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ABSTRACT
Several exposures of basaltic intrusions are distributed near Red Sea coast at Wadi Hodein 
Southern Egypt. There is some disagreement about the palaeomagnetic pole results of these 
basalts; some claim it is Tertiary in age, while others claim it is of Cretaceous age. To our 
knowledge, no Anisotropy of Magnetic Susceptibility (AMS) results have ever been published 
from these rocks. Therefore, palaeomagnetic and AMS studies were performed on these basalts 
in order to identify phases of magmatism, paleomagnetic pole position and types of magmatic 
intrusions. In the present study, eight sites (219 oriented core specimens) were sampled from 
eight location. Rock magnetic studies reflect the presence of magnetite as the chief mineral in 
these rocks. Alternating field technique in association with Thermal Demagnetisation process 
revealed presence of one magmatic phase took place in Cretaceous age with VGP (65°N, 250°E; 
A95 = 5.3). AMS results showed that the basaltic intrusions in the study area are still holding 
their primary fabrics.
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1. Introduction

The current study is focused on basaltic rocks that are 
exposed and widespread throughout the western scarps 
of the Red Sea coastal plain, west of Shalatin (Figure 1). 
The area is characterised by a Tough Mountain of the 
Red Sea with low to moderate isolated and conical hills 
and coastal plain. The studied basaltic rocks are located 
among latitudes (22°40′ to 23°05′ N) and longitudes 
(35°15′ to 35°45′ E) covering an area of about 
(2000 km2) (El-Shazly 1964; El-Ramly 1972).

Previous paleomagnetic studies on the studied 
basalts was carried out by Niazi and Mostafa (2002). 
They obtained a palaeomagnetic pole position lies at 
25°N, 112°E and they claim it to an Early Miocene age. 
Perrin and Saleh (2018) obtained a pole position that 
lies at 59°N, 273°E from two sites (19 samples). They 
stated that the pole is of a Cretaceous age.

Anisotropy of magnetic susceptibility (AMS) is 
a useful approach for determining the preferred 
orientation of magnetic minerals in a rock or 
unconsolidated sediments and evaluation of flow 
fabrics in basalts. As a result, the property is 
employed in the investigation of primary structures 
and rock fabric (Tarling and Hrouda 1993). The 
technique is non-destructive and can be used in 
nearly all types of rocks because it does not need 
a rock to contain specific strain markers. The 
method has an advantage as it can determine 
weak deformation even where lineation and folia
tion have not developed (1993).

The primary goal of studying the palaeomag
netic and magnetic fabric of this basalt is to deter
mine its palaeomagnetic pole location and 
magmatism stages. The influence of the Red Sea 
rift’s paleotectonic evolution may be determined 
by interpreting the acquired palaeomagnetic data 
and magnetic fabric.

2. Geological settings and sampling

Several authors studied the geological setting of Wadi 
Hodein area; Ghanem (1972); Ramadan (1994); 
Egyptian Geological Survey (EGSMA (1992) and 
EGSMA 2002); Hassan et al. (1996); Sadek et al. 
(1996); Sadek et al. (2000); El Amawy et al. (2000b); 
Hassan (2003); Sadek et al. (2003); Sadek (2004); Sadek 
and Hassan (2004); Obeid (2006); Sherif (2007); 
Abdeen et al. (2008); Hassan and Masoud (2015).

Wadi Hodein forming an alluvial fan that spreads for 
more than 50 km near the Red Sea coastal plain. 
Assemblages of recent sediments and basement rocks 
of Precambrian age are found and overlain unconform
ably by isolated hills of Cretaceous Nubian Sandstones 
which intruded by these basalts. The rifting of the Red 
Sea extrudes both rocks with NW-SE faults (Figure 2).

Basaltic rocks of south Wadi Hodein area are pre
sent as small lava flow bodies separated hills, dikes, 
and ridges cutting basement rocks and Nubian 
Sandstone of the country rocks. They are fine grained 
massive rocks of greenish black to black colour and 
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well-developed porphyritic texture Hassan and 
Masoud (2015). These hills and ridges width ranging 
from 200 to 400 m, higher of few metres than the 
nearby wadis, taken NW direction that parallel to the 
Red Sea trending which later taken the NNW-SSE 
trending due to the deformation caused by the 
younger normal faults.

3. Rock Magnetic experiments and results

Numerous rock magnetic experiments including: 
Isothermal remanent magnetisation (IRM) acquisition 
curves, Coercivity (Back-field) curves, Hysteresis 
Loops (using MicroMag Magnetometer-Poland) and 
Curie temperature determination (using MFK-FA 
Kappabridge) were performed to some selected speci
mens of the studied rocks to distinguish the magnetic 
mineral(s) that may be carrying the remanent 
magnetisation.

During the progressive acquisition of IRM curves, 
the IRM intensity curve shows a fast rise up to 80–90 
mT, then the saturation achieved at a field of 100–120 
mT revealing of soft magnetic mineral(s) existence 
(Figure 3). The achieved coercivity of remanence 
(Hcr) values were ranging from 10–37 mT 
(Figure 4), which also refer to soft mineral(s), mag
netite and/or titanomagnetite. Studies of Hysteresis 
loops for these specimens show similar shapes of 
normal Hysteresis curves with low values of coerciv
ity (Hc) ranging from 3 to 17 mT (Figure 5). This also 
confirms of soft magnetic mineral(s) existence. The 
presence of Magnetite (soft magnetic mineral) is con
firmed by its Curie temperature 570–580°C as 
revealed from the thermomagnetic analysis 
(Figure 6) of a PSD grain size (Figure 7).

Results of rock magnetic experimentations prove the 
presence of magnetite as the chief magnetic mineral in 
the studied basaltic rocks of Wadi Hodein area.
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Figure 1. Map of Egypt showing the location of Wadi Hodein area.
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Figure 2. Geological map of Wadi Hodein area (modified after EGSMA 2002) showing the sampling location (H1–H8).

applied field (mT)

0 100 200 300 400 500 600

IR
M

 (
x1

0-6
 A

M
2 /K

g)

0

100

200

300

400

H3

H27

Figure 3. IRM curves for representative specimens of the studied basaltic rocks.
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Figure 4. Coercivity curves for the studied basaltic rocks.

Figure 5. Hysteresis loops for typical specimens from the 
basalt rocks.

Figure 6. K-T curves showing heating/cooling sequence.
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4. Palaeomagnetic experiments and results

Thirty-two block samples were oriented in the field 
and then collected from the Basaltic rocks of Wadi 
Hodein area. Samples were collected from a number of 
small, widely separate basaltic exposures covering the 
studied eight locations (see Figure 2). The magnetic 

north direction and horizontality lines were accurately 
drawn on each collected block sample using 
a magnetic compass and a balance before dislocation 
from the surface exposures. Using a standard fixed 
rock drill, a total of 219 oriented core specimens was 
obtained with standard dimensions of 2.2 cm height × 
2.5 cm diameter. The block samples were prepared at 
the NRIAG Palaeomagnetism lab, while the experi
mental tests were carried out at both the NRIAG 
Palaeomagnetism lab in Helwan, Egypt, and the IGF 
Palaeomagnetism lab in Warsaw, Poland.

The preparation of the block samples was done at 
the Palaeomagnetism lab. of NRIAG, whereas the 
laboratory experiments have taken place in both of 
palaeomagnetism labs. of NRIAG, Helwan, Egypt 
and IGF, Warsaw, Poland.

Both types of demagnetisation analyses were exe
cuted in the present work (Alternating field (AF) and 
Thermal demagnetisation):

I. Alternating field (AF) demagnetisation technique 
was done using 2 G-SQUID (Enterprises cryogenic 
magnetometer with AF degausser, max. field of 160 
mT) and JR6-A (automated dual speed spinner 
magnetometer).

Figure 7. Day plot of some specimens from the basaltic rocks.
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Figure 8. AF demagnetisation plots [Stereonet (north left), Zijderveld diagram (north right) (Zijderveld 1967) and intensity decay 
curve (down)] for a representative specimen from Wadi Hodein Basalt.
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In our study, initial intensities of natural remanent 
magnetisation (NRM) of Wadi Hodein basalt specimens 
are measured at first. It gives relatively high values ran
ging from 20 to 591 A/m, with magnetic susceptibility 
values (using Bartington Susceptibility Metre (MS3)) 
ranging from 1.16 × 10−3 to till 31.17 × 10−3 SI units. It 
was preferred to subject a lot of specimens to a full range 
AF demagnetisation to separate the characteristics rema
nent magnetisation from each rock specimen. Due to the 
presence magnetite as the chief carrier of magnetisation, 
the AF demagnetisation process was very efficient that 
gives a well and linear trajectory finalising towards the 
origin (Figure 8). Through the AF measurements, speci
mens lost their NRM intensities by increasing the 
demagnetising field at gradually steps of 10 mT up to 
a peak field of 90 mT to about of 50% from its initial 
value at about 30–40 mT.

II. The thermal demagnetisation was done using 
non-magnetic furnace (MMTD80), in which the spe
cimens were heated gradually from 50°C up to 600°C. 
Examples of the thermal demagnetisation data are 
plotted in Figure 9.

During the thermal demagnetisation process, most 
of samples show gradually decrease of their remanence 
until it removed the great part (more than 90% of the 
intensity) nearly at 500–580°C.

The demagnetisation data was examined using the 
Remasoft 3.0 computer tool to distinguish the mag
netic components. Nearly 55% of samples undergone 
stepwise thermal demagnetisation, and about 45% 
demagnetised using stepwise alternating field (AF). 
Both tools yielded the same ChRM directions 
(Figures 8 and 9). Most basaltic specimens give 
a high-temperature component ~580 °C with rela
tively high-coercivity ~60 mT.

Palaeomagnetic directions are determined using 
principal component analysis (Table 1 and 
Figure 10). Finally, eight palaeomagnetic locations 
yield an overall-mean direction of D = 50.3°, 
I = −52.3°, α95 = 5.3° (Figure 11). The mean of 
the corresponding Virtual Geomagnetic Poles 
(VGPs) was then determined using the Fisher sta
tistics (Fisher 1953) representing the palaeomag
netic pole position for studied Wadi Hodein 
Basalts (Table 2 and Figure 12).

Figure 9. Plots of thermal demagnetisation for a specimen from Wadi Hodein Basalt (reverse polarity – open circle).

Table 1. Demagnetisation results of Wadi Hodein Basaltic 
rocks.

Site No. N D (°) I (°) α95 (°) K

H1 23 83.3 −21.5 4.9 21.3
H2 30 46.2 −56.9 3.5 34.2
H3 29 49.4 −61 1.8 28
H4 25 50 −54 4 17.5
H5 27 43.6 −62.7 3.2 43.2
H6 26 32.6 −57.4 2.4 27.5
H7 30 46 −40 4.3 19.7
H8 29 32.5 −53.8 1.9 15.6
Mean 219 50.3 −52.3 12.3 21.3
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where; N: Specimen numbers, D: Declination, I: 
Inclination, α95: Radius of 95% circle of confidence for 
mean direction, K: Precision parameter (Fisher 1953).

5. Magnetic fabric

AMS determinations were done for a total of 99 
specimens covered only six locations from the stu
died basaltic rocks in Wadi Hodein area. Using of 

a MFK1-FA Kappabridge susceptibility metre at 
Palaeomagnetism Lab. of IGF at Warsaw-Poland; 
the Low-field anisotropy of magnetic susceptibility 
(AMS) for all specimens were measured. The magni
tudes of the principal axes of the AMS ellipsoid, 
which denoted (Kmax = magnetic lineation, inter
mediate Kint and Kmin = magnetic foliation) were 
determined for all specimens following by 
a sequence of 15 susceptibility measurements along 

Figure 10. Equal area projection for components from eight studied locations.
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Table 2. Present palaeomagnetic pole and selected previous Poles from Egypt.

Reference Location Age (MA)

Paleopole

K A95P_lat P_long

1 – Hussien & Aziz (1983) Owienat 82 77 258 34 9
2–Abd El-All (2004) Naga 140 68 268 26 5
3 – Lotfy (2011) Natash 82 67 229 42 5
4 – El-Shayeb et al. (2013) Six Hills 145 78 294 22 8
5 – Mostafa et al. (2016) Qatrani 83 78 280 25 5
6 – Present Study Wadi Hodein 65 250 59 5.3

Figure 12. Present palaeomagnetic pole and selected previous Poles.
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different orientations (Jelinek 1981). AMS for mag
netite grains is controlled by the shape-preferred 
orientation of the individual grains (Rochette et al. 
1992). The results were then examined using Anisoft- 
5 software package.

The AMS parameters and mean magnetic suscept
ibility (Km) after (Jelinek 1981; Tarling and Hrouda 
1993) of our studied specimens are presented in 
(Table 3). The overall susceptibility values fall in the 
range of 4.83 × 10−3 < K (SI)< 1.62 × 10−1 (Table 3 and 
Figure 13). This variable magnitude reflects the contri
bution of ferromagnetic grains to AMS results. In spite 
of the high value of susceptibilities, the anisotropy 
degree (P’), which is indicative to the degree of defor
mation is relatively low. It is usually less than 10% in 
most basaltic lava flows, dykes and sills (Tauxe 1998). 
Values of magnetic lineation L and magnetic foliation 
F are rather weak with overall site-mean (T- ellipsoid 
shape) value of 0.213, in the range of 0 < T ≤ 1, con
firming the predominance of foliation over lineation 
(strong oblateness planar fabric) (Figure 14).

Where, N: specimen numbers, Km = (K1 + K2 
+ K3)/3,

P’ = exp√ {2[(η1-ηm)2 + (η2-ηm)2 + (η3-ηm)2,
Where: η1 = ln K1, η2 = ln K2, η3 = ln K3 and ηm = 3 

√η1.η2. η3
T: = [2 ln (K2/K3)/ln (K1/K3)] −1, L = K1/K2, 

F = K2/K3.

Despite the weak magnetic anisotropy of the volcanic 
rocks, measurements of AMS reflects relations between 
magnetic fabric and flow direction; in which the Kmax 

axis tend to be parallel to the flow direction and Kmin 

axis tend to be perpendicular to the flow plane (Canon- 
Tapia 2004). The AMS (Kmax ≥ Kint ≥ Kmin) eigenvec
tors in all stereograms are well grouped with narrow 
confidence ellipsoid, so the mean of principal suscept
ibility axes is statistically significant (Figure 15). 
Although the anisotropy is low, the magnetic foliations 
with slight girdle are consistent between the sites. 
Together with NE-SW trending (K1) magnetic linea
tion, may suggest some weak secondary tectonic (defor
mational NW-SE component) to AMS.

Analysis of the resulted AMS data (Table 3 and 
Figure 15) show that; sites (H1, H2 and H6) exhibit 
oblateness planar fabrics. H1 has less well-defined 
susceptibility fabric, while H2 fabric is typically planar 
of sub-horizontal lineation with NE trending foliation. 
Although the degree of anisotropy is low for sites (H3, 
H4) with predominance of foliation over lineation, it 
shows strong oblateness fabrics and exhibits planar 
and weakly linear ellipsoid. Site H4 has a vertical fabric 
that subject to low degree of deformation after lava 
flow and H3 and H6 exhibit an inverse magnetic 
fabric.

n = number of specimens.
n = number of specimens.

Table 3. AMS parameters for six locations with its site-mean magnetic susceptibility (K).

Location N
Km 

(10
−2 

SI) P’ T L F
Kmax 

(D/I)

Kint 

(D/I)

Kmin 

(D/I)

H1 16 1.41 1.030 0.187 1.013 1.016 171/42 322/45 67/15
H2 22 4.35 1.023 0.103 1.010 1.013 29/7 283/66 122/23
H3 13 5.35 1.017 0.625 1.003 1.013 65/23 325/23 195/56
H4 13 11.2 1.016 0.361 1.004 1.011 259/9 168/2 67/80
H5 18 8.65 1.025 0.179 1.009 1.015 76/25 342/9 234/64
H6 17 0.782 1.024 0.188 1.010 1.013 274/71 184/0.3 93/19
Summation 99 – – - – – – – – – – – – – – – – – - – – –
Mean – - 5.04 1.004 0.213 1.002 1.003 – - – - – -

4.83E-03 1.62E-01Km [SI]
1.000

1.060
P

n=99

Figure 13. P/Km curve for the studied basaltic rocks.
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Figure 14. T/P curve for the studied basaltic rocks.
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6. Discussion
Thorough palaeomagnetic investigation done to 
basalts of Wadi Hodein South Eastern Egypt along 
Red Sea coast. 8 locations, 35 sites and 219 samples 
were exposed to numerous rock magnetic experiments 
(IRM, Back Field, Hysteresis loop and Susceptibility 
against Temperature), demagnetisation (Thermal and 
AF) and AMS measurements. Magnetite have been 
found to be the main magnetic mineral. Weak second
ary components that may have been originated 

isothermally were found during data analysis and 
easily cleaned during demagnetisation. Primary 
palaeomagnetic component have been obtained from 
all sites, and a new pole of Cretaceous age proposed 
and compared with 5 previous published poles for 
Mesozoic in Egypt (Table 2 and Figure 12).

Magnetic Susceptibility and their anisotropy of 
Basaltic intrusion of Wadi Hodein area show 
a weakly developed fabric with low degree of an iso
tropy that is most probably reflects of primary 
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magnetic origin of different types (dykes and flows), 
that is further affect with the minor faults of NW 
orientation.
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