for a dense grid of funda
mental parameters (metallicity, gravity, effective tem
peratures) thus avoiding calibrations and 
interpolation errors. In this sense, for example, 
Gulati (1997) used ANN to determine the effective 

temperatures for G-K dwarfs and compared them 
with those given in Gray and Corbally (1994). Xiang- 
Ru et al. (2017) used deep learning techniques to 
estimate the atmospheric parameters from stellar 
spectra.

In the present paper, we introduce an ANN 
approach to predict the fundamental stellar para
meters. For the training stage, we use two grids of 
synthetic spectra, the first for the DO white dwarfs 
and the second for the B-type stars. The algorithm is 
tested by deriving fundamental parameters for the list 
of observed DO white dwarfs retrieved from SDSS 
release 4. The spectra of the B-type stars are retrieved 
from the archive of the Onderjove observatory. The 
rest of the paper is organised as follows: Section 2 is 
devoted to the details of the observed data used for 
testing of the algorithm. Section 3 is devoted to the 
principle of neural network algorithm, whereas sec
tion 4 deals with the minimum distance method algo
rithm. In section 5, an explanation of synthetic spectra 
and data preprocessing for both DO white dwarf and 
B-type stars are explored. Section 6 deals with the 
application of ANN for stellar parameterisation. In 
section 7 we discussed the obtained results and the 
conclusion is given in section 8.

2. Observations

2.1. Sloan Digital Sky Survey (SDSS) Spectra

The SDSS is a photometric and spectroscopic survey 
covering 700 square degrees of the sky around the 
northern Galactic cap. The main goal of the survey 
was to study the large-scale structure of the universe. 
A small fraction of the observed stars is targeted for 
spectroscopy. The resulting data are in low resolution 
(R = 1800, FWHM ≃ 3 A°). The flux calibrated spectra 
cover the range between 3800 and 9000 A°. The SDSS 
DR4 (Adelman-McCarthy et al. 2006) contains 800,000 
spectra from 4783 square degrees. The authors have 
used automated techniques supplemented by visual 
classification to select 13,000 candidates. An extensive 
analysis of these objects has yielded 9316 white dwarfs, 
including 8000 DA, 713 DB, 41 DO or PG1159, 289 DC, 
104 DQ, and 133 DZ types, as well as 928 hot subdwarf 
stars. As well as the 10,244 primary spectra, the authors 
have also presented 774 duplicate spectra of WD stars 
and 60 duplicate spectra of SD stars. Thus, the present 
table has 11,078 (=10,244 + 774 + 60) entries.

2.2. Ondrejov Spectra

We used the observed spectra for B-type stars 
retrieved from the archive of 2-m Telescope’s 
Cassegrain lens at the Ondrejov observatory. The 
spectra under investigation were mostly taken from 
the HEROS spectra which were obtained using Echelle 
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spectrograph HEROS, Kubát et al. (2010), Saad and 
Nouh (2011a), Saad and Nouh (2011b), Nouh et al. 
(2013). The initial reduction of spectra (i.e. wavelength 
calibration, zero level subtraction, flat-field correction, 
and rectification) were all carried out using the data- 
reduction code SPEFO developed by Horn et al. (1992) 
see also Skoda (1996). The spectrum spans the range of 
wavelengths 3450 A° – 8620 A°, the Balmer lines up to 
H15, as well as some infrared lines. The resolution is 
R = 20,000, which is equivalent to FWHM = 0.25 A°.

3. Neural network algorithm

In ANN, the neuron is considered as the main processing 
unit which can carry out localised information and can 
process local memory. At each neuron, the net input (x) is 
calculated by adding the weights it receives to get 
a weighted sum of the received inputs and add that sum 
with a bias (b). The incorporation of the bias in the 
process is to permit offsetting the activation function 
from zero, 

x ¼ ðw1:1 p1 þ w1:2 pþ . . .þ w1:i pÞ þ b (1) 

Then, the net input xð Þ is managed by an activation 
function, resulting in the output of the neuronðyjÞ. The 
activation function used to transform input to an out
put level in the range of 0.0 to 1.0 is a nonlinear sigmoid 
function which is a conventional sigmoid function 
represented by the following expression: 

yj ¼
1

1þ e� x (2) 

A comparison of the target output tj with the actual 
output yj at the output layer is performed using an 
error function that has the following form: 

δj ¼ yj tj � yj
� �

1 � yj
� �

(3) 

The error function for the hidden layer takes the form: 

δj ¼ yjð1 � yjÞ
X

k
δkwk (4) 

where δj is the error term of the output layer, and wk is 
the weight between the hidden and output layers. The 
update of the weight of each connection is implemen
ted by replicating the error backward from the output 
layer to the input layer as follows: 

wjiðt þ 1Þ ¼ wjiðt Þ þ ηδjyj þ β ðwjiðt Þ � wjiðt � 1ÞÞ
(5) 

The choice of learning rate η is performed in such 
a way that it is neither too large leading to overshoot
ing nor very small leading to a slow rate of conver
gence. The constant β is called the momentum factor 
and is used to speed up the convergence of the back- 
propagation learning algorithm error. The effect of 
this term is to add a fraction of the most recent weight 
adjustment to the current weight adjustments. Both η 
and β terms are set at the beginning of the training 
phase and decide about the network stability and 
speed, Elminir et al. (2007), Basheer and Hajmeer 
(2000). The process is repeated for each input pattern 
until the network output error is reduced to a pre- 
assigned threshold value. The final weights are frozen 
and used to calculate fundamental stellar parameters 
Teff ; log g during the test session. To estimate the suc
cess and quality of the training, an error is calculated 
for the whole batch of training patterns. In this paper, 
Root Mean Squared error (Erms) is used which is 
defined as: 

Erms ¼
1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

n¼1
tj � yj
� �2

s

(6) 

where n is the number of training patterns. An error of 
zero would indicate that all the output patterns calcu
lated by the ANN perfectly match the expected values 
and that the ANN is well trained. We used the feed- 
forward neural network, as shown in Figure 1, to 
simulate the fundamental stellar parameters 

Figure 1. ANN architecture proposed to simulate the fundamental stellar parameters.
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Teff ; log g. It has a hierarchical structure that consists 
of an input layer, hidden layer, and output layer with 
only interconnections between the neurons in subse
quent layers, and signals can propagate only from the 
input layer to the output layer through the hidden 
layer.

4. Minimum distance method

The minimum distance method (MDM) is widely 
used to determine the fundamental stellar parameters 
by comparing the observed spectra with the grids of 
theoretical spectra. The Euclidian distance between 
observed Oi and template Ti fluxes could be written 
as (Allende-Prieto 2004) 

d ¼
X

piui (7) 

Where 

ui ¼ Oi � Ti xð Þ½ �
2 (8) 

where x is the vector of the fundamental parameters, 
i.e. Teff ; log g.

The weight pi could be given by 

pi ¼
X

i

1
IðxiÞ

@ui

@xi

�
�
�
�

�
�
�
� (9) 

Where 

IðxiÞ ¼
X

i

@ui

@xi

�
�
�
�

�
�
�
� (10) 

In the present calculations, we take pi ¼ 1, so we 
did not need the interpolation between the flux 
grids.

5. Synthetic spectra and data preprocessing

5.1. Synthetic spectra

We used the DO white dwarf atmospheric grid com
puted by Nouh and Fouda (2007). We modelled the 
structure of the atmospheric using the TLUSTY code 
(version 200; Hubeny 1988; Hubeny and Lanz 1992, 
1995, 2003; Lanz and Hubeny 2001; Lanz et al. 2003). 
The atmosphere is assumed as plane-parallel, radiative, 
and hydrostatic, and the convection is treated with the 
mixing length theory. Departures from local thermo
dynamic equilibrium (LTE) are allowed for an arbitrary 
set of atomic and ionic energy levels, Lanz and Hubeny 
(2006). The effective temperatures span the range 
40000–120000 K with step 2500 K and the surface 
gravities span the range log g = 7–8.5 with step 0.25.

The general spectrum synthesis code SYNSPEC 
(version 48, Hubeny and Lanz 2003) was used to 
synthesis the spectra in the wavelength range 
λλ3000-7000 A° with a sampling 0.1 A°. The input 
model atmospheres to SYNSPEC are taken from 
TLUSTY. The radiative transfer equation is solved 
wavelength by wavelength in a specified wavelength 
range and with a specified wavelength resolution. To 
bring the synthetic spectra to the resolution of the 
observed SDSS spectra, we used a Gaussian profile 
with FWHM = 3 A°. The calculations were performed 
for a nearly pure helium atmosphere with He/ 
H = 1000 by numbers, and the heavier elements have 
been neglected. Figure 2 shows the normalised flux 
shifted by an arbitrary value for more clarity.

The atmospheric models of the B-type stars are 
adopted from Lanz and Hubeny (2005) using 
TLUSTY code version 200 (Hubeny 1988& Hubeny 
and Lanz 1992&, 1995&, 2003; Lanz and Hubeny 2001; 
Lanz et al. 2003). We adopt the grid with solar metal
licity. The models span the range in the effective tem
peratures Teff = 15000–30000 K with step 1000 K and 

Figure 2. Normalised synthetic spectra of the DO white dwarfs used for training the ANN. Spectra are labelled with effective 
temperature and surface gravity.
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the surface gravity span the range log g = 1.75–4.75 
with 0.25 dex step. Also, we used the code SYNSPEC 
to synthesis the spectra. The input model atmosphere 
is taken from TLUSTY models. The resulting spectra 
are reduced to the resolution of the observed Onderjov 
spectra using a Gaussian profile with FWHM = 0.25 A 
°. Figure 3 shows the normalised flux shifted by an 
arbitrary value for more clarity.

5.2. Data preprocessing and unification

The use of the ANN algorithm to automate the stellar 
spectral classification process necessitates the use of 
uniform datasets. This requires the unification of the 
whole training dataset being used to train the neural 
network as well as the test dataset used to verify the 
quality of the proposed algorithm. More specifically, 
the training and test datasets used must be unified to 
the same stellar wavelength range with identical start
ing and ending values, same spectral resolutions, and 
their fluxes must be rectified and normalised consis
tently. The white dwarf synthetic spectra and the 
B-type star spectra used for training and testing of 
the ANN with their coverage and resolution are as 
shown in Table 1. The wavelength range of the simu
lated spectra for the white dwarf stars was 4000–7000 
Ao with a step of 1 Ao, whereas the wavelength range 
of the spectra for the B-type stars was 3200–10000 Ao 

with a step of 0.01 Ao. As a result, it was necessary to 
compress these datasets to a smaller size by smoothing 
these data to different wavelength steps and testing 
them within different neural network configurations. 
The smoothing process for the data was applied by 
trying 1001, 601, and 374 data points for the dataset of 
the simulated spectra which are the inputs to the NN. 
Figure 4 shows a sample of spectra of these three 

smoothed configurations for the white dwarf stars, 
which shows almost typical spectrum flux values.

The smoothing operation suggested here had con
siderable improvement to the neural network training 
errors and minimised the training times. In addition 
to the smoothing process, a normalisation process was 
implemented to the values of wavelength, effective 
temperature as well as surface gravity such that their 
values are limited from 0 to 1 before being fed to the 
NN for training, verification, or testing. Moreover, the 
B-type star spectra were trimmed to the wavelength 
range 4000–7000 Ao for the purpose of minimising the 
number of data points fed to the NN. This wavelength 
coverage is more than enough as it contains the 
important lines necessary to learn the NN to predict 
the atmospheric parameters.

6. Application of ANN for stellar 
parameterisation

6.1. White dwarfs

The training phase of the proposed neural network is 
implemented by testing three different arrangements 
for the input values of the network according to the 
smoothing procedure previously described in section 

Figure 3. Normalised synthetic spectra of the B-type stars used to train the ANN. Spectra are labelled with effective temperature 
and surface gravity.

Table 1. Synthesised spectra used for training and testing of 
ANN.

Star Class
Number of train

ing spectra
Atmospheric 
parameters Range

White Dwarf 174 Teff 50000–120000 K 
∆Teff = 2500 K

log g 7.0–8.5 
∆ log g = 0.25

B-type Stars 135 Teff 15000–30000 K 
∆Teff = 1000 K

log g 1.75–4.75 
∆ log g = 0.25
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5.2. In each of these three different arrangements, we 
tested different neural network configurations for the 
number of hidden layers in these networks. As a result, 
we tested NNs with configurations as are shown in 
Table 2. In all of these configurations, we used a single 
hidden layer with a number of neurons shown in 
Table 2 and used two output nodes in the output 
layer which are the effective temperature and the sur
face gravity of the star. The ANN for all of these 
different configurations has been trained using the 
backpropagation algorithm (generalised delta rule) 
previously explained in section 3 with the minimisa
tion problem described by equation 6 for the RMS 
error. The training data we used included 174 DO 
white dwarf smoothed synthesised spectra that cover 
the wavelength range 4000–7000 Ao with a range of 
spectral parameters introduced in Table 1. Another 29 
spectra are left for verification of the NN performance 
after training. The training stops when the network 
converges to a minimum value of RMS errors shown 

in Table 2 and stabilises there for a long time. The final 
weights for each configuration are frozen and applied 
later to verify and test the ANN ability to predict the 
parameters from unseen spectra. As is shown in this 
table, the minimum value of RMS error was that of 
(601–10-2) arrangement which elects it to be the best 
configuration to be used to predict the atmospheric 
stellar parameters Teff and log g. During the training 
process, we used the values of learning rate (η) and 
momentum (β) shown in Table 2.

Those values for η and β were found to speed up the 
convergence of the back-propagation learning algorithm 
of the ANN without over-shooting the solution. By the 
end of the training phase, it was necessary to test the 
effectiveness of the chosen ANN configuration (601–10- 
2) with respect to other configurations by applying the 
frozen weights to test and calculate the parameters of the 
174 spectra previously used for training. Table 3 shows 
the RMS error evaluation for the difference between the 
calculated output parameters of the trained NNs and the 
desired ones. The error is calculated by the following 
equations for Teff and log g receptively. 

Table 2. ANN configurations tested to be used in atmospheric 
stellar classification for white dwarf.

ANN config
uration

Number 
of NN 
input 
nodes

Number 
of hid

den 
neurons

Number 
of out

put 
nodes

Learning 
rate (η) and 
Momentum 

(β)

Training 
RMS 
error

376–10-2 376 10 2 0.2, 0.5 0.000238
376–20-2 376 20 2 0.000243
376–40-2 376 40 2 0.000252
601–10-2 601 10 2 0.25, 0.5 0.000207
601–20-2 601 20 2 0.000218
601–40-2 601 40 2 0.005250
1001-5-2 1001 5 2 0.3, 0.5 0.000213
1001–10-2 1001 10 2 0.000541
1001–20-2 1001 20 2 0.001600

Table 3. RMS error of the calculated values previously used in 
training of the ANN.

ANN configuration Erms (Teff) Erms (log_g)

376–10-2 69.9 0.007
376–20-2 68.9 0.009
376–40-2 78.1 0.009
601–10-2 47 0.005
601–20-2 55.6 0.011
601–40-2 2461 0.053
1001-5-2 58.6 0.01
1001–10-2 117.8 0.006
1001–20-2 310 0.005

Figure 4. Smoothing process applied to white dwarf spectra for the purpose of training of the NN.
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ErmsðTeff Þ ¼
1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN¼174

N¼1
Teff c � Teff d
� �2

v
u
u
t (11) 

Ermsðlog gÞ ¼
1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN¼174

N¼1
log gc � log gdð Þ

2

v
u
u
t (12) 

Where N is the number of training spectra which 
is 174, Teff_c is the calculated value of the effective 
temperature for each spectrum obtained from the 
trained neural network, and log_gd 
is the desired value of the surface gravity for 
each spectrum used to train the NN. Similarly, 
log_gc is the calculated value of surface gravity 
for each spectrum obtained from the trained 
neural network, and Teff_d is the desired value of 
the effective temperature for each spectrum used 
to train the NN. As is shown in Table 3 the 
minimum values of the calculated errors were for 
the NN which has the (601–10-2) arrangement. 
This assures that this arrangement is the best 
configuration for the neural network that we will 
use to predict the atmospheric parameters of the 
unknown white dwarf spectrum.

6.2. B-type stars

As previously described for the white dwarfs in 
section 6.1, the same techniques are used to decide 
about the best configuration of the ANN that can 
be used to predict the atmospheric parameters of 
B-type stars from their stellar spectra. Table 6 
shows the configurations for the ANNs that have 
been tested for the sake of the best classification 
network. Similar smoothing criteria have been 
implemented for the 135 synthesised spectra used 
to train different ANNs shown in Table 6. The 
same backpropagation algorithm (generalised 
delta rule) has been used to train different neural 
networks and the training stopped when the net
work converged to a minimum value of RMS error 
shown in Table 6 and stabilise there for a long 
time. As is shown in this table, the minimum 
value of RMS error was that of the (601–10-2) 
arrangement (which was expected) to be the best 
configuration for the prediction of the atmo
spheric stellar parameters Teff and log g of B-type 
stars.

The same techniques described in section 6.1 
for the test of the effectiveness of the chosen 
ANN configuration (601–10-2) with respect to 
other configurations by applying the final frozen 
weights of the training phase to calculate the para
meters of the 135 spectra used for training. Table 
7 shows the RMS error evaluation for the differ
ence between the calculated output parameters of 

the trained NNs and the desired ones which are 
calculated by Equations (11) and (12) for Teff and 
log_g respectively. Again, the best configuration of 
the ANN is that of the (601–10-2) arrangement.

7. Results

7.1. White dwarfs

To verify the trained ANN algorithm, we computed the 
fundamental parameters for 29 synthetic models not 
previously used in the training of the network by the 
use of the trained network with the (601–10-2) config
uration which gives the effective temperatures and sur
face gravity pairs listed in Table 4. As shown in Table 4, 
there is very good agreement between the input and 
predicted models.

Now we turn to apply the code on the observed 
spectra of some helium-rich white dwarfs. We used 
the observed spectra of the DO white dwarfs from 
the Data Release Four (DR4) of SDSS. We selected 
13 candidates and compared the derived funda
mental parameters with that deduced by the 
MDM method. We list the results in Table 5, 
where column 2 represents the effective tempera
tures predicted by the present ANN algorithm, 
column 3 is the effective temperature predicted 
from the MDM method, column 4 is the surface 
gravity predicted from the ANN algorithm and 
column 5 is the surface gravity predicted from the 
MDM method.

Table 4. Verification of ANN use to predict the 29 white dwarfs 
synthetic models.

Log_g_601_10_2 Log_g Teff_601_10_2 Teff

8.471779 8.5 50,177.31 50,000
8.481155 8.5 52,604.05 52,500
8.471093 8.5 55,176.85 55,000
8.466984 8.5 57,669.56 57,500
8.465737 8.5 60,105.53 60,000
8.465545 8.5 62,510.49 62,500
8.465741 8.5 64,886.47 65,000
8.466002 8.5 67,279.61 67,500
8.466006 8.5 69,663.76 70,000
8.465481 8.5 72,060.55 72,500
8.464399 8.5 74,541 75,000
8.462972 8.5 77,156.85 77,500
8.460953 8.5 79,878.66 80,000
8.458674 8.5 82,700.87 82,500
8.456223 8.5 85,528.73 85,000
8.453735 8.5 88,273.54 87,500
8.451658 8.5 90,900.53 90,000
8.450181 8.5 93,391.86 92,500
8.449382 8.5 95,738.95 95,000
8.449507 8.5 97,994.3 97,500
8.450131 8.5 100,501.8 100,000
8.451875 8.5 102,757.1 102,500
8.454079 8.5 105,097.5 105,000
8.456409 8.5 107,572.2 107,500
8.458573 8.5 110,156.1 110,000
8.460049 8.5 112,779.1 112,500
8.460311 8.5 115,248.1 115,000
8.458571 8.5 117,300 117,500
8.453732 8.5 118,703.9 120,000
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In Figures 5 and 6, we plotted the effective 
temperatures and surface gravities predicted from 
the ANN versus those predicted from the MDM. In 
general, there is a good agreement between the 
results for seven stars and intermediate discrepan
cies for the rest six stars. As shown, the discrepan
cies are larger in the surface gravities than that of 
the effective temperatures. These discrepancies may 
be attributed to that there are few lines in the 
spectrum of the DO white dwarfs that make the 
training process of the ANN difficult and less 
accurate.

7.2. B-type stars

As we did for the white dwarf spectra, we verified the 
effectiveness of ANN trained algorithm by computing 
the fundamental parameters for 22 B-type synthetic 
spectra not previously used in the training process 
which give the effective temperatures and surface 
gravity pairs listed in Table 8. As is shown in Table 
8, there is a very good agreement between the input 
and predicted models.

Table 9 shows the list of observed objects and their 
predicted parameters, and Figures 7 and 8 plot the 

Table 5. Fundamental Parameters of the observed DO white dwarfs.
Star name Teff (ANN) K Teff (MDM) K log g (ANN) log g (MDM)

SDSS J034101.39 + 005353.0 59,948.89 60,000 7.72 7.750
SDSS J034227.62 + 072213.2 53,156.07 52,500 7.50 7.750
SDSS J075540.94 + 400,918.0 103,122.30 102,500 7.047 7.250
SDSS J084008.72 + 325,114.6 97,610.02 87,500 7.51 8.000
SDSS J091433.61 + 581,238.1 118,066.50 110,000 7.09 8.000
SDSS J102327.41 + 535,258.7 119,978.19 120,000 8.01 8.000
SDSS J113609.59 + 484,318.9 49,440.19 50,000 7.97 8.000
SDSS J134341.88 + 670,154.5 90,148.43 100,000 8.09 7.750
SDSS J144734.12 + 572,053.1 118,564.87 102,500 8.3 7.750
SDSS J154752.33 + 423,210.9 83,975.30 95,000 7.54 7.250
SDSS J155356.81 + 433,228.6 75,769.56 77,500 7.80 7.500
SDSS J204158.98 + 000325.4 119,634.49 100,000 7.58 7.250
SDSS J140409.96 + 045739.9 72,629.26 70,000 7.5 7.500

Figure 5. Comparison between the predicted effective temperatures computed by ANN and MDM algorithms for observed White 
Dwarfs.
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comparison between the effective temperatures and 
gravities obtained by the ANN and MDM methods. 
The predicted parameters from ANN and MDM are in 
good agreement except for the surface gravities of the 
star ρ Aur.

Table 7. RMS error of the calculated values previously used to 
train ANN for B-Type stars.

ANN configuration Erms (Teff) Erms (Log_g)

376–10-2 31.87 0.474
376–20-2 21.52 0.097
376–40-2 777 0.91
601–10-2 4.72 0.081
601–20-2 36.54 0.206
601–40-2 4138 29.2
1001-5-2 568 1.95
1001–10-2 768.3 6.5

Figure 6. Comparison between the predicted surface gravity computed by ANN and MDM algorithms for observed White Dwarfs.

Table 6. ANN configurations tested to be used in atmospheric 
stellar classification for B-type stars.

ANN config
uration

Number 
of NN 
input 
nodes

Number 
of hid

den 
neurons

Number 
of out

put 
nodes

Learning 
rate (η) and 
Momentum 

(β)

Training 
RMS 
error

376–10-2 376 10 2 0.25, 0.5 0.000269
376–20-2 376 20 2 0.000124
376–40-2 376 40 2 0.001220
601–10-2 601 10 2 0.3, 0.5 0.00006
601–20-2 601 20 2 0.000163
601–40-2 601 40 2 0.007000
1001-5-2 1001 5 2 0.2, 0.5 0.00300
1001–10-2 1001 10 2 0.007065

Table 8. Verification of ANN use to predict the 22 B-Type 
synthetic models.

Log_g_600_10_2 Log_g Temp_600_10_2 Teff

3.744552 3.75 16,042.66 16,000
2.991446 3.00 17,986.92 18,000
2.761616 2.75 19,989.89 20,000
3.006225 3.00 20,946.19 21,000
3.505322 3.50 21,958.18 22,000
3.741411 3.75 22,943.37 23,000
4.240611 4.25 24,993.91 25,000
4.259135 4.25 28,006.74 28,000
4.514815 4.5 28,042.88 28,000
4.740483 4.75 28,092.16 28,000
3.012029 3 29,171.13 29,000
3.265319 3.25 29,126.43 29,000
3.514966 3.5 29,128.49 29,000
3.759563 3.75 29,071.65 29,000
4.005296 4 29,019.89 29,000
4.259472 4.25 29,016.79 29,000
4.51338 4.5 29,029.15 29,000
4.738731 4.75 29,061.75 29,000
3.016044 3 30,072.63 30,000
3.260371 3.25 30,025.06 30,000
3.508059 3.5 30,057.52 30,000
3.748828 3.75 30,008.37 30,000

Table 9. Fundamental parameters of the observed B-type 
stars.

Star Teff (MDM) Log g (MDM) Teff (ANN) log g (ANN)

96 her 17,000 4 17,038 4.002
α Vir 25,000 3.75 24,461.6 3.612
β CMa 24,000 3.75 22,282.6 3.567
ε Per 30,000 4 25,201.7 3.512
i her 17,000 3.75 19,838 3.939
ρ Aur 15,000 4 13,943.2 2.293
U her 19,000 3.5 18,205.9 3.621
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Figure 7. Comparison between the predicted effective temperatures computed by ANN and MDM algorithms for observed B-type 
stars.

Figure 8. Comparison between the predicted surface gravity computed by ANN and MDM algorithms for observed B-type stars.
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8. Conclusion

We developed an Artificial Neural Network (ANN) 
algorithm for automated classification of stellar spec
tra. To test the algorithm, we derived the fundamental 
parameters for a total of 29 theoretical spectra and 13 
observed spectra of the white dwarf stars and a total of 
22 theoretical spectra and 7 observed spectra of the 
B-type stars. The comparison between the ANN and 
MDM is satisfactory for most of the tested spectra. In 
summarising the results, we inferred that artificial 
neural networks are an outstanding computational 
choice for very large projects. In smaller projects 
where better control is necessary, minimum distance 
approaches that take advantage of interpolation and 
optimisation may be more efficient and versatile. Also, 
ANN is somewhat more rigid than MDM methods. If 
a neural network is trained to search for all para
meters, a variation of the problem that may use addi
tional information to constrain, and the only search 
for the remaining parameters will take a new ANN to 
be trained. Another problem encountered when using 
ANN is the missing data found in the observed spec
tra, the problem which not appeared in the minimum 
distance method.
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