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A B S T R A C T

In this work, a dynamical system of four bodies is constructed. The forces which govern the motion are mutual
gravitational attractions of the primaries, and radiation pressure force emitted from the more massive body. The
equations of motion for the four bodies have taken into account the radiation pressure. We have deduced that
these equations can be solved by Laplace transformations; the eigenvalues are obtained to study the motion
about the libration points which are taken from the classical method, then the stability around the libration
points is studied. The results obtained are presented. We remark that this model has special importance in
astrodynamics to send spacecraft to stable regions to move in gravitational fields for some planetary system.

1. Introduction

In space dynamics, there are several systems like two-body, three-
body, four- body, and N-body problems under considerations. It is very
important for the dynamics of binary and multiple stars as well as the
planetary systems. The notation of the three-body problem in different
forms like restricted three-body problem (RTBP), restricted four-body
problem (RFBP) may be considered as an extension either two or of
three-body problem. In this research, the motion of a spacecraft or sa-
tellite in the Earth-Moon system is studied as a simple example of RTBP
in space. The restricted four-body has many possible uses in the dy-
namical system, for example, the fourth body is very useful for saving
fuel time in the trajectory transfers in the restricted four-body problem
(Machuy et al., 2007). The masses of these bodies compared to each
other are considered, and its motions are considered under their mutual
attraction. A few years ago, the planar circular restricted three-body
problem was described by Murray (Murray, 1994). Kalvouridis
(Kalvouridis et al., 2006) discussed the effect of radiation force due to
primaries in the restricted four-body problem using Radzievskill's
model and noticed that there are some variations in the result which are
unstable for all values of the parameters assumed by him. Also, Reena
Kumari (Kumari and Kushvah, 2013) studied the equilibrium points in
the restricted four-body problem with solar wind Drag. Jules Verne
(Verne, 2008) mentioned that the solar radiation pressure is used as a
motive force for solar sailing. The Laplace Transform method is con-
sidered as one of the important methods to treat this problem.

It is well known that the Laplace Transform and its inverse help to
obtain a direct solution for the ordinary differential equations depends

on the algebraic operations (Dawkins, 2007; Elsolts, 1970).

2. Equations of motion

The motion of the fourth body is studied, where its mass m is very
insignificant compared with the masses of the other three-bodies and
m3 > m1 > m2≫m. Fig. 1 illustrates the geometric of the problem,
r1, r2 and r3 are the position vectors from m1, m2 and m3 to m re-
spectively. The origin is considered at the center of mass of m1 and m2

which are called the primaries. The masses of the Earth, the Moon and
the Sun in the canonical system are given as = =

+
μ 0.987871M

M1 M
1

2 1
,

= =
+

μ 0.012151M
M2 M

2
2 1

and = =
+

μ 328900.48M
M3 M

3
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respectively, where

the mass of the Earth = ×M kg( ) 5.98 101
24 ; mass of the

Sun = ×M kg( ) 1.99 103
30 .

The coordinates of m1, m2 and m3 w.r.t CM as an origin are given by

− −= =x μ Cost y μ Sint1 2 1 2

− −= =x μ Cost y μ Sint2 1 2 1

= +ψ ψ ω ts0

where ωs is the angular velocity of the sun which makes an angle ψ with
x-axis, ψ0 is the initial value of ψ and t the instantaneous time. Since the
force is defined as F=m a, where a is the acceleration, and F=−Δ u,
u is the potential.

In this system the masses of two primaries are = −m μ11 , =m μ2 .
where µ is the mass ratio of the system = +μ m

m m
2

1 2
. The distance of

two primaries is unity.
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then the components of the force are x y z(¨, ¨, ¨) for a body of unit mass
which are given by
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where
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Using the coordinate transformation
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Using Eq. (4) into (1), (2) and (3), this yield
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the potential in the rotating coordinate system.
It is clear, that the right-hand sides in these equations represent

= =∂
∂

∂
∂u u,u

ξ ξ
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ζ ζ respectively, then
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3. Laplace transformation

Eqs. (9), (10) and (11) can be solved by Laplace transforms, by
putting

− =L ξ L η L u[ ¨] [2 ]̇ [ ]ξ (12)
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These equations yield to
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To solve this system of Eqs. (15), (16) and (17), it is more con-
venient to consider = = =ξ η ζ̇(0) ̇(0) ̇(0) 0, then the solution will be
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which is the solution of the system of Eqs. (18), (19) and (20) by La-
place transformation.

4. Stability points

4.1. Collinear point

To apply Eqs. (18), (19) and (20) on the Collinear point, the posi-
tions of these points are taken from (Ibrahim, 2017) so that

L1(0.9, 0), L2(1.2, 0) and L3(-L3(−0.9, 0)
Stability at L2 at = =ξ η1.2, 0

Fig. 1. The geometric of the problem.
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We take the inverse Laplace transforms
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=η t( ) (−0.305 i) e(−2i)t ((−1+ i)+ (1+ i)e(4 i) t)− 1.221t
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which represent the coordinates about L2 as a function of time and
will give a periodicity about L2 referred to the existence of trigono-
metric functions, a code of Mathematica was constructed to solve the
system of Eqs. (18), (19) and (20) taken into account =β 0.0001. This
code is applied on the five libration points.

5. Results and discussion

From the results at L2(1.2, 0). Fig. 2 shows the behavior of ξ versus
with time < <t(0 100), and it illustrates that there is periodicity
aroundL2. Fig. 3 shows that the phase space, for the motion of the
fourth body about L2 and it is found that it takes an ellipse.

Stability about L L1, 3 at (±0.9, 0)
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= − +
+

η s
s s

( ) 1.259 1.259
4. 1.2 2

= − −
+

ξ s( ) 0.271
s

0.629s
4. 1. s2

We take the inverse Laplace transforms

= ⎡
⎣

− ⎤
⎦

+ ⎡
⎣ +

⎤
⎦

− −η t
s s

( ) L 1.259 L 1.259
4. 1.

1
2

1
2

= ⎡
⎣

− ⎤
⎦

+ ⎡
⎣

−
+

⎤
⎦

− −ξ t( ) L 0.271
s

L 0.629s
4. 1. s

1 1
2

Then
=η t( ) (−0.315 i) e(−2i) t ((−1+ i)+ (1+ i) e (4.i) t)− 1.259t
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From the results obtained it is found that L L,1 3 at (± 0.9, 0).
Figs. 4 and 6 shows the variation for the general solution with time,

a periodicity behavior is found. Figs. 5 and 7 the body moves in an
elliptical orbit about L L,1 3.

20 40 60 80 100
t

2.0

2.5

3.0

Fig. 2. The general solution about L2.
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Fig. 3. The phase space of the body about.
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Fig. 4. The general solution about L1.
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5.1. Triangular points L4(0.8, 3
2
) and −( )L 0.8,5

3
2
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But L4 at (0.8, 3

2
) the behavior is periodicity increasing as time

increasing as shown in Fig. 8 the body moves in circular trajectory
aboutL4as shown in Fig. 9 and its more stable, as shown in Fig. 10 the
behavior around L5at (0.8, - 3

2
) is periodicity decreasing at time in-

crease and the body moves in circular orbits as shown in Fig. 11.
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Fig. 5. The phase space of the body about L1.
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Fig. 6. The general solution about L3.
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Fig. 7. The phase space of the body about L3.
Fig. 8. The general solution about L4.
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5.2. Trajectory around L4(0.8, 3
2
) and L (1.2, 0)2

The frequency of the out of plane motion is given by solving the
equation

+ =s s4 04 2

Where

= = ±s s i0, 21,2 3,4

it is shown that more stable, then the periodic time = =T ππ
s
2

3
, we

get the eccentricity = − =−e K(1 ) 0.4992 0.5 while
= +( )k 0.5 s u

s2
xx3

3
(Ibrahim, 2017); as shown in Figs. 12 and 13 the body

moves in circular trajectory around L and L4 2.

6. Conclusion

Through this work the behavior of a body about the equilibrium
points L L L L and L, , ,1 2 3 4 5 is studied by Laplace transformation. The
results obtained by Laplace transformations was a very interest to
specify the behavior of the stability for each point. Also, an application
has done for the motion of spacecraft near the equilibrium points of the
Earth-Moon system and the results obtained was in a good agreement

Fig. 9. The phase space of the body about L4.

Fig. 10. The general solution about L5.

Fig. 11. The phase space of the body about L5.

Fig. 12. The trajectory around L4.

Fig. 13. The trajectory around L2.
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with the previous work (Kumari and Kushvah, 2013).
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