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ABSTRACT
Operational matrix-based algorithms have been identified as efficient tools for solving non- 
linear and fractional differential equations in engineering. Several wavelet-based algorithms 
have been developed for linear, non-linear and fractional differential equations. Wavelet-based 
spectral methods have also been identified as efficient tools for non-linear problems in 
astrophysics. In this paper, two reliable and efficient computational algorithms using Hermite 
wavelet and Fermat’s polynomial collocation methods are introduced to solve a class of non- 
linear Lane–Emden-type equations in astrophysics. Lane–Emden models have been charac
terised to predict the dynamics in various astrophysical contexts, such as stellar structure, white 
dwarfs and polytropic models. The main idea of the proposed wavelet and spectral algorithms 
is that the non-linear singular differential equations are converted into a system of algebraic 
equations using the operational matrix of derivatives. To the best of our knowledge, so far no 
rigorous Hermite wavelet and Fermat’s operational matrix of derivatives has been reported for 
the proposed models. The accuracy and efficiency of the proposed methods are confirmed by 
means of the comparison with other approximation algorithms. The proposed method can also 
be easily utilised to solve other types of non-linear differential equations in astrophysics.
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1. Introduction

Lane–Emden models are important phenomena in 
astrophysics, such as isotropic continuous media, iso
thermal gas spheres and the thermal behaviour of 
a spherical cloud of gas. Non-linear systems of Lane– 
Emden equations appear in the mathematical model
ling of several physical problems, such as pattern for
mation, chemical reactions and population evolution. 
The study of fluid behaviour is crucial in astrophysics, 
influencing the formation of celestial bodies, galactic 
structures, accretion processes, explosive phenomena 
and interstellar material dynamics. Understanding the 
compressibility of astrophysical gases is essential, as 
they undergo significant density variations, unlike 
nearly incompressible liquids like water. Despite 
their particulate nature, gases are often treated as 
continuous media when particle distances are small 
compared to property variation scales, enabling con
sistent definitions of velocity and pressure while allow
ing for particle-level analysis when needed. Magnetic 
fields significantly impact many astrophysical envir
onments, necessitating their inclusion in fluid 
dynamic models to ensure accurate representations 
of electromagnetic influences. Interestingly, astrophy
sical fluid dynamics share fundamental principles with 
ship dynamics, as both fields rely on fluid

interactions – astrophysics focusing on gases and plas
mas and ship dynamics dealing with water flow 
around vessels. Commonalities extend to wave 
dynamics, with gravitational waves studied in astro
physics paralleling water surface waves in naval engi
neering. Concepts such as hydrostatic equilibrium in 
stars and buoyancy in ships both involve force bal
ances to maintain stability, while aerodynamics and 
drag reduction techniques are vital in both space and 
water environments. Moreover, magnetohydrody
namics (MHD) find applications in astrophysical 
plasma physics and ship propulsion technologies, 
with turbulence, vortex formation and energy transfer 
playing crucial roles in both disciplines.

Mathematical modelling provides a powerful 
tool for analysing astrophysical structures and sta
bility, with the Lane–Emden equation serving as 
a fundamental non-linear differential equation 
describing polytropic stellar structures and self- 
gravitating systems. Originally introduced by 
Jonathan Homer Lane and Robert Emden, this 
equation has been extensively studied and adapted 
to address various astrophysical challenges. It effec
tively models density profiles in polytropic stars 
and gaseous celestial bodies, capturing essential 
non-linear behaviours under different conditions.
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Researchers continue to refine numerical and ana
lytical techniques for solving the Lane–Emden 
equation. Notably, Abu Arqub et al. (2013) intro
duced a residual power series (RPS) method for 
handling singular initial value problems, improving 
polynomial series solutions for stellar modelling. 
Parand et al. (2010) developed a Hermite colloca
tion method that addresses equation singularities 
and accurately models astrophysical systems such 
as isothermal gas spheres. More recently, Gireesha 
and Gowtham (2024) proposed a hypergeometric 
wavelet method, enhancing computational effi
ciency and effectively managing singularities in 
density perturbation studies. Additional advanced 
approaches include the Fermat polynomial method 
by Nduka and Oruh (2022) for optimal astrophy
sical control solutions, while ZdeněkŠmarda (2015) 
proposed computational methods for solving sin
gular initial value problems, offering deeper 
insights into stellar stability and density distribu
tions. Baty (2023) demonstrated the potential of 
Physics-Informed Neural Networks (PINNs) in 
bridging data-driven and physics-based solutions 
to Lane–Emden-type equations. Analytical methods 
like the Differential Transform Method (DTM) 
have also been explored, with studies by 
Mukherjee and Roy (2011) and Biswas et al. 
(2023) showcasing its effectiveness in solving non- 
linear differential equations in astrophysical con
texts. These diverse contributions highlight the 
Lane–Emden equation’s adaptability across multi
ple astrophysical domains, including stellar evolu
tion, oscillatory stability and modelling responses 
to external forces, reinforcing its role as 
a cornerstone in understanding the interplay of 
gravitational forces, density variations and thermal 
dynamics in self-gravitating systems. Ali (2019) has 
been used the Hybrid orthonormal Bernstein and 
block-pulse function wavelet method for Lane- 
emden type differential equations.

The Van der Pol (VdP) system has inspired many 
models in theoretical astrophysics, particularly in 
describing the dynamics of stellar oscillations and 
stability. A prominent example is the Lane–Emden 
equation, which models the density and pressure 
distribution within polytropic stars in hydrostatic 
equilibrium. This form of non-linear differential 
equation provides insight into the structural and 
oscillatory characteristics of self-gravitating fluids, 
analogous to how the VdP model provides 
a mathematical framework for studying ship roll 
dynamics.

The classical Lane–Emden equation for a spherically 
symmetric, self-gravitating, polytropic star is given by:

1
�2

d
d�

�2 dθ
d�

� �

þ θn ¼ 0; :::: (1:1) 

where θ is a dimensionless density function that 
represents the ratio of the density at a given radius to 
the central density of the star. ξ is the dimensionless 
radial coordinate, which scales with the actual radius of 
the star. The polytropic index n describes the relation
ship between pressure and density in the polytropic gas.

To model analogous dynamics in the context of 
a ship’s roll motion, we adopt modifications inspired 
by the Lane–Emden equation, introducing non-linear 
damping and restoring forces. To represent the asym
metric behaviour often observed in astrophysical sys
tems, we adapt the Lane–Emden-based equation with 
terms that capture these asymmetries and the effects of 
external forces.

A modified form of the equation for non-linear 
oscillatory systems, comparable to ship roll dynamics, 
includes asymmetric damping terms and restoring 
forces. The equation is:

d2 ϕð Þ
dt2 þ β ϕ2

� 1
� � dϕ

dt

� �

þ
ϕ ϕþ δð Þ ϕþ εð Þ

εδ

� �

¼ . . .

(1:2) 

This modified equation is analogous to the Lane– 
Emden form, with β, the damping parameter, influen
cing the system’s response to external forces, δ and ϵ, 
parameters introducing asymmetry in the restoring 
force, resembling the effects of fixed nodes and saddle 
points in the system.

To accommodate external disturbances – similar to 
gravitational perturbations or radioactive forces in 
astrophysical models – an external forcing term F(t) 
is added:

d2 ϕð Þ
dt2 þ β ϕ � v1ð Þ ϕ � v2ð Þ

dϕ
dt

� �

þ
ϕ ϕþ δð Þ ϕþ εð Þ

εδ

� �

¼ F tð Þ (1:3) 

with initial conditions:

ϕ 0ð Þ ¼ ϕ0;
dϕ
dt

�
�
�
�

t¼0
¼ ϕ1 (1:4) 

Here, ϕ(t) signifies the angular displacement over 
time t, v1 and v2 introduce asymmetry in damping, 
which reflects varying energy dissipation, similar to 
the impact of polytropic indices on star stability, and 
F(t) represents an external excitation, analogous to 
forces acting on a self-gravitating system.
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This research paper aims to further explore the 
application of the Lane–Emden non-linear equation 
in modelling ship roll dynamics. By investigating the 
effects of various parameters on the oscillator’s beha
viour, the study hopes to gain a deeper understanding 
of the factors that influence a ship’s roll motion and 
their potential implications for ship stability.

In this study, two scenarios of ship roll dynamics 
without external forcing, which represent the natural, 
unexcited roll motion in steady-state, are considered. 
These scenarios are based on variations in the damp
ing coefficient β, which modifies the roll damping, and 
different values of constants ν1 and ν2, representing an 
asymmetric damping term related to the non-linear 
dissipation in the Lane–Emden equations. Fixed 
values of ϵ, which is used to control the period of 
roll oscillations, and δ, a coefficient of the cubic restor
ing term that replaces the harmonic restoring force of 
the classical form of the equation, are also considered.

This study aims to explore how these parameters 
affect the roll dynamics, with particular attention to 
stability and potential instabilities, such as parametric 
roll, which can occur under certain sea conditions. 
Understanding these dynamics is critical for improv
ing ship design and enhancing safety during maritime 
operations.

Wavelets provide a powerful tool for multi- 
resolution analysis by scaling and translating func
tions, making them especially effective in representing 
functions with sharp changes or localised features. 
Unlike traditional Fourier methods, which are well 
suited for periodic and smooth functions, wavelets 
are particularly advantageous for handling the com
plexities of non-linear ordinary (ODEs), partial 
(PDEs) and fractional differential equations (FDEs). 
The application of wavelet methods in solving such 
equations represents a major advancement in numer
ical analysis, offering a flexible and efficient approach 
to dealing with complex dynamical systems found in 
fields like physics, engineering, biology and finance, 
where traditional methods often struggle with inher
ent nonlinearities.

Among wavelet methods, the Fermat wavelet 
method stands out due to its use of Fermat polyno
mials, which possess strong recurrence relations and 
are well suited for solving non-linear differential equa
tions. These wavelets inherit beneficial properties such 
as stability and adaptability, making them effective for 
numerical analysis. The Fermat wavelet method 
involves employing operational matrices of derivatives 
to transform non-linear differential equations into 
a system of algebraic equations, solvable using stan
dard numerical techniques.

Numerous studies have highlighted the applica
tion of wavelet-based methods to address complex 
computational problems. For example, the Hermite 
wavelet method (HWM), utilising Hermite

polynomials known for their orthogonality and 
ability to represent localised features, has been 
applied to non-linear and fractional differential 
equations. The Hosoya polynomial method 
(HPM) is another significant contribution, lever
aging the recurrence relations of Hosoya polyno
mials to efficiently solve non-linear ordinary and 
partial differential equations. These methods pro
vide alternative approaches to solving Lane–Emden 
equations and similar non-linear models.

Fermat and Hermite wavelet algorithms with 
suitable collocation points have been used to get 
lower computation costs. For the first time, these 
algorithms have been applied to get more accurate 
results than the other algorithms (as per the spe
cific applications). We have validated the results 
with FPM, HWM and HPM.

This paper is organised as follows: in Section 2, 
orthogonal polynomials and wavelets are presented. 
Numerical experiments are discussed in Section 3. 
Results and discussion are given in Section 4. 
Concluding remarks are provided in Section 5.

2. Orthogonal polynomials and wavelets

2.1. Fermat Polynomials

Fermat polynomials can be generated by the recur
rence relation:

Fiþ2 xð Þ ¼ 3xFiþ1 xð Þ � 2Fi xð Þ; F0 xð Þ ¼ 0; F1 xð Þ ¼ 1; i
� 0

(2:1:1) 

These polynomials are specific instances of the (p,q)- 
Fibonacci polynomials, introduced in reference 
Youssri (2017). The general form of these polynomials 
is generated by the relation:

Uiþ2 xð Þ ¼ p xð ÞUiþ1 xð Þ � q xð ÞUi xð Þ; i � 0 

with initial conditions:

U0 xð Þ ¼ 0;U1 xð Þ ¼ 1 

The Binet formula for Ui xð Þ is given by

Ui xð Þ ¼
/i xð Þ � βi xð Þ
α xð Þ � β xð Þ

;

where:

α xð Þ ¼
p xð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p xð Þ2 þ 4q xð Þ
q

2
;

β xð Þ ¼
p xð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p xð Þ2 þ 4q xð Þ
q

2 

For Fermat polynomials, we use p(x) = 3× and q(x) 
= −2.
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In this work, Fermat polynomials are defined on 
the domain x2[0,1] with their explicit form 
given by 

Fk xð Þ ¼
3xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9x2 � 8
p� �k

� 3x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9x2 � 8
p� �k

2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9x2 � 8
p

The polynomials Fiþ1 xð Þ have the following analytic 
form: 

Fiþ1 xð Þ ¼
Xi=2

k¼0
� 2ð Þ

k3i� 2k i � k
k

� �

xi� 2k:

Operational matrices of derivative D and D2 by Fermat 
polynomial method are 

D ¼
0 0 0
3 0 0
0 6 0

2

4

3

5;D2 ¼

0 0 0
0 0 0
0 36 0

2

4

3

5

Then the Fermat polynomial matrix is 

ψ xð Þ ¼
1

3x
9x2 � 2

2

4

3

5

2.1.1. Convergence analysis
The convergence of the parameterisation method typi
cally relies on the Weierstrass Approximation 
Theorem, which has been extensively validated by 
numerous scholars.

Theorem 2.1: Weierstrass Approximation Theorem
Let f εC a; b½ �;Rð Þ: Then, there is a sequence of 

polynomials, Pn xð Þ that converges to f(x) on [a, b].
Proof: Refer [5]

Theorem 2.2: If αn ¼ infQn J, for n = 1,2, . . . . . . ., 
then lim

n!1
αn where α ¼ infQJ.

Proof: Refer [5]

2.2. Wavelets and Hermite wavelets

In recent years, wavelets have found their way into 
many different fields of science and engineering. 
Wavelets constitute a family of functions constructed 
from the dilation and translation of a single function 
called the mother wavelet. When the dilation para
meter a and the translation parameter b vary continu
ously, we have the following family of continuous 
wavelets, 

ψa;bðtÞ ¼ aj j
� 1
2 ψ

t � b
a

� �

a; b 2 R; a�0:

2.2.1. Functions approximation
A function f(t) defined over [0,1) may be expanded as

f ðtÞ ¼
X1

n¼1

X1

m¼0
cnmψnmðtÞ

where cnm ¼ f ðtÞ;ψnmðtÞ
� �

; in which :; :h i denotes the 
inner product. If the infinite series in is truncated, 
then it can be written as 

f ðtÞ ¼
X2k� 1

n¼1

XM� 1

m¼0
cnmψnmðtÞ

It can be written as 

f ðtÞ ¼
X2k� 1

n¼1

XM� 1

m¼0
cnmψnmðtÞ ¼ CTψðtÞ

where C and ψðtÞ are 2k� 1M � 1 matrices given as 

C ¼ c10; c11; . . . ; c1M� 1; c20; c21; . . . :

c2M� 1; . . . ; c2k� 10; . . . ; c2k� 1M� 1

� �T 

and 

ψðtÞ ¼ ψ10;ψ11; . . . :;ψ1M� 1;ψ20;ψ21; . . . ;

ψ2M� 1; . . . :;ψ2k� 10; . . . :;ψ2k� 1M� 1

� �T 

2.2.2. Convergence analysis
Let L2ð½0; 1�Þ be a Hilbert space for which ψn;mðxÞ
form an orthonormal sequence in L2ð½0; 1�Þ
Let yðxÞ 2 L2ð½0; 1�Þ we have  

yðxÞ ¼
P2k� 1

n¼1

PM� 1

m¼0
anmψn;mðxÞ

where anm ¼ yðxÞ;ψn;mðxÞ
D E

is an inner product of 
yðxÞ and ψn;mðxÞ
It can be written as 

yðxÞ
X2k� 1

n¼1

XM� 1

m¼0
< yðxÞ;ψn;mðxÞ>ψn;mðxÞ

For simplicity, Let j = M(n-1)+m + 1; 

yðxÞ ¼
X̂m

j¼1
yðxÞ; ψjðxÞ
D E

ψjðxÞ

¼
X̂m

j¼1
ajψjðxÞ ¼ aTψðxÞ

Since ¼ 2k� 1M and method converges if !1; that 
is when we use higher-order Hermite polynomials 
M-1 or use higher level of resolution k or use both 
higher M and k, we get more accurate results.

where aj ¼ amn; ψjðxÞ ¼ ψm;nðxÞ; ¼ 2k� 1M 
and a ¼ ½a1; a2; . . . . . . . . . a�T

By taking the procedure, we obtained the convergence 
of all orthogonal wavelet methods for all levels of 
resolution k, that is,

P

j¼1
ajψjðxÞ converges to y(x), 

as !1
Let the derivative of the wavelet vector be 
expressed as
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dψ xð Þ
dx
� Dψ xð Þ;

where D is the operational matrix of the derivative.
To compute D, the relationship between Hermite 

wavelets and their derivatives is used. The derivative of 
the Hermite polynomials follows: 

_Hmþ1 xð Þ ¼ 2 mþ 1ð ÞHm xð Þ;

_ψn;mþ1 xð Þ ¼ 2k mþ 1ð Þψn;m xð Þ:

The matrix D is then expressed as a block diagonal 
matrix: 

D ¼

w 0 . . . 0
0 w � � � 0
: ..

. . .
. ..

.

0 0 � � � w

2

6
6
4

3

7
7
5

0

B
B
@

1

C
C
A;

where W is a square matrix given by: 

W ¼ 2k

0 0 0 . . . 0
1 0 0 . . . 0
0 2 0 � � � 0
: : ..

. . .
.

0
0 0 0 � � � M � 1ð Þ

2

6
6
6
6
4

3

7
7
7
7
5

0

B
B
B
B
@

1

C
C
C
C
A
:

Here k is the level of Hermite wavelet, and M is the 
number of Hermite polynomials considered.

Operational matrices of derivative D and D2 by 
Hermite wavelet method are 

D ¼
0 0 0
4 0 0
0 8 0

2

4

3

5;D2 ¼

0 0 0
0 0 0

32 0 0

2

4

3

5

Then the Hermite wavelet matrix is 

ψ xð Þ ¼
2
ffiffiffi
π
p

1
4x � 1

16x2 � 16x þ 2

2

4

3

5

3. Numerical solutions

Problem 1: 

yII xð Þ þ
8
x

yI xð Þ þ xy xð Þ ¼ x5 � x4 þ 44x2 � 30x;

; x � 0
(3:49) 

with the initial boundary value condition  
y 0ð Þ ¼ 0andyI 0ð Þ ¼ 0:
The exact solution for the above Lane–Emden equa
tion is y xð Þ ¼ x4 � x3:

Equations of this form have been solved using the 
Fermat polynomial method (FPM), Hermite

wavelet method (HWM) and Hosoya polynomial 
method (HPM) with error computation

included to assess solution accuracy.

3.1. FPM

The FPM is stated as 

108C2x þ
8
x

3C1 þ 18C2xð Þ

þ x C0 þ 3C1x þ 9x2 � 2
� �

C2
� �

¼ x5 � x4 þ 44x2 � 30x (3:2) 

Considering collocation point as × = 0.47, utilising the 
Fermat polynomial operational matrices of deriva
tives, we derive the subsequent algebraic equation 

0:47C0 þ 51:72C1 þ 194:745C2 ¼ � 4:40 (3:3) 

Under the given boundary value conditions we have 
the following equations, 

y 0ð Þ ¼ 0) C0 � 2C2 ¼ 0) C0 ¼ 2C2; (3:4) 

yI 0ð Þ ¼ 0C1 ¼ 0 (3:5) 

Therefore by solving Equations (3.3), (3.4) and (3.5), 
we get C0 ¼ � 0:04;C1 ¼ 0;C2 ¼ � 0:02
Hence we get the Fermat polynomial solution by uti
lising the above connection coefficients as 

y xð Þ ¼ 0 � 0:18x2 (3:6) 

3.2. HWM

The HWM is stated as 

32C2 þ
8
x

4C1 þ C2 32x � 16ð Þð Þ

þ x C0 þ C1 4x � 2ð Þ þ 16x2 � 16xþ 2
� �

C2
� �

¼ x5 � x4 þ 44x2 � 30x
(3:7) 

Considering collocation point as x = 0.5, utilising the 
Hermite wavelet operational matrices of derivatives, 
we derive the subsequent algebraic equation 

0:5C0 þ 64C1 þ 31C2 ¼ � 4:03 (3:8) 

Under the given boundary value conditions, we have 
the following equations, 

y 0ð Þ ¼ 0) C0 � 6C2 ¼ 0) C0 ¼ 6C2; (3:9) 

yI 0ð Þ ¼ 0C1 � 4C2 ¼ 0C1 ¼ 4C2 (3:10) 

Therefore by solving Equations (3.8), (3.9) and (3.10), 
we get 

C0 ¼ � 0:06;C1 ¼ � 0:04;C2 ¼ � 0:01 

Hence we get the Hermite wavelet solution by utilising 
the above connection coefficients as 

y xð Þ ¼ 0 � 0:16x2 (3:11) 

3.3. HPM

The HPM is stated as
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2C2 þ
8
x

C1 þ 2C2 x � 1ð Þð Þ

þ x C0 þ C1 xþ 2ð Þ þ x2 þ 2xþ 3
� �

C2
� �

¼ x5 � x4 þ 44x2 � 30x (3:12) 

Considering collocation point asx = −2, utilising the 
Hosoya polynomial operational matrices of deriva
tives, we derive the subsequent algebraic equation 

� 2C0 � 4C1 þ 20C2 ¼ 188 (3:13) 

Under the given boundary value conditions, we have 
the following equations, 

y 0ð Þ ¼ 0) C0 þ 7C2 ¼ 0) C0 ¼ � 7C2; (3:14) 

yI 0ð Þ ¼ 0C1 � 2C2 ¼ 0C1 ¼ 2C2 (3:15) 

Therefore by solving Equations (3.13), (3.14) and 
(3.15), we get 

C0 ¼ � 50:61;C1 ¼ 14:46;C2 ¼ 7:23 

Hence we get the Hosoya polynomial solution by 
utilising the above connection coefficients as 

y xð Þ ¼ 0þ 28:92xþ 7:23x2 (3:16) 

Problem 2: 

yII xð Þ þ
2
x

yI xð Þ þ y xð Þ ¼ 6þ 2xþ x2 þ x3; ; x � 0

(3:17) 

with the initial boundary value conditions 
y 0ð Þ ¼ 0andyI 0ð Þ ¼ 0: The exact solution for the 
above Lane–Emden equation is y xð Þ ¼ x2 þ x3:

Equations of this form have been solved using the 
Fermat polynomial method (FPM), Hermite

wavelet method (HWM) and Hosoya polynomial 
method (HPM) with error computation

included to assess solution accuracy.

3.4. FPM

The FPM is stated as 

108C2x þ
2
x

3C1 þ 18C2xð Þ

þ C0 þ 3C1xþ 9x2 � 2
� �

C2
� �

¼ 6þ 2xþ x2 þ x3 (3:18) 

Considering collocation point as x = 0.47, utilising the 
Fermat polynomial operational matrices of deriva
tives, we derive the subsequent algebraic equation 

C0 þ 14:176C1 þ 86:7481C2 ¼ 11:96 (3:19) 

Under the given boundary value conditions, we have 
the following equations,

y 0ð Þ ¼ 0) C0 � 2C2 ¼ 0) C0 ¼ 2C2; (3:20) 

yI 0ð Þ ¼ 0C1 ¼ 0 (3:21) 

Therefore by solving Equations (3.19), (3.20) and 
(3.21), we get C0 ¼ 0:26;C1 ¼ 0;C2 ¼ 0:13
Hence we get the Fermat polynomial solution by uti
lising the above connection coefficients as 

y xð Þ ¼ 0þ 1:17x2 (3:22) 

3.5. HWM

The HWM is stated as 

32C2 þ
2
x

4C1 þ C2 32x � 16ð Þð Þ

þ C0 þ C1 4x � 2ð Þ þ 16x2 � 16xþ 2
� �

C2
� �

¼ 6þ 12xþ x2 þ x3

(3:23) 

Considering collocation point as x = 0.5, utilising the 
Hermite wavelet operational matrices of derivatives, 
we derive the subsequent algebraic equation 

C0 þ 16C1 þ 30C2 ¼ 12:375 (3:24) 

Under the given boundary value conditions, we have 
the following equations, 

y 0ð Þ ¼ 0) C0 � 6C2 ¼ 0) C0 ¼ 6C2; (3:25) 

yI 0ð Þ ¼ 0C1 � 4C2 ¼ 0C1 ¼ 4C2 (3:26) 

Therefore by solving Equations (3.24), (3.25) and 
(3.26), we get 

C0 ¼ 0:72;C1 ¼ 0:48;C2 ¼ 0:12 

Hence we get the Hermite wavelet solution by utilising 
the above connection coefficients as 

y xð Þ ¼ 0þ 1:9x2 (3:27) 

3.6. HPM

The HPM is stated as 

2C2 þ
2
x

C1 þ 2C2 x � 1ð Þð Þ

þ C0 þ C1 xþ 2ð Þ þ x2 þ 2xþ 3
� �

C2
� �

¼ 6þ 12x þ x2 þ x3 (3:28) 

Considering collocation point asx = −2, utilising the 
Hosoya polynomial operational matrices of deriva
tives, we derive the subsequent algebraic equation 

� 3C0 � C1 þ 9C2 ¼ � 22 (3:29) 

Under the given boundary value conditions, we have 
the following equations, 

y 0ð Þ ¼ 0) C0 þ 7C2 ¼ 0) C0 ¼ � 7C2; (3:30) 

yI 0ð Þ ¼ 0) C1 � 2C2 ¼ 0) C1 ¼ 2C2 (3:31) 
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Therefore by solving Equations (3.29), (3.30) and 
(3.31), we get C0 ¼ � 10:99;C1 ¼ 3:14;C2 ¼ 1:57
Hence we get the Hosoya polynomial solution by 
utilising the above connection coefficients as 

y xð Þ ¼ 0þ 6:28x þ 1:57x2 (3:32) 

Problem 3: 

yII xð Þ þ
6
x

yI xð Þ þ 14y xð Þ þ 4y xð Þ log y xð Þð Þ ¼ 0; ; x

� 0
(3:33) 

with the initial boundary value condition 
y 0ð Þ ¼ 1andyI 0ð Þ ¼ 0: The exact solution for the 
above Lane–Emden equation is y xð Þ ¼ e� x2

:

Equations of this form have been solved using the 
Fermat polynomial method (FPM), Hermite

wavelet method (HWM) and Hosoya polynomial 
method (HPM) with error computation

included to assess solution accuracy.

3.7. FPM

The FPM is stated as 

108C2xþ
6
x

3C1 þ 18C2xð Þ

þ 14 C0 þ 3C1xþ 9x2 � 2
� �

C2
� �

þ 4 C0 þ 3C1x þ 9x2 � 2
� �

C2
� �

log C0 þ 3C1x þ 9x2 � 2
� �

C2
� �� �

¼ 0 (3:34) 

Considering collocation point as x = 0.47, utilising the 
Fermat polynomial operational matrices of deriva
tives, we derive the subsequent algebraic equation 

18C0 þ 63:67C1 þ 158:59C2
� 0:04 log C0 þ 1:41C1 � 0:0119C2ð Þ

¼ 0 (3:35) 

Under the given boundary value conditions, we 
have the following equations 

y 0ð Þ ¼ 1) C0 � 2C2 ¼ 1) C0 ¼ 1þ 2C2; (3:36) 

yI 0ð Þ ¼ 0C1 ¼ 0 (3:37) 

Therefore by solving Equations (3.35), (3.36) and 
(3.37), we get 

C0 ¼ 0:82;C1 ¼ 0;C2 ¼ � 0:09 

Hence we get the Fermat polynomial solution by uti
lising the above connection coefficients as 

y xð Þ ¼ 1 � 0:81x2 (3:38) 

3.8. HWM

The HWM is stated as 

32C2 þ
6
x

4C1 þ C2 32x � 16ð Þð Þ

þ 14 C0 þ C1 4x � 2ð Þ þ 16x2 � 16xþ 2
� �

C2
� �

þ 4 C0 þ C1 4x � 2ð Þ þ 16x2 � 16xþ 2
� �

C2
� �

log C0 þ C1 4x � 2ð Þ þ 16x2 � 16x þ 2
� �

C2
� �� �

¼ 0
(3:39) 

Considering collocation point as x = 0.5, utilising the 
Hermite wavelet operational matrices of derivatives, 
we derive the subsequent algebraic equation 

18C0 þ 48C1 þ 4C2 � 8C2log C0 � 2C2ð Þ ¼ 0 (3:40) 

Under the given boundary value conditions, we have 
the following equations, 

y 0ð Þ ¼ 1) C0 � 6C2 ¼ 1) C0 ¼ 1þ 6C2; (3:41) 

yI 0ð Þ ¼ 0C1 � 4C2 ¼ 0C1 ¼ 4C2 (3:42) 

Therefore by solving Equations (3.40), (3.41) and 
(3.42), we get 

C0 ¼ 0:7;C1 ¼ � 0:2;C2 ¼ � 0:05 

Hence, we get the Hermite wavelet solution by utilis
ing the above connection coefficients as 

y xð Þ ¼ 1 � 0:8x2 (3:43) 

3.9. HPM

The HPM is stated as 

2C2 þ
6
x

C1 þ 2C2 x � 1ð Þð Þ

þ 14 C0 þ C1 x þ 2ð Þ þ x2 þ 2xþ 3
� �

C2
� �

þ 4 C0 þ C1 x þ 2ð Þ þ x2 þ 2x þ 3
� �

C2
� �

log C0 þ C1 x þ 2ð Þ þ x2 þ 2x þ 3
� �

C2
� �� �

¼ 0
(3:44) 

Considering collocation point asx = −2, utilising the 
Hosoya polynomial operational matrices of deriva
tives, we derive the subsequent algebraic equation 

14C0 � 3C1 þ 8C2 þ 4 C0 þ 3C2ð Þlog C0 þ 3C2ð Þ ¼ 0
(3:45) 

Under the given boundary value conditions, we have 
the following equations, 

y 0ð Þ ¼ 1) C0 þ 7C2 ¼ 1) C0 ¼ 1 � 7C2; (3:46) 

yI 0ð Þ ¼ 0C1 � 2C2 ¼ 0C1 ¼ 2C2 (3:47) 

Therefore by solving Equations (3.28) and (3.29), we 
get C0 ¼ � 0:68;C1 ¼ 0:48;C2 ¼ 0:24
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Hence we get the Hosoya polynomial solution by 
utilising the above connection coefficients as 

y xð Þ ¼ 1þ 0:96x þ 0:24x2 (3:48) 

Problem 4: 

yII xð Þ þ
10
x

yI xð Þ þ y10 xð Þ ¼ x100 þ 190x8; 0 � x � 1

(3:49) 

with the initial boundary value condition 
y 0ð Þ ¼ 0; yI 0ð Þ ¼ 0: The exact solution for the above 
Lane–Emden equation is y xð Þ ¼ x10:

Equations of this form have been solved using the 
Fermat polynomial method (FPM), Hermite

wavelet method (HWM) and Hosoya polynomial 
method (HPM) with error computation

included to assess solution accuracy.

3.10. FPM

The FPM is stated as 

108C2xþ
10
x

3C1 þ 18C2xð Þ

þ C0 þ 3C1xþ 9x2 � 2
� �

C2
� �10

¼ x100 þ 190x8 (3:50) 

Considering collocation point as x = 0.47, utilising the 
Fermat polynomial operational matrices of deriva
tives, we derive the subsequent algebraic equation 

ðC0 þ 1:41C1 � 0:0119C2Þ
10 þ 63:82C1 þ 230:76C2

¼ 0:45
(3:51) 

Under the given boundary value condition, we have 
the following equations, 

y 0ð Þ ¼ 0) C0 � 2C2 ¼ 0) C0 ¼ 2C2 (3:52) 

yI 0ð Þ ¼ 0C1 ¼ 0 (3:53) 

Therefore by solving the system of algebraic equations, 
we get 

C0 ¼ 0:004;C1 ¼ 0;C2 ¼ 0:002 

Hence we get the Fermat polynomial solution by uti
lising the above connection coefficients as 

y xð Þ ¼ 0þ 0:018x2 (3:54) 

3.11. HWM

The HWM is stated as

32C2 þ
10
x

4C1 þ C2 32x � 16ð Þð Þ

þ C0 þ C1 4x � 2ð Þ þ 16x2 � 16x þ 2
� �

C2
� �10

¼ x100 þ 190x8

(3:55) 

Considering collocation point as x = 0.5, utilising the 
Hermite wavelet operational matrices of derivatives, 
we derive the subsequent algebraic equation 

ðC0 � 2C2Þ
10 þ 80C1 þ 32C2 ¼ 0:74 (3:56) 

Under the given boundary value conditions, we have 
the following equations, 

y 0ð Þ ¼ 0) C0 � 6C2 ¼ 0) C0 ¼ 6C2; (3:57) 

yI 0ð Þ ¼ 0C1 � 4C2 ¼ 0C1 ¼ 4C2 (3:58) 

Therefore by solving the system of algebraic equations, 
we get 

C0 ¼ 0:012;C1 ¼ 0:008;C2 ¼ 0:002 

Hence we get the Hermite wavelet solution by utilising 
the above connection coefficients as 

y xð Þ ¼ 0þ 0:032x2 (3:59) 

3.12. HPM

The HPM is stated as 

2C2 þ
10
x

C1 þ 2C2 x � 1ð Þð Þ

þ C0 þ C1 x þ 2ð Þ þ x2 þ 2xþ 3
� �

C2
� �10

¼ x100 þ 190x8 (3:60) 

Considering collocation point as x = −2, utilising the 
Hosoya polynomial operational matrices of deriva
tives, we derive the subsequent algebraic equation 

ðC0 þ 3C2Þ
10 � 5C1 þ 32C2 ¼ 126750 (3:61) 

Under the given boundary value conditions, we have 
the following equations, 

y 0ð Þ ¼ 0) C0 þ 7C2 ¼ 0) C0 ¼ � 7C2; (3:62) 

yI 0ð Þ ¼ 0C1 � 2C2 ¼ 0C1 ¼ 2C2 (3:63) 

Therefore by solving the system of algebraic equations, 
we get 

C0 ¼ � 1792;C1 ¼ 512;C2 ¼ 256 

Hence we get the Hosoya polynomial solution by 
utilising the above connection coefficients as 

y xð Þ ¼ 0þ 1024xþ 256x2 (3:64) 

Problem5:
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yII xð Þ þ
2
x

yI xð Þ þ y xð Þ ¼ 0; x � 0 (3:65) 

with the initial boundary value condition 
y 0ð Þ ¼ 1; yI 0ð Þ ¼ 0: The exact solution for the above 
Lane–Emden equation is y xð Þ ¼ sinx

x :

Equations of this form have been solved using the 
Fermat polynomial method (FPM), Hermite

wavelet method (HWM) and Hosoya polynomial 
method (HPM) with error computation

included to assess solution accuracy.

3.13. FPM

The FPM is stated as 

108C2x þ
2
x

3C1 þ 18C2xð Þ

þ C0 þ 3C1xþ 9x2 � 2
� �

C2
� �

¼ 0 (3:66) 

Considering collocation point as x = 0.47, utilising the 
Fermat polynomial operational matrices of deriva
tives, we derive the subsequent algebraic equation 

C0 þ 14:17C1 þ 86:76C2 ¼ 0 (3:67) 

Under the given boundary value conditions, we have 
the following equations, 

y 0ð Þ ¼ 1) C0 � 2C2 ¼ 1) C0 ¼ 1þ 2C2; (3:68) 

yI 0ð Þ ¼ 0C1 ¼ 0 (3:69) 

Therefore by solving the system of algebraic equations, 
we get 

C0 ¼ 0:98;C1 ¼ 0;C2 ¼ � 0:01 

Hence we get the Fermat polynomial solution by uti
lising the above connection coefficients as 

y xð Þ ¼ 1 � 0:18x2 (3:70) 

3.14. HWM

The HWM is stated as 

32C2 þ
2
x

4C1 þ C2 32x � 16ð Þð Þ

þ C0 þ C1 4x � 2ð Þ þ 16x2 � 16xþ 2
� �

C2
� �

¼ 0
(3:71) 

Considering collocation point as x = 0.5, utilising the 
Hermite wavelet operational matrices of derivatives, 
we derive the subsequent algebraic equation 

C0 þ 16C1 þ 3C2 ¼ (3:72) 

Under the given boundary value conditions, we have 
the following equations, 

y 0ð Þ ¼ 1) C0 � 6C2 ¼ 1) C0 ¼ 1þ 6C2; (3:73) 

yI 0ð Þ ¼ 0C1 � 4C2 ¼ 0C1 ¼ 4C2 (3:74) 

Therefore by solving the system of algebraic equations, 
we get 

C0 ¼ 0:94;C1 ¼ � 0:04;C2 ¼ � 0:01 

Hence we get the Hermite wavelet solution by utilising 
the above connection coefficients as 

y xð Þ ¼ 1 � 0:16x2 (3:75) 

3.15. HPM

The HPM is stated as 

2C2 þ
2
x

C1 þ 2C2 x � 1ð Þð Þ

þ C0 þ C1 xþ 2ð Þ þ x2 þ 2xþ 3
� �

C2
� �

¼ 0 (3:76) 

Considering collocation point as x = −2, utilising the 
Hosoya polynomial operational matrices of deriva
tives, we derive the subsequent algebraic equation 

C0 � C1 þ 11C2 ¼ 0 (3:77) 

Under the given boundary value conditions, we have 
the following equations, 

y 0ð Þ ¼ 1) C0 þ 7C2 ¼ 1) C0 ¼ 1 � 7C2; (3:78) 

yI 0ð Þ ¼ 0C1 � 2C2 ¼ 0C1 ¼ 2C2 (3:79) 

Therefore by solving the system of algebraic equations, 
we get 

C0 ¼ 4:5;C1 ¼ � 1;C2 ¼ � 0:5 

Hence we get the Hosoya polynomial solution by 
utilising the above connection coefficients as 

y xð Þ ¼ 1 � 2x � 0:5x2 (3:80) 

4. Results and discussion

Tables 1–5 show the comparative study of the proposed 
wavelet based methods and polynomial approximation 
methods such as HPM and FPM. For small values of 
k and M, the proposed results are validated with other 
results. Figures 1–5 show the accuracy of the proposed 
method. The accuracy has been confirmed by means of 
computing errors. The graphical representation 
(Figure 6) of the error metrics gives us a clear view that 
the errors of FPM and HWM are minimum compared to 
the HPM. Tables 6–8 provide the complete information
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Table 1. Comparing absolute error of an approximate solution with the exact solution for problem 1.
x Exact value FPM HWM HPM Error (FPM) Error (HWM) Error (HPM)

0.00 0 0 0 0 0 0 0
0.01 −9.9E–07 −8.1E–05 −1.6E–05 0.289923 0.00008001 0.00001501 0.28992399
0.02 −7.84E–06 −0.00032 −6.4E–05 0.581292 0.00031616 0.00005616 0.58129984
0.03 −2.619E–05 −0.00073 −0.00014 0.874107 0.00070281 0.00011781 0.87413319
0.04 −6.144E–05 −0.0013 −0.00026 1.168368 0.00123456 0.00019456 1.16842944
0.05 −0.0001188 −0.00203 −0.0004 1.464075 0.00190625 0.00028125 1.46419375
0.06 −0.000203 −0.00292 −0.00058 1.761228 0.00271296 0.00037296 1.76143104
0.07 −0.000319 −0.00397 −0.00078 2.059827 0.00365001 0.00046501 2.06014599
0.08 −0.000471 −0.00518 −0.00102 2.359872 0.00471296 0.00055296 2.36034304
0.09 −0.0006634 −0.00656 −0.0013 2.661363 0.00589761 0.00063261 2.66202639
0.10 −0.0009 −0.0081 −0.0016 2.9643 0.0072 0.0007 2.9652
0.20 −0.0064 −0.0324 −0.0064 6.0732 0.026 8.6736E–19 6.0796
0.30 −0.0189 −0.0729 −0.0144 9.3267 0.054 0.0045 9.3456
0.40 −0.0384 −0.1296 −0.0256 12.7248 0.0912 0.0128 12.7632
0.50 −0.0625 −0.2025 −0.04 16.2675 0.14 0.0225 16.33
0.60 −0.0864 −0.2916 −0.0576 19.9548 0.2052 0.0288 20.0412
0.70 −0.1029 −0.3969 −0.0784 23.7867 0.294 0.0245 23.8896
0.80 −0.1024 −0.5184 −0.1024 27.7632 0.416 0 27.8656
0.90 −0.0729 −0.6561 −0.1296 31.8843 0.5832 0.0567 31.9572
1.00 0 −0.81 −0.16 36.15 0.81 0.16 36.15

Table 2. Comparing absolute error of an approximate solution with the exact solution for problem 2.
x Exact value FPM HWM HPM Error (FPM) Error (HWM) Error (HPM)

0.00 0 0 0 0 0 0 0
0.01 0.000101 0.000117 0.00019 0.062957 0.000016 0.000089 0.062856
0.02 0.000408 0.000468 0.00076 0.126228 0.00006 0.000352 0.12582
0.03 0.000927 0.001053 0.00171 0.189813 0.000126 0.000783 0.188886
0.04 0.001664 0.001872 0.00304 0.253712 0.000208 0.001376 0.252048
0.05 0.002625 0.002925 0.00475 0.317925 0.0003 0.002125 0.3153
0.06 0.003816 0.004212 0.00684 0.382452 0.000396 0.003024 0.378636
0.07 0.005243 0.005733 0.00931 0.447293 0.00049 0.004067 0.44205
0.08 0.006912 0.007488 0.01216 0.512448 0.000576 0.005248 0.505536
0.09 0.008829 0.009477 0.01539 0.577917 0.000648 0.006561 0.569088
0.10 0.011 0.0117 0.019 0.6437 0.0007 0.008 0.6327
0.20 0.048 0.0468 0.076 1.3188 0.0012 0.028 1.2708
0.30 0.117 0.1053 0.171 2.0253 0.0117 0.054 1.9083
0.40 0.224 0.1872 0.304 2.7632 0.0368 0.08 2.5392
0.50 0.375 0.2925 0.475 3.5325 0.0825 0.1 3.1575
0.60 0.576 0.4212 0.684 4.3332 0.1548 0.108 3.7572
0.70 0.833 0.5733 0.931 5.1653 0.2597 0.098 4.3323
0.80 1.152 0.7488 1.216 6.0288 0.4032 0.064 4.8768
0.90 1.539 0.9477 1.539 6.9237 0.5913 0 5.3847
1.00 2 1.17 1.9 7.85 0.83 0.1 5.85

Table 3. Comparing absolute error of an approximate solution with the exact solution for problem 3.
x Exact value FPM HWM HPM Error (FPM) Error (HWM) Error (HPM)

0.00 1 1 1 1 0 0 0
0.01 0.9999 0.999919 0.99992 1.009624 1.8995E–05 1.9995E–05 0.009724
0.02 0.99960008 0.999676 0.99968 1.019296 7.592E–05 7.992E–05 0.01969592
0.03 0.9991004 0.999271 0.99928 1.029016 0.0001706 0.0001796 0.0299156
0.04 0.99840128 0.998704 0.99872 1.038784 0.00030272 0.00031872 0.04038272
0.05 0.99750312 0.997975 0.998 1.0486 0.00047188 0.00049688 0.05109688
0.06 0.99640647 0.997084 0.99712 1.058464 0.00067753 0.00071353 0.06205753
0.07 0.99511199 0.996031 0.99608 1.068376 0.00091901 0.00096801 0.07326401
0.08 0.99362044 0.994816 0.99488 1.078336 0.00119556 0.00125956 0.08471556
0.09 0.99193272 0.993439 0.99352 1.088344 0.00150628 0.00158728 0.09641128
0.10 0.99004983 0.9919 0.992 1.0984 0.00185017 0.00195017 0.10835017
0.20 0.96078944 0.9676 0.968 1.2016 0.00681056 0.00721056 0.24081056
0.30 0.91393119 0.9271 0.928 1.3096 0.01316881 0.01406881 0.39566881
0.40 0.85214379 0.8704 0.872 1.4224 0.01825621 0.01985621 0.57025621
0.50 0.77880078 0.7975 0.8 1.54 0.01869922 0.02119922 0.76119922
0.60 0.69767633 0.7084 0.712 1.6624 0.01072367 0.01432367 0.96472367
0.70 0.61262639 0.6031 0.608 1.7896 0.00952639 0.00462639 1.17697361
0.80 0.52729242 0.4816 0.488 1.9216 0.04569242 0.03929242 1.39430758
0.90 0.44485807 0.3439 0.352 2.0584 0.10095807 0.09285807 1.61354193
1.00 0.36787944 0.19 0.2 2.2 0.17787944 0.16787944 1.83212056
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Table 4. Comparing absolute error of an approximate solution with the exact solution for problem 4.
x Exact value FPM HWM HPM Error (FPM) Error (HWM) Error (HPM)

0.00 0.00 0 0 0 0 0 0
0.01 0.00 1.8E–06 3.2E–06 10.2656 1.8E–06 3.2E–06 10.2656
0.02 0.00 7.2E–06 1.28E–05 20.5824 7.2E–06 1.28E–05 20.5824
0.03 0.00 1.62E–05 2.88E–05 30.9504 1.62E–05 2.88E–05 30.9504
0.04 0.00 2.88E–05 5.12E–05 41.3696 2.88E–05 5.12E–05 41.3696
0.05 0.00 0.000045 0.00008 51.84 4.5E–05 8E–05 51.84
0.06 0.00 6.48E–05 0.000115 62.3616 6.48E–05 0.0001152 62.3616
0.07 0.00 8.82E–05 0.000157 72.9344 8.82E–05 0.0001568 72.9344
0.08 0.00 0.000115 0.000205 83.5584 0.0001152 0.0002048 83.5584
0.09 0.00 0.000146 0.000259 94.2336 0.0001458 0.0002592 94.2336
0.10 0.00 0.00018 0.00032 104.96 0.00018 0.00032 104.96
0.20 0.00 0.00072 0.00128 215.04 0.000719898 0.0012799 215.04
0.30 0.00 0.00162 0.00288 330.24 0.001614095 0.0028741 330.239994
0.40 0.00 0.00288 0.00512 450.56 0.002775142 0.00501514 450.559895
0.50 0.00 0.0045 0.008 576 0.003523438 0.00702344 575.999023
0.60 0.01 0.00648 0.01152 706.56 0.000433382 0.00547338 706.553953
0.70 0.03 0.00882 0.01568 842.24 0.019427525 0.01256752 842.211752
0.80 0.11 0.01152 0.02048 983.04 0.095854182 0.08689418 982.932626
0.90 0.35 0.01458 0.02592 1128.96 0.33409844 0.32275844 1128.61132
1.00 1.00 0.018 0.032 1280 0.982 0.968 1279

Table 5. Comparing absolute error of an approximate solution with the exact solution for problem 5.
x Exact value FPM HWM HPM Error (FPM) Error (HWM) Error (HPM)

0.00 1 1 1 1 0 0 0
0.01 0.999979 0.999982 0.999984 0.97995 3E–06 5E–06 0.020029
0.02 0.999918 0.999928 0.999936 0.9598 1E–05 1.8E–05 0.040118
0.03 0.999815 0.999838 0.999856 0.93955 2.3E–05 4.1E–05 0.060265
0.04 0.999671 0.999712 0.999744 0.9192 4.1E–05 7.3E–05 0.080471
0.05 0.999486 0.99955 0.9996 0.89875 6.4E–05 0.000114 0.100736
0.06 0.999259 0.999352 0.999424 0.8782 9.3E–05 0.000165 0.121059
0.07 0.998992 0.999118 0.999216 0.85755 0.000126 0.000224 0.141442
0.08 0.998684 0.998848 0.998976 0.8368 0.000164 0.000292 0.161884
0.09 0.998334 0.998542 0.998704 0.81595 0.000208 0.00037 0.182384
0.10 0.998334 0.9982 0.9984 0.795 0.000134 6.6E–05 0.203334
0.20 0.993347 0.9928 0.9936 0.58 0.000547 0.000253 0.413347
0.30 0.985067 0.9838 0.9856 0.355 0.001267 0.000533 0.630067
0.40 0.973546 0.9712 0.9744 0.12 0.002346 0.000854 0.853546
0.50 0.958851 0.955 0.96 −0.125 0.003851 0.001149 1.083851
0.60 0.941071 0.9352 0.9424 −0.38 0.005871 0.001329 1.321071
0.70 0.920311 0.9118 0.9216 −0.645 0.008511 0.001289 1.565311
0.80 0.896695 0.8848 0.8976 −0.92 0.011895 0.000905 1.816695
0.90 0.870363 0.8542 0.8704 −1.205 0.016163 3.7E–05 2.075363
1.00 0.841471 0.82 0.84 −1.5 0.021471 0.001471 2.341471

Figure 1. Approximate solution (FPM, HWM, HPM) and exact solution of y(x).
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about the metrics analysis like mean, standard deviation, 
mean square error and accuracy that has been obtained 
for all the problems. The results demonstrate that the 
HWM and FPM methods provide highly accurate 
approximations, with accuracy values reaching close to 
1 for most problem instances. In contrast, the accuracy of 
the HPM methods varies with lower accuracy in certain 
problems. The Mean Squared Error (MSE) values for the 
HWM and FPM methods consistently remain very low, 
where the MSE is near zero, indicating near-perfect 
approximation. On the other hand, HPM exhibits higher

MSE values, especially for more complex problems like 
Problem 4, where the error magnitude increases signifi
cantly, reflecting the limitations of polynomial approx
imation techniques. Operational matrix of derivative 
algorithms has been frequently used for solving non- 
linear differential equations. Hermite, Hosoya and 
Fermat polynomial algorithms have been identified to 
solve non-linear differential equations in engineering. 
Among a few wavelet families, the proposed algo
rithms have been identified as useful tools in solving 
non-linear models in scientific and engineering

Figure 2. Approximate solution (FPM, HWM, HPM) and exact solution of y(x).

Figure 3. Approximate solution (FPM, HWM, HPM) and exact solution of y(x).
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applications. For specific models (as mentioned in the 
manuscript), these algorithms have been identified as 
useful tools for solving non-linear dynamical models.

5. Conclusion

Two reliable and efficient wavelet-based methods 
have been introduced successfully for solving non- 
linear Lane–Emden-type equations in astrophysics. 
The operational matrix of derivatives has been

utilised to convert the non-linear differential equa
tions into a system of algebraic equations. Validation 
with other polynomial approximation methods has 
been noticed. Due to the sparse type of matrices, the 
computational time is much less when compared 
with other conventional methods. The proposed 
methods also show better stability and consistency 
in their error behaviour across various problems, 
making them a more reliable tool for solving non- 
linear differential equation models. Overall, these

Figure 4. Approximate solution (FPM, HWM, HPM) and exact solution of y(x).

Figure 5. Approximate solution (FPM, HWM, HPM) and exact solution of y(x).
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methods provide a more accurate, stable and scal
able approach compared to traditional polynomial 
methods, highlighting their potential in tackling 
complex problems in science and engineering. The

proposed methods are reliable approximation algo
rithms for solving non-linear differential equation 
models arising in various scientific and engineering 
problems.

Figure 6. Graphical representation of error analysis for all the cases.

Table 6. Metric analysis for FPM.
Problem Mean_FPM STD_FPM MSE_FPM Accuracy_FPM

Problem1 0.1324 0.22698 0.066473 0.88308
Problem2 0.11874 0.23157 0.065041 0.89387
Problem3 0.020445 0.043937 0.0022519 0.97996
Problem4 0.072057 0.22731 0.054277 0.93279
Problem5 0.0036394 0.0061904 0.00004965 0.99637

Table 7. Metric analysis for HWM.
Problem Mean_HWM STD_HWM MSE_HWM Accuracy_HWM

Problem1 0.015659 0.037015 0.0015468 0.98458
Problem2 0.033181 0.04206 0.0027816 0.96788
Problem3 0.019444 0.041115 0.001984 0.98093
Problem4 0.070656 0.22351 0.052451 0.93401
Problem5 0.0004594 0.0005085 4.5669E–07 0.99954

Table 8. Metric analysis for HPM.
Problem Mean_HPM STD_HPM MSE_HPM Accuracy_HPM

Problem1 10.03 11.815 233.22 0.090658
Problem2 1.8275 2.004 7.1548 0.35367
Problem3 0.47626 0.60026 0.56912 0.67739
Problem4 354.21 417.2 290820 0.0028152
Problem5 0.66062 0.76729 0.99571 0.60218
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