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Abstract In this paper, initial value problem for dynamical astronomy will be established using
Bispherical coordinates. A computational algorithm is developed for the final state predictions
for J2 gravity perturbed motion of the Earth’s artificial satellites. This algorithm is important in tar-
geting, rendezvous maneuvers as well for scientific researches. The applications of the algorithm are
illustrated by numerical examples of some test orbits of different eccentricities. The numerical
results are extremely accurate and efficient.
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1. Introduction

Depending on the application, a curvilinear coordinate system
may be simpler to use than the Cartesian coordinate system.
For instance, a physical problem with spherical symmetry de-
fined in R? (e.g., motion in the field of a point mass), is usually
easier to solve in spherical polar coordinates than in Cartesian
coordinates. Also boundary conditions may enforce symmetry.
One would describe the motion of a particle in a rectangular
box in Cartesian coordinates, whereas one would prefer spher-
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ical coordinates for a particle in a sphere. For instance, in the
galactic rotation, cylindrical coordinates are usually adopted,
while the spherical coordinates are suitable for the dynamics
of globular clusters.

On the other hand, the applications of the conventional
equations of space dynamic for the motion of Earth’s artificial
satellites give inaccurate final state predictions which are very
important in targeting, rendezvous maneuvers as well for sci-
entific researches

The reason for this inaccurate final state is due to the fact
that the equations of motion are unstable in the Liapunov
sense (Stiefel and Scheifele 1971). In brief the deficiency of
these equations is due to the choice of the variables, which
in turn has led some authors to propose successful methods
to change of the dependent and/or independent variables so
as to regularize the differential equations of motion.

Of these, the method established by Stiefel and Scheifele, in
1971 consists of changing the independent variable from time
to a new variable, which is proportional to the eccentric anom-
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aly in the elliptic case or its equivalent in hyperbolic case. The
method then changes the coordinates from three-dimensional
Cartesian space to a four —dimensional space by what they
called the KS transformation. The resulting equations are
four-dimensional harmonic oscillator. In fact, the change of
the dependent and/or independent variables for the differential
equations of motion is one of the focal points of researches in
space dynamics. Many studies on the applications of these de-
vices for some orbital systems were done (e.g. Sharaf et al.,
1987, 1989, 1991a,b, 1992; Sharaf and Sharaf 1995)

Now, one may ask: does there exist another transformation
equation that produces accurate final state predication? The
answer is yes as established in three papers of the same authors
(Sharaf and Selim 2006, 2011a,b). In these papers, we used
respectively the three curvilinear coordinates: Parabolic Cylin-
drical, Cylindrical and Paraboloidal, and we get very accurate
final state predictions.

The efficiency of the usages of these three curvilinear coor-
dinates tempted us to continue in the line of our researches on
the utilization of curvilinear coordinate system in the problem
final state predictions.

In the present paper, initial value problem for dynamical
astronomy will be established using Bispherical coordinates.
Computation algorithm was developed for the initial value
problem of J, gravity perturbed trajectories. Applications of
the algorithm for the problem of final state predication are
illustrated by numerical examples of some test orbits of differ-
ent eccentricities.

2. Analytical formulations for Bispherical coordinates

2.1. Coordinate, velocity transformations
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2.1.4. General equations of motion using Bispherical coordinates
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3. J2 Gravity perturbed motion of the Earth’s artificial satellites

3.1. The potential V and its partial derivatives

For J2 gravity perturbed trajectories, the potential ¥ is given
as:

c 4

VEV(x,y,z):%+f{3(f)zfl} (s)
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where
Output: (1) u;; u;; j=1,2,3 att = ¢,
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with p is the gravitational parameter, which is universal grav-
itational constant times the Earth’s mass; J, the second zonal
harmonic, and Rg is the mean Earth’s equatorial radius .The
numerical values of these constants are:

1 = 398600.8 km® /sec?,
Jy = 1.0826157 x 1073,

Ry = 6378.135 km.

3.2. Equations of motion in Cartesian coordinates

To describe the motion of a satellite about the Earth is to write
a set of differential equations describing the rate of change of
the position and velocity. These equations for J2 Gravity per-
turbed motion are:
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The coordinate system is initially fixed with the xy plane cor-
responding to the Earth’s equatorial plane

3.3. Equations of motion in orthogonal curvilinear coordinates

The kinetic energy of a particle of unit mass is given as:
1
T=3 (i + h3id + h3is)

In the present paper we shall suppose that the motion is con-
trolled only by the gravitational potential, V, which will be
in general a function of (uy, u», u3).

By using Lagrange’s dynamical equations, we get for the
equations of motion in the orthogonal curvilinear coordinates
in the forms:

i = G(um,g—:) (7

The explicit expression of the right hand side of Equation (7)
will be given later for Bispherical coordinates.

4. Initial value procedures

In what follows, a general procedure will be developed for the
final state predictions for J2 gravity perturbed motion of the
Earth’s artificial satellites using orthogonal curvilinear coordi-
nates. The procedure is described through its basic points: in-
put, output and computational steps

Input: (1) x07y07207x07.)./0720 att= t07
(2)  the final time ¢ = 14

B) 5 =Filnp 2 = Faboy,2); 5 = Falxp,2).

Computational steps:

1. Using Egs. (1) and (6) to find the analytical expressions of
the partial derivatives 2, where j = 1,2, 3 as:
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2. Compute numerically the initial conditions, ug; j = 1,
2,---,6 for the above system from the result of step 7 by
applying the transformations:

(X, .z, u1, U, u3) — (X0, Y95 Z0s o1, o, Uo3)
(x>y727u17d2703) - (-"607)'/072'071404#057“06)

3. Using these initial conditions to solve numerically the
above differential system for wu; j=1,2---,6 at
t = tpwhere uy = iy, us = i, u = iz at t = t;

4. Using  wu;u;;7=1,2,3 to compute numerically
x,y,zand X,y,z at t = ¢, from the direct transformation
Eq. (1)

5. End.

5. Numerical applications

In this section, the numerical applications of the computa-
tional developments of the above section will be considered.

5.1. Test orbits

For the applications of the above formulations, we consider
four test orbits given in the Appendix C of Vinti’s book,
1998. All these orbits have the initial time 7, = 0 and each of
different flight time #,, they cover the three basic types of conic
motion-elliptic, parabolic and hyperbolic orbits.

5.2. Reference orbits

For each orbit, the J2 gravity perturbed equations of motion in
Cartesian coordinate are solved by any differential integrator.
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Table 1 Initial and Reference Final State Solutions of the

Test Orbits.

Table 2 Efficiency of the initial value problem for J2 gravity
perturbed motion using Bispherical coordinates.

Initial condition Reference solution Orbit AR (m) Av (m/sec)
Low-earth orbit Low-earth orbit (elliptic) 0.02251 0.00003
X, = 2328.9694 Xr = —516.450939 Geosynchronous orbit(circular) 0.00103388 0.0

Yo = —5995.21600 yr = —3026.5115474 Parabolic orbit of 0° 0.013024 0.0

z, = 1719.97894 zr = 5848.117544 Inclination(parabolic)

Xo = 2.911101130 Xr = 3.96699 Hyperbolic orbit of 0° 0.03469 0.0

yo = —0.98164053 yr = —6.121618 inclination(hyperbolic)

2o = —7.090499220 Zr = —2.754866

t;=10000s
e = 0.00949621

Geosynchronous orbit
X, = —14420.99601
Yo = —39621.36091
Zo =0

xr = —13755.32790
yr = —39857.2791670
ZR — 0

Xo =2.88923555010 Xr = 2.906438
yo = —1.0515957400 yr = —1.003071
Zo=0 =0

tf = 86400 s

e=20

Parabolic orbit of zero inclination

xo = 10 000.00 xr = —65357.0633677
Yo =0 yr = 54991.369699
Zo = 0 ZR = 0

Xo=0 Xr = —2.871888

Yo = 8.9286113142 yr = 1.050276

Zp=0 zr=0

1= 21600s

e=1

Hyperbolic orbit of zero inclination

X, = 10 000.00000 xr = —1.898682002201 x 10°

Yo =10 yr = 1.020654164530 x 10°
Zo = 0 IR & 0

Xo=0 Xr = —2.049040

Yo = 9.20000000 yr = 1.052929

Zp=0 g =0.0x 1079

1, = 864 000 s

e = 1.12343

A final state prediction was determined by reducing the step
size until at least five decimal places ( < 1072 mater (m)) sta-
bilized in x(ty), y(¢,) and z(t;) .These values are considered as
reference final state solutions to the orbit they refer and are de-
noted by:

IR = (xR(tf%yR(lf)"):ZR(tf')) and 1y
= (Xr(t), yr(fy), 2r (1)) (8)

for the reference position and velocity vectors respectively.

Table 1 gives the initial and the reference final state solu-
tions of the test orbits. The length is in km, while the velocities
are in km/sec

5.3. Efficiency of Bispherical coordinates

Upon the above reference solutions the efficiency of the initial
value problem for J2 gravity perturbed trajectories using curvi-
linear coordinates (CL- solution) may be checked by testing its
ability in predicting final states within certain tolerances as
follows:.

Let r=(x(t), y(tp), z(tp) and 1 = (x(1), 9(ty), 2(¢s)) are the
final state of the CL- solution of a given orbit .The efficiency
of the CL- solution is then checked by the magnitude of the er-
ror criteria AR and Av as:

AR={(x —xg) + (v — vp)* + (z — z)*}""* % 1000(in m),
9.1)

Av = {(&— 5r)’ + (= 7=)> + (2 — 2)°}"" % 1000(in m/sec),
9.2)

such that, the small the values of AR and Av, the higher the
efficiency will be, in this respect, we may define an acceptable
solution set (S.S) to the problem at hand as:

S.S = ((r,i): AR < &, Av < &) (10)

where ¢, are given tolerances. For the very accurate predic-
tions required nowadays we may consider the tolerances ¢ »
as:

& = 2 meter £ 10 centimeter, (11.1)

& = .259 m/sec. (11.2)

5.4. Numerical results
(see Table 2).

6. Conclusion

In concluded the present paper we stress that initial value
problem for dynamical astronomy was established using
Bispherical coordinates A computational algorithm is devel-
oped for the final state predictions for J2 gravity perturbed
motion of the Earth’s artificial satellites using Bispherical
orthogonal curvilinear coordinates. This algorithm is impor-
tant in targeting, rendezvous maneuvers as well for scientific
researches.

The applications of the algorithm were illustrated by
numerical examples of some test orbits of different eccentrici-
ties. The numerical results are extremely accurate and efficient.
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