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previous work.

In this work, the advection-diffusion equation was solved in two dimensions to calculate the normalized
crosswind integrated concentration by Laplace technique. Considering that the wind speed is constant and we
have two models of the vertical eddy diffusivity, one depends on downwind distance and the other model
depends on vertical distance. A comparison between our proposed two models, Gaussian, previous work and
observed data measured at Copenhagen, Denmark, have been carried out. One finds that there is a good
agreement between predicted (2) model and the observed concentrations than predicted (1), Gaussian and

From the statistical technique, one finds that all models are inside a factor of two with observed data.
Regarding to Normalized mean square error (NMSE) and Fraction Bais (FB), proposed model (2) is performance
well with observed data than the predicted (1), Gaussian and previous work in unstable condition.

1. Introduction

It is very important to be aware of how contaminants are dispersed
through the atmosphere. Unfortunately, Air pollutants influence di-
rectly or indirectly on man and environment. Essa and El-Otaify (2008),
Alharbi (2011) discussed the dispersion of pollutant mainly depends on
meteorological and topographical conditions. In order to understand
the dispersion of contaminants in the atmosphere we should study
physics that describes the transport of these contaminants in the at-
mosphere in different boundary conditions. Logan (2001), Mazaher
et al. (2013), Scott and Gerhard (2005), Essa et al. (2014) and Tirabassi
et al. (2010) studied advection-diffusion equation which depends on
Gaussian and non-Gaussian solutions.

Amruta and Pradhan (2013) solved advection-diffusion equation
under various circumstances and using various methods.

In this work we solved the advection-diffusion equation in two di-
mensions to obtain normalized integrated crosswind concentration
using Laplace technique. Two models of the vertical eddy diffusivity
were developed, considering constant wind speed. One of them depends
on downwind distance and the other depends on vertical distance.

Comparisons between them, Gaussian, previous work (Sharan and
Modani, 2006) and observed data measured at Copenhagen, Denmark
were carried out (Gryning and Lyck, 1984, Gryning et al. 1987).

2. Mathematical models

Diffusion equation is the most important in studying of pollutants
dispersion into the atmosphere by using the gradient transport theory,
this diffusion equation of pollutants in air can be written as (Tiziano
and Vilhena, 2012, Tirabassi et al., 2008, 2009):

ax ay\ 7 ay dz\ "oz (€9)]

where u is the wind speed (m/s), c(x,y,z) is the concentration of pol-
lutant (g/m3), Ky, k, are the eddy diffusivities in lateral and vertical
direction respectively.
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2.1. First model

In this model, one supposes that the vertical eddy diffusivity is a
function of downwind distance i.e. k, = k(x). Integrating equation (1)
with respect to y from —ootooo, then:
c(xyz)dy

9 poo ., dc(xyz) ~ 92 poo
u— [ copardy = S R F = S

(2)

By supposing that:

S vy = ,x2) 3)

One gets that:

00

dc (xy:2)

k
Yy

4

By substituting from Egs, (3) and (4) into Eq. (2), one gets:

dcy(x,2)
0z

acy (x,2) _ o)

u °
0x 0z

[k(x)

)

In first case the eddy diffusivity is supposed to be constant as a
function of x.

8%, (x,2)

Ocyea) _
" B az?

0x

k(x) )

Eq. (6) is solved under the boundary conditions:

1) ¢y(0,2) = %5 (z—hs), whereh; is a stack height
(i) Cy(x,Z) =0atxg— o
(iii) k; 2> =0 atz =0z

where z; is the mixing height.
Taking k (x) = aiix, where « is the turbulence parameter such that:
ow

2
a= ( =), ow is the vertical velocity standard deviation (Moreira et al.,
2014; Essa et al., 2007; Torbern, 2012, Pramod and Sharan, 2016).

1§}

k() = Doy
u

Taking Laplace transform on x as follows:

¢(s,z) = ‘/0‘00 ¢, (x,z)e dx

@)
Eq. (6) becomes:
) aCy _sx 0 O’ﬁx aZCy Csx
o= [ S e ®
Integrating Eq. (8), one gets:
~ o2 8%C,(s,z)
—ucy(0,2) + sut,(s,z) = S—Zgizz ©
Condition (i) is applied in Eq. (9) then.
2 2%
%6 cy(s,z)_ - _ _
w2 sucy(s,z) = —Qd(z—h) 10)

Now applying Laplace transform on z one gets:

2 32
) o2 0%C,(s,z) ) - o
‘/0. e W VP e ./0‘ sue g, (s,z)dz = — ./0‘

su 072 ePQ5 (z=hy)dz

(€8]

1§}

o | L ¢y (s,0)
;[pzcy(s,p)—pcy(s,o)— .

]‘”s?y(s,p) =-Q 7 e6(z-h))dz

12)
After application the condition (iii), Eq. (12) becomes:
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2
g, [~ It
2 [p28 (5.p)pe, (5.0) s (5.p) = —Qe 7

(13)
ey (5.0) "
~ ¢, (s,0)p o—Phs
B op) = 2 N
w2 W 42
(Ep _”S) (Ep _”S) (14)
Y cy(s0)p  QePhs
6(sp) = 5=
(pz_ﬂ) (pz_ﬂ)
o o (14
FNy(s,p) = ¢,(s,0)F (s,p)—Qe PG (s,p) (15)
. 2
where F(s,p) = S Pu2s2 and G(s,p) = LZ‘Z”SZ
T T
Take the inverse of Laplace transform on  “z”

e, ()2} = T,(s2)

¢, (s,0 ; Y ; ;
2,(s2) = % [e8ts 4 o] - QO [odteomgSteh | ey

su
(16)
where H is a Heaviside function.
Let R, = %
ow
~ & 60) L R Q
Z) = ———— n% 4 p~RnZ]—_=_ Ry (z—hs) _ p—Rn(z—hs) H(z—h
Cy(s,2) 5 [e e~ fnz] R, [e € 1H (z—hy) a”n
%,(52) = ¢, (5.0)coshRz—-Z sinhRy (z—hy) +H (z—hy)
7 R, (18)
Using the boundary condition (iii) one gets:
kzéﬁy (s,2) = 0 at z = z; then:
d . . Q
_Cy(S:Z) = Rncy(S:O)SlnhRnZ__RnCOShRn (Z_hs)H(z_hs)
(3Z Rn
Q . )
——=sinhR,(z—h;)—H (z—h
R, sinhR, (z—hy) % (z—h) (19)
6 (0Sinh(R,Z) = cosh(Ra(zr—h)VH (i) 20
,(5.0) = L OMRel& )
R, sinh(R,z;)
cosh® (z;—hy)
Cy(S,O) = Ugwlsuiow
o s1nhs—uz,- (21)
Substituting from Eq. (21) in Eq. (18) one gets:
cosh® (z;—hy)
C(s2) = Ug%cosh(a—wz)—agsinha—w(z—hs) *H (z—hy)
ﬁ smhazi Su S—L” Su
(22)

At ground level (i.e. z = 0), H (z-hy) = 0, the crosswind integrated
concentration can be written as follows:

0 coshi—“u” (zi—hs)

Iw
su

¢, (s,0) = atz=0

sinh2¥z;

su

By using Gaussian quadrature formulas then:
¢, (x,0) 1 COSh;Tiiv(Zi—hs)

N=8
> %)
il — "
Q X s
Xy

i=1 W

N usj
sthzi (23)

where N is the number of quadrature points. a;ands; is the Gaussian
quadrature parameters.

2.2. Second Model

In the second model the eddy diffusivity is influenced by the vertical
height (z), and then Eq. (6) can be written as:
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azcyn (x,2)

822

9cy, (x.0)

A =k, (Z)

@4

Advection—diffusion equation for non-homogeneous turbulence can
be solved according to the dependence of eddy diffusivity “k” and wind
speed profile “u” on the height variable (z). Therefore, to solve this
problem by the Laplace transform technique, a stepwise approximation
have been performed of these coefficients discretizing the height z; of
the PBL into N sub-intervals in a manner of inside each sub-region, k (z)
and u (z), assuming the following average values:

1 Zn+1
kn = kn(z)dz
" Zn+1—%n '/Z‘" "
1 2n+1
u, = u(z)dz
" Zn+1—%n ‘/;”
for n = 1:N.

Applying the Laplace transform on x under the boundary condition:
a- Cyp 0,zp) = %5 (Zn_hs)

dcyn
b- k,&z)# =0atz, =0z
Then the Eq. (23) can be written as:

© Odc o 0%
f u—2re=s%dx = kn f —yz"e’s"dx
0 Ox 0 0z, (25)
Integrating and substituting in the Eq. (25), one gets:
azcyn (s z)

ky,
O 2 (26)

—ucy, (0,z) + scy, €(s,2) =

Applying the boundary condition (a) one gets:

0%¢, (s,z
#_S_’“‘gyﬂ (s,2) = —25(Zn—hs)
0z, k, k, 27)
Now applying Laplace transform on z then:
~ acy, (s,0) usz
¢y, (5,p)— 0)——2 = ——<ePhs
p*¢y, (s,p)—pc,, (s,0) P ), (S:p) = . Q- 28)
Substituting the condition (b), Eq. (28) becomes:
~ ¢y, (s,00p e~Phs
CYn(S’P) = y 2 us Q 2 us
( _E) kn(p —k*n) (29)
%, (50) = ¢y, (SO F (5.p)—-Le PG (s5,p)
Yn n k, (30
where F(s,p) = = ,ﬂ andG (s,p) = 7,,3)
kn k
Taking the inverse of Laplace transform on “z”
i.e.L7{(C)(s,p).z} = Gy, (5,2)
c _ [su
), (s,2) = (S )[ \kn +e anz]
[SU (o py =[S (ppe
_Q Jkn o\ o GHO_ =\ [l @) | (—hy)
2k, \ su (31
Let R, = \/;I and R, = /suk,
- ¢y, (s0) . Ru(z—hs)_ p—Ru(z—h
Cyn(S,Z) = T[e nZ 4 e n(@=hs)_e=Rn@=h) | H (z—hy)
(32)
~ Q .
Cy,(s,2) = ¢y, (s,O)coshan—R—asmhR,,(z—hS) «H (z—hy) (33)
Applying the boundary condition (b) one gets:
k,,(z)%ﬁyn (s,2) = Oat z = z; then:
+2),(s2) = Rncyn (5.0)sinhR,z—=R,coshR, (z—hy) H (z—hs)—
Q
—R,sinhR,(z—h, H h
R, RSt (z— ) (z—hy) (34)
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¢y, (50)sinh(R,2;) = R%cosh(Rn (2—hs))H (2i-hy) a5

Q coshR, (zi—hs)

¢y (5,0) =
(&0 R, sinh(R,z;)
su .
e (50 ) cosh E(Z' hy)
e suk, sinh [

(36)
Substituting from Eq. (36) in Eq. (33) then:

cosh \/21 (zi—hs) 0
i coshR,z——sinhR, (z—hy) *H (z—hs)
sinh i—” Zi a

¢, (52) =
on suk,

Then at the ground level (i.e. z = 0), the following equation de-
scribes the crosswind integrated concentration as:

cosh \/ij (zi—hy)

¢, (s,0) = z=0
n k . su
suk,  sinh (37)
By using Gaussian quadrature formulas (eight root), one gets:
Siu —
cyn(x,Z) ZS: (s,) 1 cosh, e (Z, hs)
ukn (2)si i 3!“
=1 Jeme s (38)

Taking the eddy diffusivity function of (z) in the form (Degrazia
et al., 1997):

wo2{2) 1) [ es(-ommen()

where w, is the convective velocity scale, z; is the mixing height and z is
the vertical height.

kn(2)

w,h (39

3. Results and discussion

The used data was obtained from experiments carried out under
unstable condition at the Northern part of Copenhagen, Denmark,
(Gryning and Lyck, 1984, Gryning et al. 1987). Table 1 shows com-
parisons between observed and predicted normalized integrated cross-
wind concentrations under unstable conditions using our predicted
models (1 & 2), previous work (Sharan and Modani 2006) and Gaussian
model. Results show that our predicted two models performance well
with the observed data with different degrees of accuracy (see Table 2).

Fig. 1 Shows that the normalized crosswind integrated concentra-
tion values for predicted one and two, previous work (Sharan and
Modani, 2006) and Gaussian predicted models and the observed via
downwind distance.

Also Fig. 2 shows that the proposed normalized crosswind in-
tegrated concentrations values of the predicted (1) and (2), previous
work (Sharan and Modani, 2006) and Gaussian models via the observed
values. From these two figures, one finds that there is agreement be-
tween the predicted (2) of normalized crosswind integrated con-
centrations with the observed values than predicted (1), Gaussian and
Sharan model because the predicted (2) depends on the vertical height
while the predicted (1) depends on the downwind distance only. Also
the, Gaussian and previous work (Sharan and Modani 2006) are inside a
factor of two

4. Model evaluation statistics

Comparisons between predicted and observed results were carried
out using statistical method (Hanna, 1989). The standard statistical
measures that characterize the agreement between prediction
(Cp = Cprea/Q) and observations (C, = Cops/Q):
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Table 1
Comparison between predicted and observed crosswind-integrated normalized concentration with the emission source rate at different boundary layer height, downwind distance, wind
speed, scaling convection velocity and distance for different runs.

Run No.  Date PG Stability z; (m) w(ms™') Uy (ms™')  Distance (m) C, /Q (10~ * sm™?) Model assessment

Observed Predicted (1) Predicted (2) Previous work® Gaussian

1 20-9-78 A 1980 0.83 2.1 1900 6.48 4.6 9.64 4.62 5.16
1 20-9-78 A 1980 0.83 2.1 3700 2.31 5.5 1.57 2.30 2.52
2 26-9-78 C 1920 1.07 4.9 2100 5.38 1.04 3.64 3.18 2.29
2 26-9-78 C 1920 1.07 4.9 4200 2.95 2.9 4.12 1.58 1.18
3 19-10-78 B 1120 0.68 2.4 1900 8.20 2.03 8.09 5.66 4.51
3 19-10-78 B 1120 0.68 2.4 3700 6.22 3.91 4.03 2.88 2.65
3 19-10-78 B 1120 0.68 2.4 5400 4.30 3.91 7.82 2.21 2.58
5 9-11-78 C 820 0.71 3.1 2100 6.72 1.25 5.02 4.81 3.63
5 9-11-78 C 820 0.71 3.1 4200 5.84 3.08 6.19 2.43 2.44
5 9-11-78 C 820 0.71 3.1 6100 4.97 3.22 6.51 2.00 241
6 30-4-78 C 1300 1.33 7.2 2000 3.96 0.37 2.27 2.63 1.63
6 30-4-78 C 1300 1.33 7.2 4200 2.22 2.19 2.74 1.28 0.82
6 30-4-78 C 1300 1.33 7.2 5900 1.83 2.52 2.82 0.90 0.68
7 27-6-78 B 1850 0.87 4.1 2000 6.70 0.78 4.71 4.16 2.51
7 27-6-78 B 1850 0.87 4.1 4100 3.25 2.72 2.58 2.03 1.17
7 27-6-78 B 1850 0.87 4.1 5300 2.23 2.97 2.66 1.56 0.79
8 6-7-78 D 810 0.72 4.2 1900 4.16 0.16 4.61 4.87 4.20
8 6-7-78 D 810 0.72 4.2 3600 2.02 1.57 2.0 2.74 2.80
8 6-7-78 D 810 0.72 4.2 5300 1.52 2.25 2.12 1.84 2.18
9 19-7-78 C 2090 0.98 5.1 2100 4.58 0.58 3.49 3.44 2.20
9 19-7-78 C 2090 0.98 5.1 4200 3.11 2.35 3.96 1.74 1.13
9 19-7-78 C 2090 0.98 5.1 6000 2.59 2.69 1.83 1.19 0.81

2 Sharan and Modani (2006).

N, _
Table 2 . . . 1 ol (Coi—Co)
Comparison between predicted (1), predicted (2), Sharan and Gaussian models according Correlation Coefficient(COR) = N_ E (CPi_CP) X (U—O'
to standard statistical Performance measure. m =1 p-o

Models NMSE FB COR FAC, Cp
Factor of Two(FAC2) = 0.5 < — <20
Predicted 1 0.94 0.55 -0.01 0.72 Co
g:::zidvforka 8:11*; g:zg g:;g (1):23 where o, and o, are the star.ldar.d deviations of predi.cted (e anfi ob-
Gaussian model 0.56 0.58 0.69 0.59 served C, normalized crosswind integrated concentration respectively.
Over bars indicate the average over all measurements. For a perfect
2 Sharan and Modanim (2006). model NMSE must be = FB = 0 and COR = FAC, = 1.
From the statistical method, one finds that all models are inside a
12 factor of two with observed data. The correlation of predicted model
=fi=observed gaussian (2), Sharan model and Gaussian model and Gaussian model equal (0.72,
10 —se=sharan —=predict1 0.80 and 0.69 respectively) and predicted model (1) equals (—0.01).
Regarding to NMSE and FB, predicted model (2) is performance well
predict 2 with observed data than the predicted (1), Gaussian and Sharan models

in unstable condition. One concludes that the predicted model (2) is
performance well with observed normalized crosswind integrated
concentration than predicted (1), Gaussian and previous work (Sharan
and Modani, 2006).

5. Conclusions

Ry

Normalized concentration (10 s/m?)
()]

The predicted models (1 & 2) normalized crosswind integrated
concentration of air pollutants was obtained by solving diffusion

coboocooococboococb0c000000 0 equation in two dimensions using Laplace technique then, using
O OO 00000000000 00000 0o o . . . . PR
a5 aAnREIIS s agsreeass Gaussian quadrature formulas. Considering that the eddy diffusivity is a

Downwind Distance (m) function in downwind distance (proposed 1) and depends on the ver-
tical distance (predicted 2) in unstable case. One finds that there is a
good agreement between predicted model (2) and the observed con-
_ centrations than predicted (1), Gaussian and. previous work (Sharan
iy S and Modani, 2006).

0.5(Co + Cp)l From the statistical method, one finds that all models are inside a
factor of two with observed data. Regarding to NMSE and FB, predicted
models (2) is performance well with observed data than predicted (1),
the Gaussian and Sharan models in unstable condition. One can con-
clude that, our predicted model (2) is performance well with the ob-
served concentrations than predicted (1), the previous work (Sharan

Fig. 1. The variation of the predicted and observed models via downwind distances.

Fraction Bias(FB) = 0

(Cp_co)z

Normalized Mean Square Error(NMSE) = ——
(CpCo)

13
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(s/m?)

Predicted normalized concentration

1 2 3 - )
Observed normalized concentration (s/m?)

# gaussian
M sharan

A predict 1
< predict 2

6 7 8 9

Fig. 2. The variation of the four predicted models via observed concentrations.

and Modani, 2006) and Gaussian model.
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