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Abstract In light of using laser power in space applications, the motivation of this paper is to use a

space based solar pumped laser to produce a torque on LEO satellites of various shapes. It is

assumed that there is a space station that fires laser beam toward the satellite so the beam spreading

due to diffraction is considered to be the dominant effect on the laser beam propagation. The laser

torque is calculated at the point of closest approach between the space station and some sun syn-

chronous low Earth orbit cubesats. The numerical application shows that space based laser torque

has a significant contribution on the LEO cubesats. It has a maximum value in the order of

10�8 Nm which is comparable with the residual magnetic moment. However, it has a minimum

value in the order 10�11 Nm which is comparable with the aerodynamic and gravity gradient tor-

que. Consequently, space based laser torque can be used as an active attitude control system.
ª 2014 Production and hosting by Elsevier B.V. on behalf of National Research Institute of Astronomy

and Geophysics.
1. Introduction

The Attitude Determination and Control System (ADCS) is to

stabilize the spacecraft against attitude disturbing influences
resulting from the environment. Satellite active attitude
control can be achieved by number of different actuators: reac-

tion wheels, thrusters, control moment gyroscopes or magnetic
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torquers. However, the magnetic torquer is widely used actua-
tors for geostationary satellites, small satellites, and microsat-

ellites. These high-tech devices interact with the Earth’s
magnetic field and create control torque, which can be adjusted
to the required value. Combined with one or more reaction

wheels, they provide all control you need to maintain your
spacecraft’s attitude (Karla, 2009; Vincent, 2010).

Unlike thrusters, magnetorquers are lightweight, reliable,
and energy-efficient. A further advantage over momentum

wheels and control moment gyroscopes is the absence of
moving parts and therefore significantly higher reliability.
However, they require a thoughtful design and careful

assembly.
The main disadvantage of magnetorquers is that the

strength of the magnets should be chosen to be strong enough

to overcome the greatest expected disturbances (as given in
Table 1). A broader disadvantage is the dependence on Earth’s
ational Research Institute of Astronomy and Geophysics.
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Table 1 Worst-case expected disturbance torques for a 1-U

CubeSat at 700 km (Samir, 2009).

The source Torque (Nm)

Aerodynamics 8.7 · 10�10

Gravity gradient 6.8 · 10�10

Solar pressure 3.8 · 10�9

Residual Magnetic Moment 4.5 · 10�7

Total 4.6 · 10�7

Earth

1r

2r

D̂

Sat 2

Sat 1

m̂
n̂

ϑ

Figure 1 The laser intensity delivered from Sat1 to Sat 2.
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magnetic field strength, making this approach unsuitable for
deep space missions, and also more suitable for low Earth or-
bits as opposed to higher ones like the geosynchronous. The

dependence on the highly variable intensity of Earth’s mag-
netic field is also problematic because the attitude control
problem becomes highly nonlinear. It is also impossible to con-

trol attitude in all three axes even if the full three coils are used,
since the torque can be generated only perpendicular to the
Earth’s magnetic field vector (Samir, 2009; Vincent, 2010).

Recently, the possibility of using laser power for space
applications becomes of great interest. There are several
advantages of lasers over other techniques of beamed power;
the laser receiver is the solar array, so no new receiver technol-

ogy is needed. Moreover, space laser beam suffers a less
amount of atmospheric attenuation also it is safe in use where
it cannot produce damage in the satellite surface (El-saftawy

et al., 2007; El-saftawy and Makram, 2004; Geoffrey, 1994;
Khalifa, 2009).

Compared with electrically powered lasers, solar laser is

much simpler and more reliable due to the complete elimina-
tion of the electrical power generation and conditioning equip-
ments. Many authors studied the feasibility of concentrating

and splitting of solar radiation in satellites for laser pumping
by either direct or indirect conversion methods (Yogev et al.,
1996; Geoffrey, 1994; Almeida et al., 2012).

Several researchers have investigated the solar pumped

Nd:YAG and Nd:Cr lasers have been demonstrated with
power levels up to 25 W, and iodine lasers at up to 10 W. Most
lasers, such as the Nd:YAG discussed above, absorb light only

in selected bands. This leads to an inefficient absorption of the
broad-band solar spectrum. A semiconductor, on the other
hand, absorbs all photons with energy greater than the band

gap. Thus, solar pumped semiconductor lasers could have con-
siderably higher efficiencies than other solar pumped lasers.
So, solar pumped semiconductor lasers are thus an excellent

candidate for space-based energy transmission (Geoffrey,
1994).

With the intention of overcoming some disadvantages of
the traditional attitude actuators, the issue of this work is to

investigate the feasibility of using a space solar pumped laser
to produce a torque. Assuming that there is a space station
that fires laser beam toward some low Earth orbit satellites,

the torque is calculated at the point of their closest approach.

2. Laser torque model

2.1. Laser intensity

At far distance of the celestial bodies, the atmosphere is rare-
fied (i.e. the particle density is very low). So, beam spread due
to diffraction is considered to be the dominant effect on the
laser beam propagation. Then the beam intensity is given by
El-saftawy et al. (2007) and Khalifa (2009):

S ¼ P

pD2h2
ð1Þ

where, P is the laser power, h is the laser divergence and D is
the propagation distance.

2.2. The laser force

The total radiant force exerted on a flat non-perfectly reflecting
surface is given by Mc Innes Colin (1999):

�f ¼ SA

C
wm̂ ð2Þ

where,

w¼ 4q0bcos4gþ2ð1þq0bÞ Bfq
0ð1�bÞþa0

efBf�ebBb

efþeb

� �
cos3g

�

þ Bfq
0ð1�bÞþa0

efBf�ebBb

efþeb

� �2

þð1�q0bÞ2
( )

cos2g

#1=2
ð3Þ

where A is the projected area, m̂ is a unit vector directed
through the force direction, C is the speed of light and S is
the radiation irradiance, g is the incident angle, b is the satellite

surface specularity, q0 is the satellite surface reflectivity, Bf and
Bb are the non-Lambartian coefficient of the front and back
surfaces of the spacecraft, respectively, a0 is the spacecraft

absorption coefficient, ef and eb are the front and back surface
emissivity, respectively.

In our case we will consider a solar-pumped laser station,
Sat1, fires laser toward another satellite, Sat2, at the point of

their closest approach. For non-perfectly reflecting surfaces,
the force vector, m̂, is not directed normal to the surface.
But, it inclines by an angle # to the incident direction, D, as

depicted in Fig. 1. Considering the effect of the surrounding
medium on the beam propagation, the force components in
the incident direction will be:

�fD ¼ SA
C

w cos# bD
¼ PoAw

pD3h2
cos#D

ð4Þ
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2.3. The coordinate systems

The geocentric equatorial system with unit the vectors; êx di-
rected parallel to the Earth equatorial plane, êy directed in
the plane that contains the meridian of the sub-satellite point

and êz directed normal to the equatorial plane is used. As
shown in Fig. 1, the incident radiation vector, D; is given by:

D ¼ �r2 � �r1; ð5Þ

where �ri is the satellite position vector which is given by Esco-

bal (1965):

�riðEiÞ ¼ aiðcosEi � eiÞPi þ bisinEiQi ð6Þ

where Ei (i= 1, 2) are the eccentric anomalies, ai are the semi-

major axes and bi ¼ ai
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2i

p
are the semi-minor axes. The

unit vectors of the perifocal coordinate system of the two or-

bits Pi, Qi are given by Escobal (1965):

Pi ¼
cosxi cosXi � sinxi sinXi cos ii

cosxi sinXi þ sinxi cosXi cos ii

sinxi sin ii

0B@
1CA ð7Þ

Qi ¼
� sinxi cosXi � cosxi sinXi cos ii

� sinxi sinXi þ cosxi cosXi cos ii

cosxi sin ii

0B@
1CA ð8Þ

Substitute Eqs. (6)–(8) into Eq. (5). The separating distance

vector is given by:

D ¼ Dxêx þDyêy þDzêz ð9Þ

where

Dx ¼ a2ðcosE2 � e2Þðcosx2 cosX2 � sinx2 sinX2 cos i2Þ
� a1ðcosE1 � e1Þðcosx1 cosX1 � sinx1 sinX1 cos i1Þ
� b2sinE2ðsinx2 cosX2 þ cosx2 sinX2 cos i2Þ
þ b1sinE1ðsinx1 cosX1 þ cosx1 sinX1 cos i1Þ ð10Þ

Dy ¼ a2ðcosE2 � e2Þðcosx2 sinX2 þ sinx2 cosX2 cos i2Þ
� a1ðcosE1 � e1Þðcosx1 sinX1 þ sinx1 cosX1 cos i1Þ
� b2sinE2ðsinx2 sinX2 � cosx2 cosX2 cos i2Þ
þ b1sinE1ðsinx1 sinX1 � cosx1 cosX1 cos i1Þ ð11Þ

Dz ¼ a2ðcosE2 � e2Þ sinx2 sin i2 � a1ðcosE1 � e1Þ sinx1 sin i1

þ b2sinE2 cosx2 sin i2

� b1sinE1 cosx1 sin i1 ð12Þ
2.4. Satellites’ closest approach

The separating distance between the two satellites is given by:

D¼ jDj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�r2��r1Þð�r2��r1Þ

p
¼ ½ða2ðcosE2� e2ÞÞ2

þðb2 sinE2Þ2þða1ðcosE1� e1ÞÞ2þðb1 sinE1Þ2

�2a1a2ðcosE1� e1ÞðcosE2� e2ÞðP1:P2Þ
�2a2b1 sinE1ðcosE2� e2Þ�ðP2:Q1Þ
�2a1b2 sinE2ðcosE1� e1ÞðP1:Q2Þ

�2b2b1 sinE1 sinE2ðQ2:Q1Þ�
1
2 ð13Þ
The problem of close approach can be formulated as fol-
lows Dybczynski et al. (1986):

8
ðE1 ;E2Þ2U

DðE1;E2ÞP 0; ð14Þ

there obviously exists such a value D* that:

D� ¼ inffDðE1;E2ÞjðE1;E2Þ 2 Ug; ð15Þ

where U is the domain of the function D. Every pair

ðE1;E2Þ 2 U satisfying DðE�1;E�2Þ ¼ D� are solutions to our
problem. According to Weierstrass theorem, if U is a compact
set and D is a continuous function over U then D has at least

one minimum value somewhere in U. If U* is the subset of all
pairs ðE�1;E�2Þ; then D�ðE�1;E�2Þ 2 U which is nonempty, if we
restrict conditions on D. The necessary and sufficient condi-

tions of the local minimum existence are:

D01 ¼
@DðE1;E2Þ

@E1

¼ 0; ð16Þ

and

D02 ¼
@DðE1;E2Þ

@E2

¼ 0: ð17Þ

where the roots of Eqs. (16) and (17) must verify the following

conditions:

D001ðE1;E2Þ ¼
@2DðE1;E2Þ

@E2
1

> 0; ð18Þ

D002ðE1;E2Þ ¼
@2DðE1;E2Þ

@E2
2

> 0; ð19Þ

and

D001D
00
2 � ðD0012Þ

2
> 0 ð20Þ

where D0012 ¼
@2DðE1 ;E2Þ
@E1@E2

.
In this work the proposed method tries to find a numerical

solution of the problem of close approach determination. It is

based on performing a successive scanning over the two vari-
ables E1 and E2, for one revolution, to find an initial guess en-
sures convergence to the local minimum. Where, this pair of
(E1, E2) must verify the conditions of the existence of local

minimum at that point, given by Eqs. (18)–(20). Then use this
pair to start the iterations using the generalized method of
Newton – Raphson to locate the closest approach (Khalifa

et al., 2008; Khalifa, 2009).
Computational algorithm

� Purpose: to pick an appropriate guess of E1 and E2 asso-
ciated with the smallest separating distance, using Eqs.
(6)–(13), by successive scanning over the two orbits for

one revolution. Then locate the point of closest
approach, at that revolution, numerically using the gen-
eralized form of Newton Raphson method.

� Computational sequence:

1. Set Eo
2 ¼ 0:0o .

2. Change E1 from 0.0o to 360o with step size of 1o .
3. Calculate r2ðEo

2Þ ¼ r2ð0:0oÞ and r1(0.0
o), r1(0.1

o),

r1(0.2
o), . . ., r1(360

o)using Eqs. (6)–(8).
4. Calculate D(0.0o, 0.0o), D(1o, 0.0o), . . ., and D(360o,

0.0o) using Eqs. (9)–(13).

5. Set Eo
2 ¼ 1o.

6. Repeat steps 2–4.
7. Repeat steps from 1 to 4 by changing Eo

2 from 2o to
360o with step size of 1o.
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8. Select the pair ðE1
1;E

1
2Þ associated with the smallest

separating distance DðE1
1;E

1
2Þ:

9. Repeat steps 1–7 on the neighborhood of the pair
ðE1

1;E
1
2Þ with step size of 0.1o and then select the pair

ðE2
1;E

2
2Þ associated with the smallest separating dis-

tance DðE2
1;E

2
2Þ:

10. Repeat steps 1–7 on the neighborhood of new pair
ðE2

1;E
2
2Þ results from step 9 with step size of .01o and

so on with step size of .001o, .0001o, . . ., ect to reach
the closest approach with the required accuracy.

11. Start Newton Raphson iteration by substituting the

initial values E1(0) and E2(0) which were obtained by
step 10.

12. Terminate the iteration at the required accuracy.

13. CalculateD(E1,E2) withE1 andE2 obtained by step 12.
14. Verifying that D(E1, E2) is the minimum distance by

applying the conditions of local minimum given by
Eqs. (18)–(20).

15. The algorithm is completed.
ˆxe ′

ˆye ′ˆze ′

Laser beam 

A1  

A2

2n

1n

u

u
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Figure 2 The illuminated surfaces of the circular cylindrical

satellite.
2.5. The laser torque

The radiation torque, bN, acting on a spacecraft is given by the
general expression (Beletskii, 1966; Harris and Lyle, 1969;

Wertz, 1978; Zanardi and Moraes, 1999):

N ¼
Z

R� d�f; ð21Þ

where R is the vector from the spacecraft’s center of mass to

the element of satellite projected area dA. The geocentric com-
ponents of laser torque, bN; acting on a spacecraft are given by:

Nx ¼
Po

pcD3h2
w cos#

Z
ðRyDz � RzDyÞdA ð22Þ

Ny ¼
Po

pcD3h2
w cos#

Z
ðRzDx � RxDzÞdA ð23Þ

NZ ¼
Po

pcD3h2
w cos#

Z
ðRxDy � RyDxÞdA ð24Þ

For high laser repetition rate, many laser shots fire toward
the satellite over an interval of time each one of intensity S.

Consequently, the laser force can be considered as a continu-
ous function, so, the total laser torque over an interval of time,
I= t1 � to, is given by:

NI ¼
Z t¼t1

t¼to
Ndt; ð25Þ

where to is the time of the starting laser firing and t1 is the time

of its stop.
In order to evaluate the previous integrals, the vector R

must be determined. So, satellite geometry must be considered.

In the next sections, three particular cases; circular cylindrical
satellite, spherical satellite and satellite of complex shape will
be studied.

2.6. Application of laser torque

2.6.1. Laser torque on circular cylindrical satellite

The position vector of the surface elements can be expressed in
terms of a coordinate system with its origin lying in the
geometric center of the satellite and the vectors êx0 ; êy0 and êz0

as follows:

Rc ¼ q cos/êx0 þ q sin/êy0 þ zêz0 ð26Þ

where q is the radius of the circular base and / is the azimuthal

angle. The position vector, Rc; can be transformed into geo-
centric coordinate as follows:

Rc ¼ Rcxêx þ Rcyêy þ Rczêz ð27Þ

with

Rcx ¼ q cos/þ rðcosX cosðxþ tÞ � sinX sinðxþ tÞ
� cos iÞ ð28Þ

Rcy ¼ q sin/þ rðsinX cosðxþ tÞ þ cosX sinðxþ tÞ cos iÞ
ð29Þ

Rcz ¼ zþ r sinðxþ tÞ sin i ð30Þ

The illuminated surfaces of the cylinder satellite are a circular
flat surface of radius q and an area A1 = pq2 in addition to a
portion r of the cylinder side of height H with an area,

A2 = 2rpqH, as in Fig. 2.
Substituting into Eqs. (28)–(30) and integrating over the

areas A1 and A2, laser torque applied on a cylindrical satellite

is obtained.

2.6.2. Laser torque on spherical satellite

The position vector of the surface elements can be expressed in

terms of a coordinate system with its origin lying in the geo-
metric center of the satellite and the vectors êx0 ; êy0 and êz0 as
follows:bRs ¼ q cos# sin/êx0 þ q sin/ sin#êy0 þ q cos/êz0 ð31Þ

where q is the radius of the sphere, # is the polar angle and / is
the azimuthal angle. The position vector, bRs; can be trans-
formed into geocentric coordinate as follows:

Rs ¼ Rsxêx þ Rsyêy þ Rszêz ð32Þ

with

Rsx ¼ q cos# sin/þ rðcosX cosðxþ tÞ � sinX sinðxþ tÞ cos iÞ
ð33Þ
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Figure 3 The illuminated surfaces of the spherical satellite.

Figure 4 Laser beam propagation outside the Earth’s atmo-

sphere for different distance of propagation.
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Rsy ¼ q sin/ sin#þ rðsinX cosðxþ tÞ þ cosX sinðx
þ tÞ cos iÞ ð34Þ

Rsz ¼ q cos/þ r sinðxþ tÞ sin i ð35Þ
Table 2 Orbital elements of the solar pumped laser station.

Semi-major axis (km) Mean motion Argument of perigee Longitu

6997.26 12.44 328.83o 6.46

Table 3 Space based laser torque affecting on some sun synchrono

Satellite NORD ID Sem

CUTE 1.7 APD II (1U) 32785 699

COMPASS I (1U) 32787 699

SEED (1U) 32791 699

AAUSAT CUBESAT II (1U) 32788 699

DELFI C3 (3U) 32789 698
The illuminated surfaces of the spherical satellite can be con-

sidered as a hemisphere with an area A= 2pq2, as shown in
Fig. 3.

Substituting into Eqs. (33)–(35) and integrating over the

area A, the laser torque applied on a spherical satellite is
obtained.

2.6.3. Laser Torque on Satellite of complex shape

Radiation torque depends basically on the satellite geometry.
For satellites of complex shape, torque calculation is very
complicated. The usual procedure is to split the satellite
surface into number of surfaces. Then radiation torque is

approximated using the following scheme Harris and Lyle
(1969):

1. Approximate each surface by means of simple geometric
shapes (planes, cylinders, cones, spheres, . . ., etc.).

2. Determine the torque applied on each surface indepen-

dently using the above mentioned equations in case of
spherical and cylindrical surfaces.

3. The total torque applied over the whole spacecraft is

obtained by vector sum of all torques applied on each ele-
mentary surface.

However, the above procedure has many difficulties to be

applied. Various factors affecting the computed torque e.g.
changes in the optical characteristics of each surface, bending
of a boom, rotation of solar panel, . . ., etc. cannot be consid-

ered. Consequently, the computed values are not precisely
determining the radiation torque on a spacecraft Harris and
Lyle (1969).

3. Numerical application

Assuming that the solar pumped laser station fires laser beam

of 50 KW power and 0.1 mrad divergence, the laser beam
propagation outside the Earth’s atmosphere is illustrated in
the following figure:

As shown in Fig. 4, the laser intensity has a significant
dependency on the propagating distance. It has a maximum
value �16 W/m2 for propagating distance of about 10 km.
However, it has a minimum value �.009 W/m2 for propagat-

ing distance of about 400 km.
de of ascending node Eccentricity Mean anomaly Inclination

.0145 31.2o 14.8 o

us LEO cubesats.

i-major axis (km) D (km) Torque (Nm)

6.95 11.1 6.5 · 10�9

3.03 110.9 1.8 · 10�9

5.19 119.1 1.4 · 10�9

1.85 238.5 7.6 · 10�11

5.87 482.3 6.7 · 10�9
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Assuming that there is a space station carries a solar-
pumped laser system lie in LEO and at a given time it has
the following orbital elements: Table 2)

In the present work, the laser torque is calculated under the
following postulates:

1. The radiation falls normal to the satellite surface (i.e.
g = 0).

2. The satellite projected area is half of its total area.

3. The cubesat’s thermo-optical properties are
constrained to CalPoly’s specifications (2012).

Based on the previous postulates and applying the algo-

rithm of closest approach at a given time, the laser torque is
calculated for some sun synchronous LEO cubesats and illus-
trated in the following table:

As illustrated in Table 3, the laser torque has a maximum
value in the order of 10�8 which is comparable with the resid-
ual magnetic moment (given in Table 1). However, it has a

minimum value in the order of 10�11 which is comparable with
the aerodynamic and gravity gradient torque (given in Table 1).

4. Conclusion

A new application of utilizing laser power in space is pre-
sented. A simple model of radiation torque affecting on satel-

lites of various shapes is formulated. The model is based on the
use of space based laser which suffers minimum beam attenu-
ation due to its propagation outside the Earth’s atmosphere.
The current numerical test confirms that the laser torque has

a significant contribution on the low Earth orbit satellites.
The laser torque has a maximum value in the order of 10�8

which is comparable with the residual magnetic moment.

However, it has a minimum value in the order of 10�11 which
is comparable with the aerodynamic and gravity gradient tor-
que. So, we can conclude that the laser torque can be used as a

new active attitude control system.
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