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Abstract In this paper we propose a new technique for optical wavelength demultiplexing

(DEMUX) relaying on two phenomena: Goos–Haenchen (GH) shift and continuous refraction

at a graded-index medium interface. In the first case, two light beams are totally reflected at a plane

interface separating two dielectric lossless media. The reflected beams suffer different lateral shifts

(GH shifts) depending on the wavelength; thus accomplishing the required spatial beam separation.

In the second case, the two light beams have different ‘‘turning points” inside the graded index med-

ium; hence, the ‘‘back-refracted” beams are spatially separated. In this paper, we optimized the con-

ditions of operation of such demultiplexing technique. This makes possible the integration of such

technique in ‘‘planar integrated-optics” structures which can be used reliably in optical fiber com-

munication networks.
� 2015 Production and hosting by Elsevier B.V. on behalf of National Research Institute of Astronomy

and Geophysics.
1. Introduction

Wavelength Division Multiplexing (WDM) is the optical
equivalent of Frequency Division Multiplexing (FDM) to elec-
trical signaling. WDM transmits two or more different light

wavelengths in the same optical fiber. Though the process of
multiplexing is reasonably straightforward, demultiplexing is
much more difficult in an optical system. There are many
methods (Elsenpeter and Vete, 2002; Lan, 2007; Makkerjee,

2006; Ellinas et al., 2012) to demultiplex optical signals:
prisms, diffraction grating, arrayed waveguide grating
(AWG), thin-film filters and interferometers. These methods
vary in their relative complexities, reliability and performance.

This is why optical network component manufactures try to
find out simpler and more reliable techniques for demultiplex-
ing, especially dedicated to integrated-optics architecture,

because that architecture can be integrated very easily in fiber
optic networks (the dream of all optical networking engineers).
Consequently, we propose in this paper a novel technique

which can be realized by two different methods as shown in
Fig. 1.

In the first method, the GH shift depends on the wavelength
and hence when two light beams with different wavelengths are

incident at the critical angle on a dielectric interface separating
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Figure 2 Gaussian beam incident at an angle p
2
� h0

� �
where h is

the beam tilt angle.

Figure 1 Optical demultiplexing at a dielectric interface.
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two lossless dielectric media with refractive indices n1 and n2
(n1 > n2), the reflected and the transmitted beams also suffer

from two different lateral shifts. Thus the separation of these
wavelengths is achieved, and we are interested to optimize
the separation angle Dh or DhT of the transmitted beam (due
to diffraction effects) by varying the angle of incidence around

the angle of incidence around the critical value (sin�1(n2/n1)).
In the second method, the rarer dielectric medium n2 is made
graded-index (i.e. n2(x)). Accordingly, the two light beams inci-

dent from the medium n1, vary their penetration depth and
hence reach two different ‘‘turning points” in the graded-
index medium n2(x). We tried different graded ‘‘profiles” to

maximize the separation angle Dh.

2. The beam propagation method (BPM)

To assess and evaluate the performance of the proposed novel

demultiplexer we have to solve a major problem: how to study
the propagation of almost ‘‘realistic” light beams? that is to

say: optical beams with finite ‘‘spatial extension” like Gaussian
beams. Obviously, the interest in Gaussian beams relies on
many facts, because the laser beams radiated from laser

sources are well approximated by Gaussian beams. Also the
fundamental mode in a single-mode fiber is well approximated
by a Gaussian field distribution. One of the most powerful
methods used to study the propagation of light beams in com-

plex media is the BPM (Okamoto, 2006; Obayya, 2011; Feit
and Fleck, 1978; Xu and Huang, 1995). The literature on the
BPM is so extensive (Xu and Huang, 1995; van Roey et al.,

1981; Thylen, 1983), and hence, we shall not expose the details
of that method, but we shall give a brief exposition of that
method. Referring to Fig. 2, the unity amplitude y-polarized

Gaussian beam at z = 0 in the interface coordinate system
(x, z) can be written as follows (Horowitz and Tamir, 1971):

Eyðx; 0Þ ¼ exp ½�ðX� XdÞ cos h0=w�2 � exp½jk1ðx� xdÞ
� sin h0 ð1Þ

where xd is the displacement of the beam axis from the z-axis

(c.f. Fig. 2) and the time dependence e�jxt is suppressed. The
BPM, first introduced by Fleck et al. (1976), relies on the
expansion of Ey(x, 0) as a continuous spectrum of plane waves
(i.e. a ‘‘spatial” Fourier transform). Each component of the
spectrum is made to propagate a small distance Dz in a ‘‘homo-
geneous” (reference) medium having a refractive index n0. The

reference medium is usually chosen arbitrarily in the range
n2 6 n0 6 n1.

The propagation process is accomplished in the Fourier-
domain by a single multiplication of the spatial spectrum with

a phase function (propagator) which will be explained later on.
After the propagation over Dz is performed, we Fourier invert
the ‘‘propagated spectrum” to recover the ‘‘field” after a small

distance Dz. Finally, to take into account the deviation dn(x) of
the actual refractive index distribution n(x) from the value n0,
we correct the ‘‘phase” of the ‘‘propagated” field (after a small

distance Dz) through a simple multiplication by e�jk0dnðxÞ�Dz to

get finally the field after a propagation distance Dz.
This procedure is summarized as follows:

1. Calculate f [Ey(x, 0)], where ‘‘f ” stands for the ‘‘spatial
Fourier transform operation”.

2. Multiply f [Ey(x, 0)] by a propagator operator P.

3. Calculate‘‘f�1” of the propagated spectrum obtained in
step 2.

4. Apply ‘‘Q” on the field obtained in step 3, where Q repre-
sents an operator which takes into account the deviation

of the actual refractive distribution n(x) from the ‘‘reference
value n0”.



Figure 3 Two Gaussian beams at k1 and k2 incident at angles

around the critical value on the interface x = 0.

Figure 4 Transverse separation of the transmitted beams as

function of beam tilt angle h0.

Figure 5 Types of graded indices in the region x < 0.

Figure 6 Gaussian beams propagating in graded index medium.
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Hence, the procedure described by the previous four steps

allows the calculation of Ey(x, Dz) once Ey(x, 0) is known.
This means that this procedure can be repeated to calculate
the total field at certain distance Z once the initial field at
z = 0 is known. The details of the procedure are outlined

in Appendix A.

3. Results for plane interface

The situation depicted in Fig. 1(a) is considered. Two Gaus-
sian beams at wavelengths of 1.55 lm and 1.33 lm are incident

at the angle p
2
� h0

� �
where h0 is the tilt angle of the beams as

shown in Fig. 3. The angle of incidence is varied in close vicin-
ity around the critical value sin�1(n2/n1) where we take

n1 = 1.5 and n2 = 1. The peaks of the transmitted beams at
the end of the propagation distance z0 are separated by a dis-
tance DX0 due to the wavelength dependence of the GH shift,

and hence its impact on the transmitted beams can be
explained with reference to Fig. 3 as follows.

The spectral components (i.e. the plane wave components)
of the Gaussian beams at k1 and k2 have two parts: below the

critical angle hc = sin�1(n2/n1) and above hc. The components
below hc will constitute the transmitted beams at k1 and k2,
while those at and above hc will constitute the reflected beams.

We varied the angle of incidence p
2
� h0

� �
around hc and deter-

mined DX0 after z0 = 3000 lm (the total propagation

distance).
Fig. 4 shows that the peak of DX0 = 34 lm occurs at a tilt

angle h0 = 47.95�; hence, the optimal transverse separation

distance DX0 is – as expected – close to h0 = 48.19� (which is
corresponding to hc = sin�1(1/1.5) = 41.81�). This agrees with
the explanation given above.

4. Results for graded-index interface

The situation depicted in Fig. 1(b) is considered where n2(x) is

a graded-index distribution as shown in Fig. 5. The beam
width W is taken to be equal to 10 lm and xd = 20 W (c.f.
Figs. 1(b) and 2).

The exponential profile n2(x) is taken as

n2ðxÞ ¼ n1 e
ð0:0028xÞ � 2000 lm 6 x < 0 ð2Þ
where n1 = 1.5 and x is in lm and extends in the –ve direction.

The linear profile is taken as

n2ðxÞ ¼ mxþ n1 � 1500 lm 6 x < 0 ð3Þ
where

m ¼ n1 � n2
1500 lm

Is the straight line slope ðn1 ¼ 1:5; n2 ¼ 1Þ

And finally, the quadratic profile is taken as

nðxÞ ¼ n½1� ðaxÞ2� � 2000 lm 6 x < 0 ð4Þ



Figure 7 Variation of the transverse separation distance as function of the incidence angle for the (a) linear, (b) quadratic and

exponential (c) profiles.
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where X is in lm and a= 385 * 10�6 to guarantee that n2(x)
varies from 1.5 at the interface x = 0–1 at x = �1500 lm
(the half width of the computational window). Fig. 6 shows
a sample of the BPM calculations corresponding to the linear
profile. The figure reveals the ‘‘continuous refraction” of the

two beams as they propagate in the graded index medium until
the ‘‘turning points” are reached, where the two beams propa-
gate back to the homogeneous medium n1 where they are
clearly separated.

As we mentioned before, we searched for the optimum
angle of incidence which results in a maximum transverse sep-
aration distance Dx0. Fig. 7 shows that there is always an opti-

mum angle of incidence which results in maximum transverse
separation distance Dx0 as expected earlier.

5. Conclusion

In this paper we demonstrated theoretically the feasibility of a
novel technique for optical Wavelength Division Multiplexing

(WDM). To our knowledge, we think that this is the simplest
technique in the existing literature on WDM. The technique
can be realized reliably in planar integrated optic structures,
and this will be more preponderant than many other existing
techniques in such structures, since the integration of our pro-

posed method in semiconductor laser diode technologies and
high speed optical detectors is straightforward. The realization
of the proposed method can be extended to low loss active sub-

strates and this can open the door to many devices extremely
useful in optical switching, optical computing and optical
memories.
Appendix A

The problem under consideration is invariant with respect to

the y-coordinate; consequently @2

@y2
and the scalar wave equa-

tion for Ey takes the following form:

@2

@x2
þ @2

@z2
þ k20n

2ðxÞ
� �

Ey ¼ 0 ðA1Þ
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where n(x) is the refractive index distribution which is the func-

tion of the transverse coordinate: x. Eq. (A1) can be written as

@2Ey

@z2
¼ �½r2

t þ k20n
2ðxÞ�Ey ðA2Þ

where r2
t is the transverse Laplacian @2

@x2
. The coefficient of Ey

in the right hand member of (A2) is an operator which depends

only on the transverse coordinate ‘‘x” (transverse to the direc-
tion of propagation ‘‘z”) and hence, a formal operator solution
of (A2) for the forward propagation field at z = Dz in terms of
its value at z = 0 is

Eyðx;DzÞ ¼ fexpðiDzRÞg � Eyðx; 0Þ ðA3Þ
where a time dependence exp(�ixt) is assumed and R is the

operator:

R ¼ ½r2
t þ k20n

2ðxÞ�1=2 ðA4Þ
If n(x) is denoted shortly by n, then the operator R can be writ-
ten as

R � r2
t þ k20n

2ðxÞ� �1
2 ¼ r2

t r2
t þ k20n

2
� �1

2

h i.
þ k0n

n o
þ k0n

ðA5Þ
If n in the dominator of the first term in the right-hand mem-
ber of (A5) is replaced by a certain reference value n0 where n2 -
6 n0 6 n1 then the last equation can be written as

ðr2
t þ k20n

2Þ
1
2 � fr2

t =½ðr2
t þ k2Þ

1
2 þ k�g þ kþ k½ðn=n0Þ � 1�

ðA6Þ
where k= k0n0. The approximation in (A6) is valid if the max-
imum deviation Dnmax(x) of n(x) from the reference value n0
satisfies the following criterion:

jDnmaxjðDz=k0Þ sin2 hmax ðA7Þ
where hmax is the angle between the direction of the highest sig-
nificant plane wave component in the spatial spectrum of the
total propagation field and z-axis.

If Ey(x, z) is written as

Eyðx; zÞ ¼ eyðx; zÞ � expðikzÞ ðA8Þ
then, apart from a constant phase factor exp(ikDz), direct sub-
stitution from (A8) into (A3) gives

eyðx;DzÞ ¼ fexp½iDzðSþ k0dnÞg � eyðx; 0Þ ðA9Þ
where dn= n(x) � n0 and ey(x, 0) is the initial field distribution
at z = 0. The operator S is defined as

S ¼ r2
t =½ðr2

t þ k2Þ1=2 þ k� ðA10Þ
The exponent in the right-hand member of (A9) is in fact the
product of two operators:

½expðiDzSÞ� � ½expðiDzk0dn0� ðA11Þ
These operators do not commute; hence, an approximation is

indispensable to evaluate the right-hand side of (A9). It can be
shown that to second order in Dz, Eq. (A9) can be written in a
symmetric split-operator form as

eyðx;DzÞ ¼ fP �Q � Pg � eyðx; 0Þ þOðDzÞ3 ðA12Þ
where O(Dz)3 is a negligible term of the order of (Dz)3 and P
and Q are the two operators:
P ¼ exp½iðDz=2ÞS� ðA13Þ

Q ¼ expðiDzk0dnÞ ðA14Þ
The operation {P} _s ey(x, 0) represents the propagation of the
initial field ey(x, 0) for a distance equal to half the step size

Dz/2 in a homogeneous medium having a constant refractive
index n0, i.e. it is equivalent to solving the Helmholtz wave
equation:

@2

@x2
þ @2

@z2
þ k2

� �
Ey ¼ 0 ðA15Þ

with Ey(x, 0) as an initial condition at z = 0. Therefore
advancing Ey(x, 0) by repeated application of (A12) allows
us to obtain the total propagating field Ey(x, 0) at any distance

z once the initial field is known. The operation {P} _s ey(x, 0) is
easily performed in Fourier space because the spatial Fourier
transform of {P} _s ey(x, 0) can be written as

FfP � eyðx; 0Þ ¼ Wðkx; 0Þ � expfiDz=2Þk2x=½ðk2 � k2xÞ
1=2 þ k�g

ðA16Þ
where W(kx, 0) is the spatial Fourier transform of the initial
field ey(x, 0), i.e.

Wðkx � 0Þ ¼
Z 1

�1
eyðx; 0Þ � expð�ikxxÞdx ðA17Þ

Thus, advancing the initial field for a distance equal to half of
the propagation step Dz/2 by performing the first operation
{P} _s ey(x, 0) in Fourier space (via (A16)), then returning back
to the ordinary (x, z) plane by Fourier inversion to take into

account the deviation of the actual refractive index distribution
n(x) from the reference value n0 we multiply the propagated
field by the correcting operator Q defined in (A14). Then, again

the propagation process over the other half Dz/2 of the prop-
agation step was performed. Repeated application of these
processes allows us to calculate the total propagation field at

any distance z. The Fourier transform is calculated numeri-
cally from the sampled field values at ‘‘N” discrete points xm
where m = 1,2, . . . ,N, i.e. a Discrete Fourier transform
(DFT) which is calculated by the Fast Fourier Transform algo-

rithm (FFT). Accordingly, the discretized version of (A17) is
written as

Wðkxm; 0Þ ¼
XN=2

j¼�ðN=2Þþ1

eyðjDx; 0Þ � expð�ikxmjDxÞ ðA18Þ

where the spacing Dx between the samples of the field values is
calculated from

Dx ¼ L=N ðA19Þ
where ‘‘L” is the length of the computational region along the

x-axis. The variable of the DFT (the transverse wavenumber)
Kxm is given by

kxm ¼ 2pm=L ðA20Þ
From (A19) and (A20), we can write (A18) as

Wðkxm; 0Þ ¼
XN=2

j¼�ðN=2Þþ1

eyðjDx; 0Þ � expð�i2pmj=NÞ ðA21Þ

The propagation process between z = 0 and z = Dz can be
summarized as follows:
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1. Calculating the initial spectrum Wðkxm; 0Þ from field values

eyðjDx; 0Þ at N discrete points using the FFT algorithm.

2. Propagating the initial spectrum over a half step Dz/2 in the

Fourier domain using (A16).
3. Fourier inverting the propagated spectrum using the

inverse FFT algorithm to recover the uncorrected field after

a half step.
4. Making the phase correction by multiplying the uncor-

rected field with the operator Q.

5. Repeating the propagation process over the half of the
propagation step as described in the first two steps to
obtain finally the field at z= Dz.

The previous scheme is repeated until we reach any desired
propagation distance Ztot. A crucial question regarding the
spatial sampling interval Dx is as follows: how to choose it?

It is known that as the sampling interval Dx decreases, the res-
olution of the spatial Fourier spectrum is enhanced. This
means that higher spatial frequencies in the spectrum can be

‘‘viewed”, i.e. the ‘‘fine details” of the field are enhanced.
The spectrum of the incident field is centered around kxi = -
sinhi, and its maximum significant width is Dkxi ¼ 4 cos hi=W
and hence the maximum deviation from kxi is �2 cos hi=W.

From (A20) the maximum value of the transverse
wavenumber Kxmax in the DFT corresponds to m= N/2, from
(A19) we can have

kxmax ¼ p=Dx ðA22Þ
Taking into account the maximum deviation of Kx around Kxi,
an acceptable for the maximum value of the transverse
wavenumber is

kxmax ¼ kxi þ ð2 cos hi=WÞ�
From (A22), we deduce

ðp=DxÞ ¼ kxi þ ð2 cos hi=WÞ ðA23Þ
This means that the sampling interval Dx should not exceed
the upper limit p=½kxi þ ð2 cos hi=WÞ�; otherwise, the high spa-

tial frequencies in the spectrum would not be ‘‘viewed”, i.e. the
‘‘fine details” of the field would be lost. Thus an acceptable
upper limit on the sampling interval Dx is
Dxmax 6 p=½kxi þ ð2 cos hi=WÞ� ðA24Þ
Thus the actual sampling interval Dx must be less than Dxmax,
for example 0.5–0.25 of that value. Finally, it is worthy to point

out that the propagating field that reaches the boundary of the
computational window whose width is ‘‘L”, will appear as a
fictitious field reflected from the boundary of that window
and cause aliasing. To prevent this numerical problem, an ‘‘ab-

sorber” is put near the edges of the computational window. A
wide variety of absorbers exist and are extensively used. We
used a ‘‘Hanning” truncation function as an absorber, which

is defined as

AðxÞ ¼ 0:5f1� cos½2pðx� xdÞ=L�g 0 6 x 6 L ðA25Þ
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