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Abstract The 1992 Cairo earthquake originated from Dahshour seismic zone at an epicentral dis-

tance of about 25 km southwest of Cairo. Regardless of its relatively moderate magnitude

(Mb = 5.8), it caused extensive property damage besides injuries and loss of lives. The significant

damage of this earthquake was probably associated with amplification of seismic waves due to local

site effects. Liquefaction was observed at many sites near the epicenter. There are no records of

strong ground motion at the damaged area during this earthquake. The main shock was recorded

only by the local Kattamya station (KEG) constructed in limestone rock site at about 46–48 km

east of Cairo. In the present work, the strong ground motion during 1992 Cairo earthquake was

analyzed and the possible causes of damage and structural failure were discussed. The study area

is located at the southern part of Cairo city, holding heavy population and many public structures

and strategic buildings. The ground motion parameters in terms of peak ground acceleration

(PGA), peak ground velocity (PGV), and pseudo-spectral acceleration (PSA) were estimated for

each site in the study area and in the KEG site. The site-dependent spectral models together with

the stochastic technique were applied for this purpose, using the Fourier amplitude spectrum (FAS)

source scaling, attenuation model, and the site amplification functions. The peak ground accelera-

tion of the studied area, comprising 89 sites in northern great of Cairo (Qalyoub city) was calcu-

lated. The calculated peak ground acceleration values indicate the sites of high values of peak

ground acceleration which are also characterized by high ground motion amplification factors.

The ground motion, which is presented in this study, is highly amplified by the soil layer covering
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Fig. 1 Location map of th
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the area. Otherwise, the surface layer must be totally removed before construction of the buildings

to avoid its large amplification to the ground motion.

ª 2013 Production and hosting by Elsevier B.V. on behalf of National Research Institute of Astronomy

and Geophysics.
1. Introduction

The ever increasing urbanization and construction of specific

installations that have marked the recent decades in Egypt re-
quire heightened sensitivity toward danger, generally repre-
sented by natural phenomena, particularly earthquakes.
Occurrence of large-magnitude earthquake near an unpre-

pared city of specific geological environment causes disaster.
Hence, seismologists and civil engineers in seismic countries
work on a seismic design structure and its resistance to strong

ground motion. The ground motion relationships describe
peak ground motions and response as a function of earthquake
magnitude and distance. Thus, they are of paramount impor-

tance in the assessment of earthquake hazard to engineered
structures. The response spectrum is the best representation
of ground motion because it is based on natural frequencies

of structures.
In the present study, the stochastic technique proposed by

(Boore, 2003) is used to simulate the peak ground acceleration
(PGA), and the acceleration time-histories expected from a sig-

nificant earthquake that could have the greatest effect on the
study area of Qalyoub city. The stochastic method is useful
for simulating the higher-frequency ground motions

(f> 0.1 Hz), which are interesting to engineers. This fre-
quency range is widely used to predict ground motions due
to potentially damaging earthquakes in regions of lack of

strong ground motion records.

2. General geology of the study area and its surrounding

The Study area lies at the northeastern part of Greater Cairo
(Qalyoub city) as shown in Fig. 1 and is located between lati-
tudes 30.16 and 30.20N and longitudes 31.19 and 31.23E

(Fig. 2). Most part of the geological units in the study area be-
e case study area.
longs to the Quaternary, Middle Miocene and Oligocene
deposits. The Quaternary deposits are represented by different
formations such as sand sheets which are located at the eastern

part of the area. Inshas formation occupying the northern and
eastern parts of the study area consists of cross-bedded sand,
intercalated with Nile mud and silt. Bilbies formation is lo-

cated at the central and eastern parts of the area and is made
up of medium to coarse-grained and cross-bedded sands with
plant roots and carbonate pockets. El Debba formation, in

the southern part of the area, consists of coarse-grained sands
intercalated with flint. The Middle Miocene is represented by
Hommath formation, which is located at the central part of
the survey area and made up of interbedded yellow sandy lime-

stone, sandstone and sandy marl. The Oligocene deposits are
represented by Gabal Ahmar Formation, which is composed
of sand and sandstone according to EGSMA (1998). Fig. 2

shows the subsurface stratigraphy as described from a 202 m
deep borehole drilled at the eastern part of the survey area
by EGSMA (1998). The stratigraphic column consists of

Quaternary, Middle Miocene and Oligocene deposits. The
Quaternary deposits are represented by sand sheet and the
Middle Miocene is represented by the Hommath formation.
Fig. 2 Geological map of the study area and surrounding area

(modified after EGSMA, 1998).
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The Oligocene deposits are represented by Gabal Ahmar For-
mation (sand and sandstone) and by a Basaltic sheet lying be-
tween 113.5 m (top) and 162.2 m (bottom) depths. And there

are about 10 boreholes drilled at in the Qalyuob area.
The present study is intended to improve our understanding

of the relationship between the shallow geological structure

and microtremors, the experiments consisted of microtremor
measurements at different points.

3. Outline of the method

Aki (1967) derived the first expression based on the spectrum of
seismic waves radiated from complex faulting and determined

the seismic moment of earthquake. Hanks and McGuire (1981)
presented a simple theoretical model that predicts accurately
the peak acceleration a max for California earthquakes and cor-

roborated the scaling of motions with magnitude that had been
derived empirically. The model treats ground motion as a band-
limited finite-duration Gaussian white noise, with an amplitude
spectrum given by Brune’s model (1970 and 1971) for shear radi-

ation. The source spectra are described by a single corner fre-
quency that depends on earthquake size. Boore (1983) and
McGuire et al. (1984) extended the model to predict the peak

velocity vmax and the pseudo relative velocity spectra (PSV).
The assessment of seismic hazard in terms of acceleration

and response spectra is the fundamental base of ground mo-

tion prediction. The radiated energy is assumed to be evenly
distributed over a specified duration. Andrews (1986) stated
that the shear-wave spectrum, Y(f), for source i and site j is
decomposed as:

YijðfÞ ¼ EiðfÞ PijðfÞ GjðfÞ; ð1Þ

where E(f) is the source spectrum, P(f) is the path spectrum,
and G(f) is the site spectrum.

Eq. (1) assumes that the directional effects of the source are

averaged out by observations at different azimuths. The path
spectrum is represented by geometrical spreading and whole-
path attenuation Q(f) as:

PðfÞ ¼ r� y eð�p f tÞ QðfÞ; ð2Þ

where y is set to 1.0, consistent with body waves in uniform
medium, t is the travel time, and r is the hypocentral distance.

Taking the natural logarithm, Eq. (1) becomes:

lnYijðfÞ ¼ lnEiðfÞ þ lnPijðfÞ þ lnGjðfÞ: ð3Þ

This linear expression often forms the basis for attempts to
separate the source, path, and the site effects.

Boore (2003) employed a stochastic time-domain simula-

tion method and used general equations from random process
theory. He broke the total spectrum of the motion at a site into
contributions of the earthquake source, path, site, and instru-
ment. By separating the spectrum into these components, the

models based on the stochastic method can be easily modified
to consider both the specific situations and/or improved infor-
mation about any particular aspects of the model.

Input parameters of the stochastic simulation method in-
volve all the terms in the following equation:

YðMo;R; fÞ ¼ EðMo; fÞ PðR; fÞ GðfÞ IðfÞ: ð4Þ

The method begins by specifying the Fourier amplitude

spectrum of ground acceleration as a function of seismic mo-
ment and distance, Y(Mo, R, f). The term E(Mo, f) is the earth-
quake source spectrum of a specific seismic moment (i.e.,
Fourier spectrum of the ground acceleration at a distance of
1 km) and P(R, f) is the path effect that models the geometric

spreading and an elastic attenuation of the spectrum as a func-
tion of hypocentral distance, R, and frequency, f. The term
G(f) is the site effect and the term I(f) is the instrument effect

or filter used to shape the spectrum to correspond to the par-
ticular ground motion measure of interest.
4. Methodology

Simulation of peak ground velocity (PGV), peak ground accel-
eration (PGA), peak ground displacement (PGD) is made for

different soil conditions of Qalyoub city. The stochastic simu-
lation method is done using the computer code SMSIM FOR-
TRAN Programs for Simulating Ground Motions version 2.3

(Boore, 2008). This program version has major modifications
of ground motion in Qalyoub city.

The method begins, as described in detail in the last text
with specification of the furrier amplitude spectrum of ground

acceleration as a function of earthquake size (moment or mo-
ment magnitude) and distance and frequency Y(Mo, R, f),
which can be represented as shown in Eq. (5):

YðMo;R; fÞ ¼ EðMo; fÞ PðR; fÞ GðfÞ IðfÞ ð5Þ

where E, P, G and I factors are the earthquake source, path,
site, and instrument or type of motion respectively.

4.1. Input parameters

The input parameters for the method include all terms of Eq.
(4), and the duration of motion, the simulation will apply to

the random horizontal component of the shear wave of ground
motion for the earthquake source of Dahshour seismic zone
that represents the main disastrous and devastating source
for Cairo.

The earthquake source spectrum E(Mo, f) adopted here is
Brune source model (Brune, 1970, 1971) given by:

EðMo; fÞ ¼ CMo=½1þ ðf=foÞ2�; ð6Þ

where C is the source scaling factor given by:

C ¼ Rh/FV=4pqb3 ð7Þ

where Rh/ is the average radiation pattern of shear wave (0.55,
(Boore and Boatwright, 1984), F is the free-surface amplifica-
tion (=2.0), V represents the partition of energy from a vector

into horizontal component, q is the crustal density, and b is the
shear wave velocity which are chosen as (q = 2.8 gm/cm3,
b = 3.7 km/s), depending on the crustal stricture model for

the source area (Samy, 2001), and Mo, fo are the seismic mo-
ment and corner frequency respectively. The relation between
the two parameters Mo and fo is given by:

fo ¼ 4:9� 106bsðDr=MoÞ1=3 ð8Þ

where Dr is the stress drop parameter in Bar, fo in Hz, b in km/

s, and Mo in Dyne-cm (Brune, 1970, 1971). In this study,
Dr = 18.5 bar depending on the study of the source parame-
ters of the main shock of Dahshour earthquake by Hussein

(1999), the seismic moment and stress drop of the effective
earthquake are estimated based on Hussein (1999), as listed
in Table 1.



Fig. 3 (a) The recorded PGA at KOT station and (b) the simulated PGA at KOT station.

Table 1 The recorded and simulated PGA for 12 October 1992, earthquake at KOT station.

Station Coordinates Recorded PGA (cm/s2) Simulated PGA (cm/sec2)

Latitude Longitude

KOT 29.927 31.829 3.145E+01 2.845E+01

The simulated ground motion of this event using stochastic simulation method is carried out with the following source parameters: stress drop

Dr is equal 18.5 bars, (Hussein, 1999) as listed in (Table 2).
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The path function [P(R, f), duration] can be represented by

simple functions that account for geometric spreading func-
tion, attenuation (combining intrinsic and scattering attenua-
tion) and path duration.

The geometric spreading attenuation factor, Z, is expressed
as:

ZðRÞ ¼ Ro=Rn ð9Þ

where Ro is unit distance (1 km), R is taken as the closest dis-
tance to the rupture surface, and the exponent, n, depends on

R.
The spectral–amplitude decay due to geometric spreading

that is applied in this study, is given by three segment opera-

tors (Atkinson and Boore, 1995) for Eastern North America
area as follows:

For R > 130; n ¼ 1;

70 < R < 130; n ¼ 0:0

R > 130; n ¼ 0:5:

The main advantage of (Atkinson and Boore, 1995) for-
mula is that the path-dependent part of the duration is not rep-
resented by the connected series of straight-line segments with

different slopes, but it is modeled as trilinear, using transition
distances between 70 and 130 km, which are of consistency
with the attenuation model. The slope values have been chan-

ged based on the distance variations where the values 0.16,
0.03 and 0.04 are adopted to distance ranges 10–70, 70–130,
130–1000 km, respectively. The slope is assumed to be zero

at distances less than 10 km.
The attenuation that includes the intrinsic and scattering

attenuation, as described before, depends on the quality factor
(Q) of the medium. Where Q is strongly dependent on the fre-
quency (f), in this study for Qalyoub city, the Q function is gi-

ven by (Mustafa, 2002):

QðfÞ ¼ 86 f 0:79 ð10Þ

The distance-dependent duration function has two terms:

T ¼ Toþ bR ð11Þ

where T is the duration of motion in sec, To is the source and

bR represents a distance-dependent term that accounts for dis-
persion. For the source duration, we assume that To = 1/fo
(Brune, 1970, 1971), where fo is the corner frequency in source
spectrum.

We use the distance-dependent duration of EN America
(Atkinson, 1993) that is given by:

T ¼ 1=foþ 0:05R ð12Þ

This equation is suitable for north Egypt where it is not a

tectonic region as EN America.
The site function (G(f)) can be simplified and used to de-

scribe the frequency-dependent modifications of seismic spec-

trum. It is given by the product the amplification (A(f)) and
attenuation (D(f)) as follows:

GðfÞ ¼ AðfÞ DðfÞ ð13Þ

The site effects are described in detail and estimated in the

previous chapter (chapter 3). They are estimated for 41 differ-
ent sites in Nile Delta and 89 sites in Qalyoub city as part of
greater Cairo.

A particular type of ground motion (I(f)), resulting from
the simulation is controlled by:

IðfÞ ¼ ð2p fiÞ n ð14Þ
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where n= 0, 1, or 2 for ground displacement, velocity, or

acceleration respectively. For the response of an oscillator,
the response spectra I(f) is given by:

IðfÞ ¼ �Vf2=ðf2� f2rÞ � ð2ffrniÞ ð15Þ
Table 3 The simulated peak ground acceleration; velocity and

displacement at KOT station due to specific event.

Date Time PGA (cm/s2) PGV (cm/s) PGD (cm)

12/10/1992 15:09 2.845E+01 1.45 0.96

Fig. 4 (A) The simulated PGA, (B) the simulated PGV and (C) t

Table 2 Source parameters of the 1992 Cairo earthquake.

Seismic Moment Stressdrop (bar) Radius (km) Area (km)

9.70 · 1017 N m 18.5 5.6 99

The density and shear-wave velocity in the vicinity of the source

(qs = 2.8 gm/cm3, bs = 3.7 km/s (Samy, 2001).

The simulated peak ground acceleration; velocity and displacement

of shear wave are obtained and illustrated in (Table 3) and

Fig. 4(A–C) as follow.
For an oscillator with natural frequency fr, dampingn and V
(for computation response spectra V= 1).

Concerning the fmax value, (Hanks, 1982) applied a maxi-

mum frequency of 15 Hz to the soft surface layers and 25 Hz to
the bedrock. Thus, a value fmax = 20 Hz, average of (Hanks,
1982) assumption, is here applied due to the absence of a

strong motion record in Egypt. It includes the frequencies vital
(up to 10 Hz) and interesting for engineers.

4.2. Model verification

On 12 October 1992 Dahshour earthquake took place at 15:09
local time with a moment magnitude of Mb = 5.9, epicenter of

29.77�N, 31.07�E; and focal depth at 22 km occurring in south
Cairo area. It was the largest event during of the last five dec-
ades. The earthquake was felt over a large area and caused
damage in Cairo big city and several places in north Egypt.

The accelerograph recorded this event at Kottamia very broad
band station (KOT), which is located at latitude 29.93N and
longitude 31.88E. The waveform that is recorded by this sta-

tion is regarded as velocity, this velocity that is recorded by
this station is converted to acceleration by an integration
process.
he simulated PGD from the October 12, 1992, at KOT station.
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Fortunately, this event was recorded by the Kottamia very
broad band station (KOT) of about 75 km distance from the
epicenter. The synthetic and observed seismogram (Kottamia

station) time series acceleration for the main shock of Dahs-
hour earthquake, which is shown in Fig. 3a, was very useful
in the comparison with the simulated seismogram at the same

KOT location site as illustrated in figure which is shown in
Fig. 3b, and Table 1, it has been noted the peak ground accel-
erations of the observed and synthetic acceleographs are

mostly equal and the general waveform is nearly the same.

5. Ground motion simulation at the studied area

In Qalyoub city, we estimated the H/V spectral ratio for each
microtremor observation at the fundamental frequency for 89
Fig. 5 (A) The simulated time history of October 12, 1992, earthqua

history of October 12, 1992, earthquake at the surface in Qalyoub cit
point that distributes in the grid system passing in all area by
spacing 200 and 300 from south to north and east to west,
these estimations consider site effect, by meaning Ao and F

for each site (89 sites selected), distance each site from earth-
quake source and in addition to all parameters such as source,
path applied in SMSIM FORTRAN Programs for Simulating

Ground Motions version 2.3 etc (Boore, 2008).
The stochastic simulation method is applied in the area un-

der investigation in order to predict ground motion of earth-

quake. The source is used to estimate the ground motion in
the area is Dahshour 92 (southwest Cairo) the distance of this
source is different from site to site and in the case simulation of
ground motion on the bed rock the frequency is one and

amplification is one and in case simulation of ground motion
on the surface it takes the value of each site from amplification
and frequency and the distance of each point or site from the
ke at the bedrock in the Nile Qalyoub city, (B) the simulated time

y.



Fig. 6 Simulated peak ground acceleration (PGA) at bedrock at Qalyoub city at the fundamental frequency due to Dahshour 1992

earthquake.

Fig. 7 Simulated peak ground acceleration (PGA) at surface at Qalyoub city at the fundamental frequency due to Dahshour 1992

earthquake.

Fig. 8 Simulated peak ground acceleration (PGA) at bedrock at Qalyoub city at the fundamental frequency due to Dahshour 1992

earthquake.
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source The peak ground acceleration, velocity and displace-
ment represent the output parameters, which are obtained by
the stochastic simulation method as shown in Fig. 5A and B

shows a representative sample of simulated time history at
the selected site.

Representative examples of the simulated time history of

October 12, 1992, earthquake at the bedrock and surface at
the location of selected sites from Qalyoub city are as shown
in Fig. 5A and B. The results reflect clearly the effect of local

site conditions upon the predicted ground motion, the peak
ground acceleration, peak ground velocity and peak ground
displacement are calculated at the bedrock and at the surface
(at the fundamental frequency) at eighty-nine sites at the stud-

ied area by using the stochastic simulation method due to
Dahshour 1992 earthquake and the predicted ground motion,
and the peak ground acceleration, are calculated at the bed-

rock and at the surface (at the fundamental frequency) at
Fig. 9 Simulated peak ground acceleration (PGA) at surface at Qa

earthquake.

Fig. 10 The pseudo accelerations predicted from
eighty-nine sites at the studied area by using the stochastic sim-
ulation method due to Dahshour 1992 earthquake as shown in
Figs. 6–9.

5.1. Response spectra

The pseudo-spectral acceleration (PSA) is an important char-

acteristic of seismic ground motion in earthquake engineering.
Response spectra are defined on the basis of the response of
single degree of freedom damped oscillator to the earthquake

acceleration (Jennings, 1983). The response spectra of an accel-
erogram serve a twofold function characterizing the ground
motion as a function of frequency and providing a tool for

determining earthquake resistant design criteria.
The response spectra are calculated for four selected damp-

ing values at two sites characterized by high ground motion
lyoub city at the fundamental frequency due to Dahshour 1992

October 12, 1992, earthquake, at Qalyoub.
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amplification (on surface) and low ground motion (on bed-
rock), the selected damping values are (2%, 5%, 10% and
20% damped pseudo-acceleration) of the critical damping

for frequencies of 0.1 to 25 Hz simulated for October 12,
1992, earthquake for the selected site at the proposed area of
Qalyoub City as shown in Fig. 10. The presented results could

be used as a basis for designing motion specification of critical
structure and for the nonlinear analysis (structural, site re-
sponse, landslides, and liquefaction).

5.2. Results and conclusion

The current study is one of the trials to simulate the high fre-

quency ground motion produced from the damping earth-
quakes at any areas where there are no recording
instruments. From the engineering point of view the peak
ground acceleration and the response spectrum plays a critical

role in the construction process.
The stochastic simulation method is used to obtain the

acceleration of ground motion at eighty-nine sites in Qalyoub

city distributed at the studied area with the following results:

(1) The sites of high acceleration values are characterized by

high ground amplification factors.
(2) The maximum PGA was found to be 23.5 Gal on the

bed rock and is 79.6 gal on the surface in Nile Delta
Basin and is 21 Gal on the bed rock and is 74.4 gal on

the surface in Qalyoub city.
(3) The distance is affected on the peak ground acceleration

meaning when the distance between the source and site

is short the PGA is high but when the distance between
the source and site is large the PGA is low.

The proposed area of Qalyoub city is characterized by low
to moderate seismic activity and was affected by some felt and
damaging historical and instrumental earthquakes. To assess

the seismic hazard, I used the stochastic method to simulate
the largest damaging earthquake from a possible seismic
source to the proposed site of the city.

The stochastic simulation method was used to simulate the

October 12, 1992, earthquake at the location of selected sites in
the area of Qalyoub city. It was demonstrated that the ground
motion will be considerably amplified by the soil Nile Deposits

and this must be taken into consideration during the construc-
tion of any new buildings in the study area. I concluded that
large modifications of seismic waves are due to variations of

material properties near the Earth’s surface and by both sur-
face and buried topography. It is worth mentioning that some
uncertainty of this work is due to the use, after (Atkinson and
Boore, 1995), the duration function cutoff frequency and geo-

metrical spreading parameter function. These assumptions
were used because of the absence of local strong motion data-
base, necessary for the determination of such functions.

I recommend that the surface layer must be totally removed
before the construction of any new building in the study area
to avoid the ground motion amplification produced by this
Nile deposits. On the other hand, the maximum expected
earthquake, Mb = 6.2, from the seismic source closest to the
city (the seismic source of October 12, 1992, earthquake)

should be taken into consideration before the construction of
the city (Mohamed et al., 2002). Finally, I recommend that a
more powerful earthquake design for the city be applied.
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