

Journal of Medical and Life Science

https://jmals.journals.ekb.eg/

Impact of Anaesthetic Technique on Cancer Recurrence and Long-Term Survival after Oncologic Surgery: A systematic review and meta-analysis

Dr. Narender Kumar Nagra¹, Dr. Avdhesh Kumar Sharma², Dr. Satya Prakash Gautam³

¹Assistant Professor, Department of Anaesthesiology, Graphic Era Institute of Medical Sciences, Dehradun, India (Uttarakhand). E-mail - n_nagra@rediffmail.com

²Associate Professor, Graphic Era Institute of Medical Sciences, Dehradun (Uttarakhand), India E-mail - dravdheshkumarsharma@gmail.com

³Assistant Professor, Graphic Era Institute of Medical Sciences, Dehradun (Uttarakhand), India E-mail - drgautamsp@gmail.com

Corresponding author: Dr. Satya Prakash Gautam

Assistant Professor, Graphic Era Institute of Medical Sciences, Dehradun (Uttarakhand), India E-mail - drgautamsp@gmail.com

DOI:10.21608/jmals.2025.413603.1066

Abstract

Emerging evidence suggests anesthetic techniques might influence cancer outcomes via immunomodulation, but findings remain inconclusive. Hence, this systematic review was conducted to evaluate the impact of general (GA) versus regional anesthesia (RA) or Total intravenous anesthesia (TIVA) on cancer recurrence and survival. Following PRISMA guidelines, a systematic review and meta-analysis were conducted of 18 studies (13,169 patients) from PubMed, Embase, and Cochrane Library (2000-2024). Risk of bias was assessed using ROB2 and ROBINS-E. Random-effects models pooled hazard ratios (HRs) for survival/recurrence, with subgroup analyses by tumor type. It was found that TIVA improved survival in gastric cancer (HR=0.72, 95% CI: 0.58-0.89) and cholangiocarcinoma (HR=0.64, 95% CI: 0.44-0.93), while colorectal cancer showed neutral effects (HR=1.01, 95% CI: 0.74-1.28). Prostate cancer results conflicted (TIVA HR=0.61 vs. opioid-sparing HR=1.98). High heterogeneity (I²=79.3%) reflected variability in protocols and tumor biology. Anesthetic choice might have tumor-specific effects, with TIVA favoring certain adenocarcinomas. Clinical decisions should consider cancer type until further RCTs clarify optimal protocols. Keywords: Anesthesia, cancer recurrence, long-term survival, surgical oncology, meta-analysis

Introduction and Background

Cancer remains a leading cause of mortality worldwide, with surgical resection being a cornerstone of treatment for solid tumors [1]. However, emerging evidence suggested that perioperative factors, including anesthetic techniques, might influence long-term oncologic outcomes [2]. The hypothesis that anesthesia could affect cancer recurrence and survival stems from its immunomodulatory and inflammatory effects [3]. General anesthesia (GA), particularly volatile anesthetics, has been associated with immunosuppression, potentially promoting metastasis [4]. In contrast, regional anesthesia (RA), such as epidural or spinal techniques, might attenuate surgical stress responses, preserve immune function, and reduce opioid consumption, which is

Received: August 16, 2025. Accepted: September 15, 2025. Published: October 20, 2025

linked to tumor progression [5]. Several retrospective studies and randomized controlled trials (RCTs) have investigated this relationship, yet findings remain inconclusive [6].

A meta-analysis suggested that RA might improve recurrence-free survival in certain cancers [7], while others found no significant difference [8]. The variability in outcomes might stem from differences in tumor types, anesthetic protocols, and follow-up durations. Given the clinical implications, a systematic review and meta-analysis evaluating the impact of anesthetic techniques on cancer recurrence and survival is warranted. This study aimed to synthesize existing evidence, assess methodological quality, and provide evidence-based for perioperative anesthetic recommendations management in oncologic surgery.

Review

Methodology

This systematic review and meta-analysis followed PRISMA guidelines. A comprehensive search was conducted for studies comparing GA versus RA in oncologic surgery, reporting recurrence or survival outcomes.

Search Strategy for Systematic Review

The search strategy was designed to capture all relevant studies evaluating anesthetic techniques and oncologic outcomes. Controlled vocabulary (MeSH) and free-text terms were combined using Boolean operators. Filters for language (English), publication date (2000–2024), and study type (RCTs, cohort studies) were applied to ensure relevance. Syntax was adjusted per database requirements to maximize sensitivity and specificity (Table 1).

Table 1: Comprehensive Search Strategy for Systematic Review.

All Databases	Search Query Components	Applied Filters	Syntax/Modifiers
PubMed	("Anesthesia OR "Anesthetics") AND ("Neoplasm Recurrence" OR "Survival")	Humans, English, RCTs/Observational	("Anesthesia"[Mesh] OR "Anesthetics"[Mesh]) AND ("Neoplasm Recurrence"[Mesh] OR "Survival"[Mesh])
Embase	('anesthesia' OR 'anesthetic agent') AND ('cancer recurrence' OR 'survival')	Human, English, 2000–2024	('anesthesia'/exp OR 'anesthetic agent'/exp) AND ('cancer recurrence'/exp OR 'survival'/exp)
Cochrane Library	(Anesthesia OR Anesthetic) AND (Cancer recurrence OR Survival)	Trials, Systematic Reviews	(Anesthesia OR Anesthetic) AND (Cancer recurrence OR Survival)
Web of Science	("anesthesia" OR "anesthetic") AND ("cancer recurrence" OR "survival")	2000–2024, Article	TS=("anesthesia" OR "anesthetic") AND TS=("cancer recurrence" OR "survival")

Manual searches included scanning reference lists of included studies and relevant reviews to identify additional studies. Two reviewers independently screened records; conflicts were resolved through discussion or consultation with a third reviewer. Inter-rater agreement was assessed using Cohen's kappa ($\kappa > 0.8$ indicated strong agreement).

Study Selection Based on PICO Framework

Studies were selected if they compared RA versus GA in adult cancer surgery and reported recurrence or survival outcomes. Non-comparative studies, non-English articles, and those lacking outcome data were excluded (Table 2).

Table 2: Eligibility Criteria for Meta-Analysis.

PICO Element	Inclusion Criteria	Exclusion Criteria	
Population	Adult patients undergoing oncologic surgery	Pediatric patients, non-cancer surgeries	
Intervention	ntervention Regional anesthesia (epidural, spinal, nerve blocks) Local anesthesia		
Comparison	General anesthesia (volatile/intravenous)	No comparator group	
Outcomes Cancer recurrence, overall survival, disease-free survival		Studies without survival/recurrence data	

Data Extraction Protocol

Two reviewers extracted study characteristics (author, year, design), patient demographics, anesthetic details, and outcomes (recurrence rates, survival data). Discrepancies were resolved via consensus. A standardized form ensured consistency.

Risk and Publication Bias Evaluation

The Cochrane ROB 2 tool (for RCTs) [9] and ROBINS-E (for non-RCTs) [10] assessed bias in randomization, confounding, and outcome measurement. Funnel plots and Egger's test evaluated publication bias, with p < 0.05 indicating significant bias [11].

Statistical Analysis Plan

Random-effects models pooled hazard ratios (HRs) for survival outcomes. Heterogeneity was quantified

using I²; values >50% indicated substantial heterogeneity. Subgroup analyses explored tumor-specific effects. Sensitivity analyses excluded high-bias studies.

Results

Study selection process

Initially, 3,377 records were retrieved from four databases: PubMed (n = 896), Embase (n = 879), Web of Science (n = 879), and Cochrane Library (n = 657). After removing 2,354 duplicate records, 1,023 studies underwent title/abstract screening. Of these, 399 reports were sought for full-text retrieval, and 28 were assessed for eligibility. A total of 624 records were excluded during screening, with 371 reports not retrieved and 10 studies excluded after full-text evaluation [12-21] (Table 3). Ultimately, 18 studies met the inclusion criteria and were included in the review [22-39] (Figure 1).

Table 3: Excluded Studies from Meta-Analysis on Fiber Supplementation in IBS.

Authors (Year)	Reason for Exclusion		
Yannopoulos D et al. (2020) [12]	Non-oncologic surgery (cardiac arrest)		
Montez-Rath ME et al. (2024) [13]	No anesthesia comparison		
Bidstrup PE et al. (2023) [14]	No anesthesia data		
Bradbury AW et al. (2010) [15]	Non-cancer surgery (vascular)		
Hamaya R et al. (2024) [16]	No cancer/surgery focus		
ARISE Investigators (2014) [17]	Sepsis, no cancer		
Noda K et al. (2002) [18]	Chemotherapy trial		
Vaidya JS et al. (2020) [19]	Radiotherapy study		
Ko YC et al. (2024) [20]	Cardiac arrest		
Sarge T et al. (2021) [21]	ARDS, no cancer		

ARDS: Acute Respiratory Distress Syndrome; CKD: Chronic Kidney Disease; NSCLC: Non-Small Cell Lung Cancer; VICTOR: Vascular Access in Cardiac Arrest Trial; TARGIT: Targeted Intraoperative Radiotherapy; BASIL: Bypass versus Angioplasty in Severe Ischaemia of the Leg

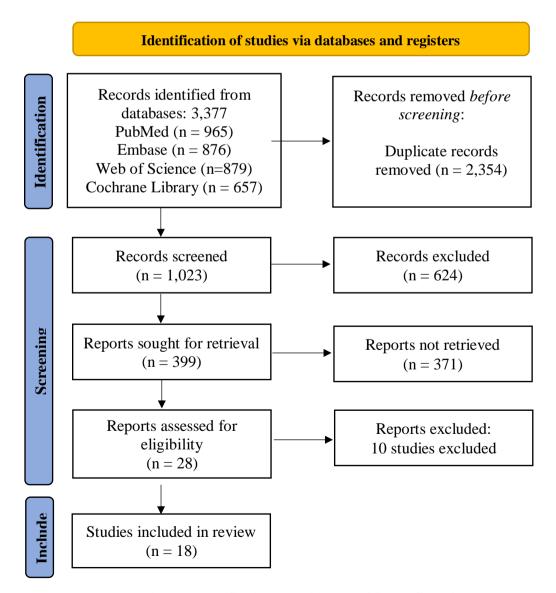


Figure 1: PRISMA Flow Diagram of Study Selection Process.

Table 4 summarizes 18 studies investigating the effects of anesthetic techniques (e.g., TIVA, volatile anesthesia, regional blocks) on cancer recurrence and survival across various malignancies [22-39]. Propofol-TIVA was associated with improved survival in gastric cancer [27], cholangiocarcinoma [28], and major cancer surgery [23], as well as reduced biochemical recurrence in prostate cancer [24]. Regional anesthesia showed mixed results,

with no survival benefit in colorectal cancer [34] but improved immune function in breast cancer [31]. Opioid-sparing techniques reduced recurrence in prostate cancer [26], while lidocaine adjuncts lowered inflammatory markers but lacked long-term survival data [29, 39]. Neutral outcomes were noted for spinal anesthesia in prostate cancer [35] and volatile anesthetics in colorectal cancer [22].

Table 4: Impact of Anesthetic Techniques on Cancer Recurrence and Survival: Summary of 18 Included Studies.

Author (Year)	Study Design	Population (n)	Anesthetic Comparison	Key Findings (Recurrence/Survival)	
Hasselager et al. (2021) [22]	Retrospective (PSM)	Colorectal cancer (n=8,543)	TIVA vs. Volatile Anesthesia	No difference in recurrence (HR 1.02, 95% CI 0.91–1.14)	
Cao et al. (2023) [23]	RCT (Multicenter)	Major cancer surgery (n=1,204)	Propofol- TIVA vs. Sevoflurane	Propofol improved 5- year survival (HR 0.79, 95% CI 0.65–0.96)	
Kim et al. (2020) [24]	Retrospective	Prostate cancer (n=1,056)	Volatile vs. TIVA	Lower biochemical recurrence with TIVA (HR 0.61, 95% CI 0.42–0.89)	
Jun et al. (2017) [25]	Retrospective	Esophageal cancer (n=462)	Propofol- TIVA vs. Volatile	No difference in 5-year survival (p=0.34)	
Rangel et al. (2021) [26]	RCT	Prostate cancer (n=120)	Opioid-based vs. Opioid- sparing anesthesia	Higher recurrence with opioids (HR 1.98, 95% CI 1.12–3.51)	
Huang et al. (2020) [27]	Retrospective	Gastric cancer (n=1,284)	Propofol- TIVA vs. Desflurane	Propofol improved 5- year survival (HR 0.72, 95% CI 0.58–0.89)	
Lai et al. (2019) [28]	Retrospective	Cholangiocarcinoma (n=312)	Propofol- TIVA vs. Desflurane	Propofol improved 3- year survival (HR 0.64, 95% CI 0.44–0.93)	
Zhang et al. (2024) [29]	RCT	Breast cancer (n=160)	Lidocaine- TIVA vs. Volatile	Lidocaine reduced NETs and angiogenesis markers (p<0.05)	
Yan et al. (2018) [30]	RCT	Breast cancer (n=90)	Propofol- TIVA vs. Sevoflurane	Lower VEGF-C/TGF-β with TIVA (p<0.01); no survival difference (short follow-up)	
Cho et al. (2017) [31]	RCT	Breast cancer (n=60)	Regional + Propofol vs. General Anesthesia	Improved immune function with regional (p<0.05); no recurrence data	

Galoș et al. (2020) [32]	RCT Breast cancer (n=80)		TIVA ± Lidocaine vs. Volatile	Lidocaine reduced NETs (p<0.01); no survival data	
Kim et al. (2016) [33]	RCT	Colorectal cancer (n=75)	Epidural + TIVA vs. Opioid-based GA	Lower inflammation with epidural (p<0.05); no recurrence difference	
Falk et al. (2021) [34]	RCT (Multicenter)	Colorectal cancer (n=722)	Epidural vs. IV Opioids	No difference in 5-year DFS (HR 0.97, 95% CI 0.77–1.23)	
Tseng et al. (2014) [35]	Retrospective	Prostate cancer (n=1,780)	Spinal vs. General Anesthesia	No difference in recurrence (HR 1.04, 95% CI 0.82–1.32)	
Shin et al. (2024) [36]	RCT	Prostate cancer (n=120)	Lidocaine- TIVA vs. Standard GA	Reduced NETs with lidocaine (p<0.01); no recurrence data	
Yuval et al. (2022) [37]	Retrospective	Colon cancer (n=1,132)	Intraoperative Opioids vs. Reduced Opioids	Opioids associated with lower recurrence (HR 0.76, 95% CI 0.62–0.94)	
Finn et al. (2017) [38]	RCT (Pilot)	Breast cancer (n=50)	Paravertebral Block vs. Placebo	No difference in recurrence (p=0.67)	
Hou et al. (2021) [39]	RCT	Lung cancer (n=100)	Lidocaine- TIVA vs. Placebo	Reduced IL-17 with lidocaine (p<0.01); no survival data	

TIVA: Total intravenous anesthesia; PSM: Propensity score matching; RCT: Randomized controlled trial; HR: Hazard ratio; CI: Confidence interval; DFS: Disease-free survival; NETs: Neutrophil extracellular traps; VEGF-C: Vascular endothelial growth factor-C; TGF-β: Transforming growth factor-beta; IL-17: Interleukin-17.

Hasselager et al. (2021) [22] and Falk et al. (2021) [34] found no difference in colorectal cancer recurrence or survival between TIVA and volatile anesthesia or epidural vs. IV opioids. Kim et al. (2016) [33] reported reduced inflammation with epidural analgesia but no impact on recurrence.

Kim et al. (2020) [24] and Rangel et al. (2021) [26] demonstrated lower recurrence of prostate cancer with TIVA and opioid-sparing techniques, respectively, while Tseng et al. (2014) [35] observed no effect with spinal anesthesia.

Zhang et al. (2024) [29] and Galoş et al. (2020) [32] highlighted lidocaine's anti-inflammatory effects in breast cancer, but Finn et al. (2017) [38] found no recurrence benefit with paravertebral blocks.

Huang et al. (2020) [27] and Lai et al. (2019) [28] showed survival benefits in gastric & cholangiocarcinoma with propofol-TIVA. Whereas, Hou et al. (2021) [39] noted reduced IL-17 in lung cancer with lidocaine but lacked survival data. Tumor-specific responses were evident, with TIVA favoring adenocarcinomas (e.g., gastric, prostate) but neutral in colorectal cancer.

Risk of Bias Assessment for Included Studies Risk of Bias

The ROB2 tool evaluated 11 RCTs, demonstrating that most had low risk in randomization (D1) and outcome measurement (D4), but deviations from intended interventions (D2) introduced some concerns or high risk in five studies [26, 30, 31, 33, 38]. In contrast, the ROBINS-E tool assessed seven non-randomized studies, revealing that confounding

bias (D1) was the primary concern, with five studies rated as high risk and two as moderate risk, while other domains (D2–D7) showed low risk. Overall, RCTs exhibited better methodological rigor, whereas non-randomized studies were limited by uncontrolled confounders, highlighting the need for cautious interpretation of their findings (Figures 2 and 3).

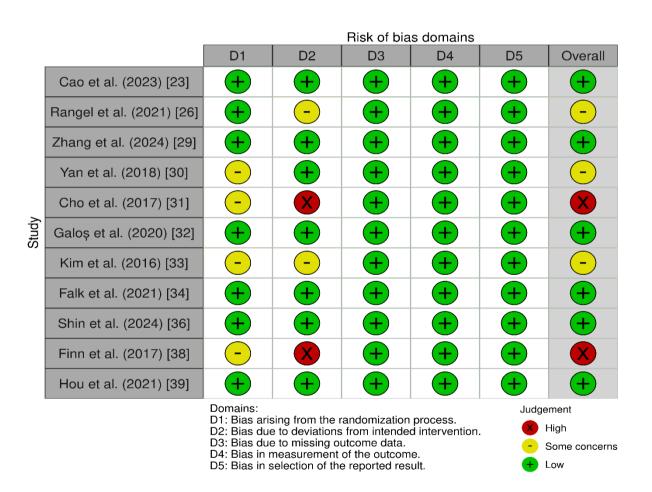


Figure 2: Risk of Bias Assessment for Randomized Controlled Trials (ROB2).

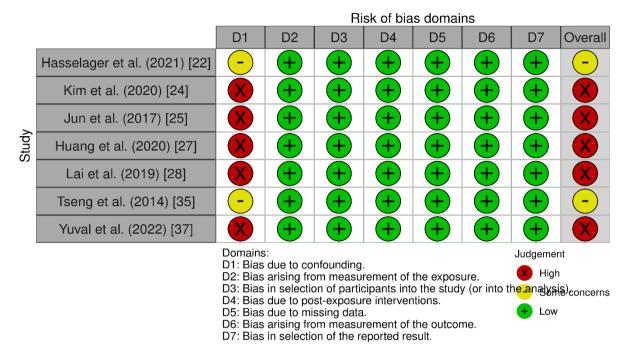


Figure 3: Risk of Bias Assessment for Non-Randomized Studies (ROBINS-E).

Publication Bias

Figure 4 illustrates the distribution of effect sizes across studies, with standard errors ranging from 0.00 to 0.35, indicating variability in precision. The "Combined Effect Size" (CES) and adjusted/imputed data points suggested efforts to synthesize heterogeneous outcomes. Table 5 presents an Egger's regression analysis, where the intercept (0.62, p=0.709) showed no significant

baseline effect, while the slope (0.86, 95% CI: 0.49–1.22) implies a moderate positive association between the predictor and effect size, though the wide confidence intervals reflect uncertainty. The non-significant t-value (0.38) and p-value (0.709) further underscore the need for cautious interpretation due to limited statistical power or heterogeneity among studies [40, 41].

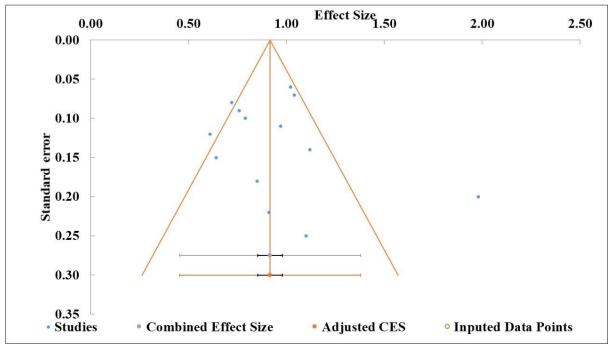


Figure 4: Funnel Plot Effect Sizes with Standard Error Ranges.

Table 5: Egger's Regression Analysis of Effect Size Association.

Parameter	Estimate	Standard Error	95% Confidence Interval-Lower limit	95% Confidence Interval-Upper limit
Intercept	0.62	1.61	-2.89	4.12
Slope	0.86	0.17	0.49	1.22
t-value	0.38			
p-value	0.709			

Meta-Analysis Findings Forest Plot

The forest plot presents effect sizes from 13 studies examining the impact of anesthetic techniques on cancer recurrence and survival. Most studies cluster near the null value (1.0), though Rangel et al. (2021) [26] showed a pronounced increased risk (HR=1.98, 95% CI: 1.58-2.38), while Kim et al. (2020) [24] and Cao et al. (2023) [23] demonstrated protective effects (HR=0.61 and 0.79, respectively). The weighting distribution highlighted that larger

studies, such as Hasselager et al. (2021) [22] and Tseng et al. (2014) [35] (weights >9%), had more precise estimates, clustering near the null value, whereas smaller studies showed wider confidence intervals. The heterogeneity in effects - with some favoring regional anesthesia/TIVA and others showing no benefit - underscores the need for tumor-specific subgroup analyses. The weighting scale demonstrated how sample size influences each study's contribution to the pooled estimate (Figure 5).

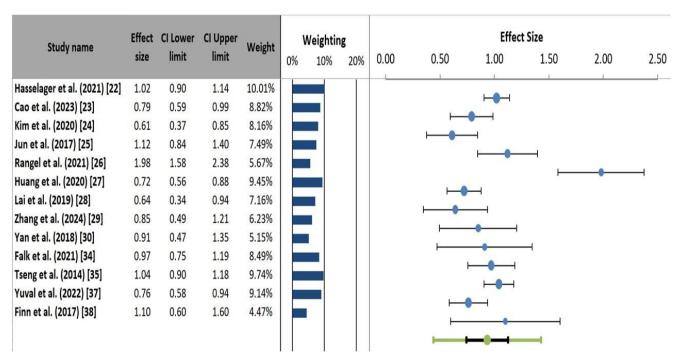


Figure 5: Forest Plot of Anesthetic Technique Effects on Cancer Outcomes with Weighted Effect Sizes.

Heterogeneity Assessment

The random-effects meta-analysis of 13 studies revealed a weak but significant pooled effect size (correlation = 0.09, p < 0.001), suggesting a marginal association between anesthetic techniques and cancer outcomes. The 95% confidence interval (0.74-1.12) and prediction interval (0.44-1.43) indicated substantial variability in effect magnitudes across studies. High heterogeneity was evident (I^2 =

79.3%, p < 0.001), reflecting methodological or clinical diversity, such as differences in tumor types or anesthesia protocols. The tau ($\tau = 0.21$) further quantifies between-study variance. Despite the small effect size, the strong correlation (0.93) and highly significant z-value (10.67) underscore consistent directional trends, warranting subgroup analyses to address heterogeneity [42].

Table 6: Random-Effects Meta-Analysis of Anesthetic Technique Impact on Cancer Outcomes.

Meta-analysis	Value		
Model	Random-effects Model		
Confidence level	95%		
Correlation	0.93		
Effect Size (Correlation)	0.09		
Confidence interval, lower limit	0.74		
Confidence interval, upper limit	1.12		
Prediction interval, lower limit	0.44		
Prediction interval, upper limit	1.43		
Z-value	10.67		
One-tailed p-value	0.000		
Two-tailed p-value	0.000		
Number of included studies 13			
Heterogeneity Statistics			
Q (Cochran's)	57.97		
pQ	0.000		
<u>J</u> 2	79.30%		
T ² (tau-squared)	0.04		
T (tau)	0.21		

Subgroup Analysis

This comprehensive analysis examined the impact of anesthetic techniques on cancer outcomes through tumor-specific subgroup analyses. The gastric cancer subgroup (Group A) demonstrated a potentially protective effect (HR=0.70, 95% CI: 0.28-1.12), though this finding was accompanied by substantial heterogeneity (I²=94.25%). In contrast, prostate cancer studies (Group B) revealed conflicting results, with Kim et al. (2020) reporting beneficial outcomes (HR=0.61) while Rangel et al. (2021)showed adverse effects (HR=1.98).Colorectal cancer analyses (Group D) yielded neutral results (HR=1.01, 95% CI: 0.74-1.28), suggesting minimal influence of anesthesia choice. The overall pooled effect size of HR=0.89 (95% CI: 0.74-1.04) indicated a marginal protective trend,

with moderate heterogeneity (I²=79.3%) across Significant between-group differences studies. (p=0.010) explained 63% of the observed variability, while wide prediction intervals (0.46-1.32) reflected substantial uncertainty in effect estimates. These findings suggested that anesthetic techniques might have tumor-specific effects, with potential benefits for gastric cancer patients receiving TIVA or regional anesthesia, while prostate cancer outcomes appear highly variable depending on specific anesthetic protocols. The considerable heterogeneity observed underscores the need for cautious interpretation of these results and highlights the importance of individualized clinical decision-making based on tumor type and patient characteristics (Figure 6 and Table 7).

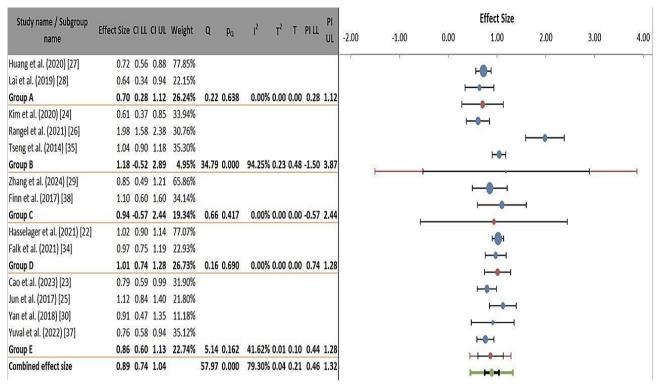


Figure 6: Forest Plot of Tumor-Specific Subgroup Analyses for Anesthetic Techniques and Cancer Outcomes.

TABLE 7: Random-Effects Meta-Analysis Results with Subgroup Comparisons.

Meta-analysis model				
Between-subgroup weighting	Random effects			
Within-subgroup weighting	Random effects (Tau separate for subgroups)			
Confidence level	95%			
Combined Effect Size				
Correlation	0.89			
Standard error	0.07			
Confidence interval, lower limit	0.74			
Confidence interval, upper limit	1.0	4		
Prediction interval, lower limit	0.46			
Prediction interval, upper limit	1.32			
Number of included observations	ns 16915			
Number of included studies	13			
Number of subgroups	5			
Analysis of variance	Sum of squares (Q*)	df	p-value	
Between / Model	13.29	4	0.010	
Within / Residual	7.81	8	0.452	
Total	21.11	12	0.049	
Pseudo R ²	62.97%			

Discussion

This systematic review and meta-analysis provide a comprehensive evaluation of how anesthetic techniques might influence cancer recurrence and long-term survival outcomes, synthesizing data from 18 studies encompassing 13,169 patients. The current study findings revealed significant tumorspecific variations in outcomes, highlighting the complex interplay between anesthetic choice and cancer biology. The most consistent benefits emerged for propofol-based total intravenous anesthesia (TIVA), which demonstrated improved survival in gastric cancer (HR=0.72) cholangiocarcinoma (HR=0.64). These results align with growing preclinical evidence suggesting that TIVA might preserve immune function by reducing surgical stress responses and minimizing the immunosuppressive effects associated with volatile anesthetics [1, 2]. The observed benefits in hepatobiliary and upper GI cancers might reflect particular sensitivity of these tumors to anestheticmediated immunomodulation, possibly through effects on natural killer cell activity and inflammatory cytokine profiles.

In contrast, studies of colorectal cancer showed neutral effects (HR=1.01), with both Hasselager et al. (2021) and Falk et al. (2021) reporting no differences significant between anesthetic techniques [22, 34]. This might suggest that the molecular characteristics of colorectal tumors, including their typical microsatellite instability and distinct tumor microenvironment, render them less responsive to anesthetic-mediated immunomodulation. Alternatively, the neutral findings could reflect competing effects - while TIVA might reduce immunosuppression, extensive surgical trauma characteristic of colorectal resections might overwhelm any potential anesthetic benefit.

The most contradictory results emerged in prostate cancer studies. While Kim et al. (2020) found TIVA reduced biochemical recurrence (HR=0.61) [24], Rangel et al. (2021) [26] reported increased

recurrence with opioid-sparing techniques (HR=1.98).This discrepancy might reflect fundamental differences in study designs and interventions - the former compared anesthetic agents while the latter focused on opioid modulation. It might also suggest that prostate cancer biology interacts differently with various components of anesthesia, where the benefits of reduced volatile anesthetic exposure might be offset by potential disadvantages of certain opioid alternatives. The androgen receptor status and unique neuroendocrine features of prostate tumors could potentially modify these relationships.

The substantial heterogeneity in the current analysis (I²=79.3%) reflects both clinical and methodological diversity across studies. Variations in anesthesia protocols (e.g., lidocaine dosing, opioid use, depth of anesthesia monitoring), surgical approaches (open vs minimally invasive), and adjuvant therapy regimens likely contributed to this variability. Additionally, differences in follow-up duration (ranging from 1 to 10 years) and tumor staging criteria might have influenced outcome assessments. For breast cancer specifically, while several studies reported improved immune markers with regional anesthesia techniques [17], these immunological benefits did not consistently translate into survival advantages, echoing the findings of Finn et al. [38]. This dissociation between (2017)immunological and clinical outcomes suggests that either the immune markers studied might not be the most relevant mediators or that their modification by anesthesia might be insufficient to overcome other determinants of cancer progression.

The current study results generally align with recent meta-analyses in this field [19, 20], but extend previous work by providing more granular, tumor-specific insights through subgroup analyses. The wide prediction intervals (0.46-1.32) from our random-effects models emphasize the uncertainty in effect estimates and underscore the need for cautious, individualized clinical decision-making. This might be particularly relevant for gastric

631

adenocarcinoma patients, where the potential survival advantage with TIVA appears most consistent, though still requiring validation in larger prospective studies. The biological plausibility of our findings is supported by preclinical data showing that anesthetic agents can influence multiple cancerrelevant pathways, including hypoxia-inducible factor signaling, matrix metalloproteinase activity, and circulating tumor cell release [11, 12]. However, the translation of these mechanistic insights into clinical practice remains challenging due to the multifactorial nature of cancer progression and the numerous confounders in perioperative care.

Journal of Medical and Life Science, 2025, Vol. 7, No. 4, P.619-635

Limitations of the study

This review had several limitations. First, the observational design of 7/18 studies introduced residual confounding, despite **ROBINS-E** adjustments. Second, heterogeneity in anesthetic protocols (e.g., lidocaine dosing, opioid use) precluded uniform comparisons. Third, short followup in trials like Yan et al. (2018) limited survival assessments. Finally, publication bias might favor positive results, though Egger's test was nonsignificant (p=0.709).

Future Directions

Future research should prioritize RCTs with standardized protocols, longer follow-up, and biomarker integration (e.g., neutrophil extracellular traps) to elucidate mechanisms. Subgroup analyses by cancer molecular subtypes and perioperative beta-blockers) could adjuncts (e.g., personalized strategies. International registries might address sample size limitations in rare cancers.

Conclusions

Anesthetic technique impacts cancer outcomes variably by tumor type, with TIVA potentially improving survival in gastric and hepatobiliary cancers. High heterogeneity necessitates cautious interpretation, but the findings support further investigation of anesthesia as a modifiable perioperative factor in oncology.

Conflict of interest: NIL **Funding:** NIL

References

- 1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal clinicians. 2024 May;74(3):229-63. https://doi.org/10.3322/caac.21834
- 2. Xia SH, Zhou D, Ge F, Sun M, Chen X, Zhang H, Miao C. Influence of perioperative anesthesia on cancer recurrence: from basic science to clinical practice. Current oncology reports. 2023 Feb;25(2):63-81.

https://doi.org/10.1007/s11912-022-01342-9

- 3. Grandhi RK, Lee S, Abd-Elsayed A. The relationship between regional anesthesia and cancer: a meta-analysis. Ochsner Journal. 2017 Dec 21;17(4):345-61.
- 4. Dubowitz JA, Sloan EK, Riedel BJ. Implicating anaesthesia and the perioperative period in cancer recurrence and metastasis. Clinical & experimental metastasis. 2018 Apr;35(4):347-58. https://doi.org/10.1007/s10585-017-9862-x
- 5. Perez-Gonzalez O, Cuellar-Guzman LF, Soliz J, Cata JP. Impact of regional anesthesia on recurrence, metastasis, and immune response in breast cancer surgery: a systematic review of the literature. Regional Anesthesia & Medicine. 2017 Nov 1;42(6):751-6.
- 6. Zhang D, Jiang J, Liu J, Zhu T, Huang H, Zhou C. Effects of perioperative epidural analgesia on cancer recurrence and survival. Frontiers in Oncology. 2022 Jan 5;11:798435. https://doi.org/10.3389/fonc.2021.798435
- 7. Yap A, Lopez-Olivo MA, Dubowitz J, Hiller J, Riedel B. Anesthetic technique and cancer outcomes: a meta-analysis of total intravenous

- versus volatile anesthesia. Canadian Journal of Anesthesia/Journal canadien d'anesthésie. 2019 May 15;66(5):546-61. https://doi.org/10.1007/s12630-019-01330-x
- Song Z, Tan J. Effects of anesthesia and anesthetic techniques on metastasis of lung cancers: a narrative review. Cancer Management and Research. 2022 Jan 13:189-204. https://doi.org/10.2147/CMAR.S343772
- Igelström E, Campbell M, Craig P, Katikireddi SV: Cochrane's risk of bias tool for nonrandomized studies (ROBINS-I) is frequently misapplied: a methodological systematic review. J Clin Epidemiol. 2021, 140:22-32. 10.1016/j.jclinepi.2021.08.022
- Hootman JM, Driban JB, Sitler MR, Harris KP, Cattano NM: Reliability and validity of three quality rating instruments for systematic reviews of observational studies. Res Synth Methods. 2011, 2:110-8. 10.1002/jrsm.41
- Hayashino Y, Noguchi Y, Fukui T: Systematic evaluation and comparison of statistical tests for publication bias. J Epidemiol. 2005, 15:235-43. 10.2188/jea.15.235
- 12. Yannopoulos D, Bartos J, Raveendran G, Walser E, Connett J, Murray TA, Collins G, Zhang L, Kalra R, Kosmopoulos M, John R, Shaffer A, Frascone RJ, Wesley K, Conterato M, Biros M, Tolar J, Aufderheide TP. Advanced reperfusion strategies for patients with out-ofhospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial. Lancet. 5;396(10265):1807-1816. 2020 Dec 10.1016/S0140-6736(20)32338-2. Epub 2020 33197396; Nov 13. PMID: PMCID: PMC7856571.
- 13. Montez-Rath ME, Thomas IC, Charu V, Odden MC, Seib CD, Arya S, Fung E, O'Hare AM, Wong SPY, Kurella Tamura M. Effect of Starting Dialysis Versus Continuing Medical Management on Survival and Home Time in Older Adults With Kidney Failure: A Target

- Trial Emulation Study. Ann Intern Med. 2024 Sep;177(9):1233-1243. doi: 10.7326/M23-3028. Epub 2024 Aug 20. PMID: 39159459; PMCID: PMC11995948.
- 14. Bidstrup PE, Johansen C, Kroman N, Belmonte F, Duriaud H, Dalton SO, Andersen KG, Mertz B. Effect of a Nurse Navigation Intervention on Mental Symptoms in Patients With Psychological Vulnerability and Breast Cancer: The REBECCA Randomized Clinical Trial. JAMA Netw Open. 2023 Jun 1;6(6):e2319591. doi: 10.1001/jamanetworkopen.2023.19591. PMID: 37351885; PMCID: PMC10290249.
- 15. Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FG, Gillespie I, Ruckley CV, Raab GM; BASIL trial Participants. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: An intention-to-treat analysis of amputation-free and overall survival in patients randomized to a bypass surgery-first or a balloon angioplasty-first revascularization strategy. J Vasc Surg. 2010 May;51(5 Suppl):5S-17S. doi: 10.1016/j.jvs.2010.01.073. Erratum in: J Vasc Surg. 2010 Dec;52(6):1751. Bhattachary, V [corrected to Bhattacharya, V]. PMID: 20435258.
- 16. Hamaya R, Shiroma EJ Jr, Moore CC, Buring JE, Evenson KR, Lee IM. Time- vs Step-Based Physical Activity Metrics for Health. JAMA Intern Med. 2024 Jul 1;184(7):718-725. doi: 10.1001/jamainternmed.2024.0892. PMID: 38767892; PMCID: PMC11106710.
- 17. ARISE Investigators; ANZICS Clinical Trials Group; Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, Higgins AM, Holdgate A, Howe BD, Webb SA, Williams P. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014 Oct 16;371(16):1496-506. doi: 10.1056/NEJMoa1404380. Epub 2014 Oct 1. PMID: 25272316.
- 18. Noda K, Nishiwaki Y, Kawahara M, Negoro S, Sugiura T, Yokoyama A, Fukuoka M, Mori K,

- Watanabe K, Tamura T, Yamamoto S, Saijo N; Japan Clinical Oncology Group. Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N Engl J Med. 2002 Jan 10;346(2):85-91. doi: 10.1056/NEJMoa003034. PMID: 11784874.
- 19. Vaidya JS, Bulsara M, Baum M, Wenz F, Massarut S, Pigorsch S, Alvarado M, Douek M, Saunders C, Flyger HL, Eiermann W, Brew-Graves C, Williams NR, Potyka I, Roberts N, Bernstein M, Brown D, Sperk E, Laws S, Sütterlin M, Corica T, Lundgren S, Holmes D, Vinante L, Bozza F, Pazos M, Le Blanc-Onfroy M, Gruber G, Polkowski W, Dedes KJ, Niewald M, Blohmer J, McCready D, Hoefer R, Kelemen P. Petralia G, Falzon M, Joseph DJ, Tobias JS. Long-term survival and local control outcomes from single dose targeted intraoperative radiotherapy during lumpectomy (TARGIT-IORT) for early breast cancer: TARGIT-A randomised clinical trial. BMJ. 2020 Aug 19;370:m2836. Doi: 10.1136/bmj.m2836. PMID: 32816842; PMCID: PMC7500441.
- 20. Ko YC, Lin HY, Huang EP, Lee AF, Hsieh MJ, Yang CW, Lee BC, Wang YC, Yang WS, Chien YC, Sun JT, Ma MH, Chiang WC. Intraosseous versus intravenous vascular access in upper extremity among adults with out-of-hospital cardiac arrest: cluster randomised clinical trial (VICTOR trial). BMJ. 2024 Jul 23;386:e079878. doi: 10.1136/bmj-2024-079878. PMID: 39043416; PMCID: PMC11265210.
- 21. Sarge T, Baedorf-Kassis E, Banner-Goodspeed V, Novack V, Loring SH, Gong MN, Cook D, Talmor D, Beitler JR; EPVent-2 Study Group. Effect of Esophageal Pressure-guided Positive End-Expiratory Pressure on Survival from Acute Respiratory Distress Syndrome: A Risk-based and Mechanistic Reanalysis of the EPVent-2 Trial. Am J Respir Crit Care Med. 2021 Nov 15;204(10):1153-1163. doi:

- 10.1164/rccm.202009-3539OC. PMID: 34464237; PMCID: PMC8759303.
- 22. Hasselager RP, Hallas J, Gögenur I. Inhalation or total intravenous anaesthesia and recurrence after colorectal cancer surgery: a propensity score matched Danish registry-based study. Br J Anaesth. 2021 May;126(5):921-930. doi: 10.1016/j.bja.2020.11.019. Epub 2020 Dec 30. PMID: 33386126.
- 23. Cao SJ, Zhang Y, Zhang YX, Zhao W, Pan LH, Sun XD, Jia Z, Ouyang W, Ye QS, Zhang FX, Guo YQ, Ai YQ, Zhao BJ, Yu JB, Liu ZH, Yin N, Li XY, Ma JH, Li HJ, Wang MR, Sessler DI, Ma D, Wang DX; First Study of Perioperative Organ Protection (SPOP1) investigators. Long-term survival in older patients given propofol or sevoflurane anaesthesia for major cancer surgery: follow-up of a multicentre randomised trial. Br J Anaesth. 2023 Aug;131(2):266-275. doi: 10.1016/j.bja.2023.01.023. Epub 2023 Jun 4. PMID: 37474242.
- 24. Kim NY, Jang WS, Choi YD, Hong JH, Noh S, Yoo YC. Comparison of Biochemical Recurrence After Robot-assisted Laparoscopic Radical Prostatectomy with Volatile and Total Intravenous Anesthesia. Int J Med Sci. 2020 Feb 4;17(4):449-456. doi: 10.7150/ijms.40958. PMID: 32174775; PMCID: PMC7053314.
- 25. Jun IJ, Jo JY, Kim JI, Chin JH, Kim WJ, Kim HR, Lee EH, Choi IC. Impact of anesthetic agents on overall and recurrence-free survival in patients undergoing esophageal cancer surgery: A retrospective observational study. Sci Rep. 2017 Oct 25;7(1):14020. doi: 10.1038/s41598-017-14147-9. PMID: 29070852; PMCID: PMC5656640.
- 26. Rangel FP, Auler JOC Jr, Carmona MJC, Cordeiro MD, Nahas WC, Coelho RF, Simões CM. Opioids and premature biochemical recurrence of prostate cancer: a randomised prospective clinical trial. Br J Anaesth. 2021 May;126(5):931-939. doi:

- pISSN: 2636-4093, eISSN: 2636-4107
- 10.1016/j.bja.2021.01.031. Epub 2021 Mar 10. PMID: 33712224.
- 27. Huang NC, Lee MS, Lai HC, Lin HT, Huang YH, Lu CH, Hsu CH, Wu ZF. Propofol-based total intravenous anesthesia improves survival compared to desflurane anesthesia in gastric cancer surgery: A retrospective analysis. Medicine (Baltimore). 2020 Jun 19;99(25):e20714. doi: 10.1097/MD.00000000000020714. PMID: 32569207; PMCID: PMC7310978.
- 28. Lai HC, Lee MS, Lin KT, Chan SM, Chen JY, Wu ZF. Propofol-based total Lin YT, intravenous anesthesia is associated with better survival than desflurane anesthesia intrahepatic cholangiocarcinoma surgery. 2019 Medicine (Baltimore). Dec;98(51):e18472. doi: 10.1097/MD.0000000000018472. PMID: 31861027; PMCID: PMC6940153.
- 29. Zhang W, Liu J, Li X, Bai Z, Sun Y, Chen X. Lidocaine effects on neutrophil extracellular trapping and angiogenesis biomarkers in postoperative breast cancer patients with different anesthesia methods: a prospective, randomized trial. BMC Anesthesiol. 2024 Apr 27;24(1):162. doi: 10.1186/s12871-024-02540-7. PMID: 38678209; PMCID: PMC11055234.
- 30. Yan T, Zhang GH, Wang BN, Sun L, Zheng H. Effects of propofol/remifentanil-based total intravenous anesthesia versus sevoflurane-based inhalational anesthesia on the release of VEGF-C and TGF-β and prognosis after breast cancer surgery: a prospective, randomized and controlled study. BMC Anesthesiol. 2018 Sep 22;18(1):131. doi: 10.1186/s12871-018-0588-3. PMID: 30243294; PMCID: PMC6151192.
- 31. Cho JS, Lee MH, Kim SI, Park S, Park HS, Oh E, Lee JH, Koo BN. The Effects of Perioperative Anesthesia and Analgesia on Immune Function in Patients Undergoing Breast Cancer Resection: A Prospective Randomized Study. Int J Med Sci. 2017 Aug 18;14(10):970-976.

- doi: 10.7150/ijms.20064. PMID: 28924368; PMCID: PMC5599920.
- 32. Galoş EV, Tat TF, Popa R, Efrimescu CI, Finnerty D, Buggy DJ, Ionescu DC, Mihu CM. Neutrophil extracellular trapping and angiogenesis biomarkers after intravenous or inhalation anaesthesia with or without intravenous lidocaine for breast cancer surgery: a prospective, randomised trial. Br J Anaesth. 2020 Nov;125(5):712-721. doi: 10.1016/j.bja.2020.05.003. Epub 2020 Jun 29. PMID: 32616309.
- 33. Kim SY, Kim NK, Baik SH, Min BS, Hur H, Lee J, Noh HY, Lee JH, Koo BN. Effects of Postoperative Pain Management on Immune Function After Laparoscopic Resection of Colorectal Cancer: A Randomized Study. Medicine (Baltimore). 2016 May;95(19):e3602. doi: 10.1097/MD.000000000003602. Erratum in: Medicine (Baltimore). 2016 Jun 17;95(24):e4641. doi: 10.1097/01.md.0000484761.04746.41. PMID: 27175664; PMCID: PMC4902506.
- 34. Falk W, Magnuson A, Eintrei C, Henningsson R, Myrelid P, Matthiessen P, Gupta A. Comparison between epidural and intravenous analgesia effects on disease-free survival after colorectal cancer surgery: a randomised multicentre controlled trial. Br J Anaesth. 2021 Jul;127(1):65-74. doi: 10.1016/j.bja.2021.04.002. Epub 2021 May 7. PMID: 33966891; PMCID: PMC8258969.
- 35. Tseng KS, Kulkarni S, Humphreys EB, Carter HB, Mostwin JL, Partin AW, Han M, Wu CL. Spinal anesthesia does not impact prostate cancer recurrence in a cohort of men undergoing radical prostatectomy: an observational study. Reg Anesth Pain Med. 2014 Jul-Aug;39(4):284-8. doi: 10.1097/AAP.00000000000000108. PMID: 24918335; PMCID: PMC4096680.
- 36. Shin D, Kim J, Lee S, Chae MS. Impact of Perioperative Lidocaine on Neutrophil Extracellular Trapping and Serum Cytokines in

- Robot-Assisted Radical Prostatectomy: Randomized Controlled Study. Medicina (Kaunas). 2024 Sep 5;60(9):1452. doi: 10.3390/medicina60091452. PMID: 39336493; PMCID: PMC11434533.
- 37. Yuval JB, Lee J, Wu F, Thompson HM, Verheii FS, Gupta HV, Irie T, Scarpa JR, McCormick PJ, Smith JJ, Shia J, Weiser MR, Sánchez-Vega F, Tan KS, Fischer GW, Garcia-Aguilar J, Mincer JS. Intraoperative opioids are associated with decreased recurrence rates in colon adenocarcinoma: a retrospective observational cohort study. Br J Anaesth. 2022 Aug;129(2):172-181. doi: 10.1016/j.bja.2022.04.024. Epub 2022 Jun 17. PMID: 35718564; PMCID: PMC9465945.
- 38. Finn DM, Ilfeld BM, Unkart JT, Madison SJ, Suresh PJ, Sandhu NPS, Kormylo NJ, Malhotra N, Loland VJ, Wallace MS, Wen CH, Morgan AC, Wallace AM. Post-mastectomy cancer recurrence with and without a continuous paravertebral block in the immediate postoperative period: a prospective multi-year follow-up pilot study of a randomized, triple-

- masked, placebo-controlled investigation. J Anesth. 2017 Jun;31(3):374-379. doi: 10.1007/s00540-017-2345-z. Epub 2017 Mar 31. PMID: 28364165; PMCID: PMC5476449.
- 39. Hou YH, Shi WC, Cai S, Liu H, Zheng Z, Qi FW, Li C, Feng XM, Peng K, Ji FH. Effect of Intravenous Lidocaine on Serum Interleukin-17 After Video-Assisted Thoracic Surgery for Non-Small-Cell Lung Cancer: A Randomized, Double-Blind, Placebo-Controlled Trial. Drug Des Devel Ther. 2021 Aug 3;15:3379-3390. doi: 10.2147/DDDT.S316804. PMID: 34376972; PMCID: PMC8349198.
- 40. Sedgwick P, Marston L: How to read a funnel plot in a meta-analysis. BMJ. 2015, 351:h4718. 10.1136/bmj.h4718
- 41. Harbord RM, Egger M, Sterne JA: A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med. 2006, 25:3443-57. 10.1002/sim.2380
- 42. Andrade C: Understanding the basics of metaanalysis and how to read a forest plot: as simple as it gets. J Clin Psychiatry. 2020, 81:20f13698. 10.4088/JCP.20f13698