- Ibrahim, H. H., Singh, M. J., Al-Bawri, S. S., Ibrahim, S. K., Islam, M. T., Alzamil, A., & Islam, M. S. (2022). Radio Frequency Energy Harvesting Technologies: A Comprehensive Review on Designing, Methodologies, and Potential Applications. In Sensors (Vol. 22, Issue 11, p. 4144). MDPI AG.
- Sanislav, T., Mois, G. D., Zeadally, S., & Folea, S. C. (2021). Energy Harvesting Techniques for Internet of Things (IoT). In IEEE Access (Vol. 9, pp. 39530–39549). Institute of Electrical and Electronics Engineers (IEEE)
- Tran, LG., Cha, HK. & Park, WT. RF power harvesting: a review on designing methodologies and applications. Micro and Nano Syst Lett 5, 14 (2017).
- Hwang, Y. M., Park, J. H., Shin, Y., Kim, J. Y., & Kim, D. I. (2017). Transmission Power and Antenna Allocation for Energy-Efficient RF Energy Harvesting Networks with Massive MIMO. Energies, 10(6), 802
- Kabeel, A. A., Hussein, A. H., Khalaf, A. A. M., & Hamed, H. F. A. (2019). A utilization of multiple antenna elements for matched filter-based spectrum sensing performance enhancement in cognitive radio system. AEU - International Journal of Electronics and Communications, 107, 98–109.
- Hany, H., Abdelatty, H., Kabeel, A., & Abdallah, R. (2024). Performance Analysis of Rectangular Microstrip Patch Antenna on Varied Substrates for RF Energy Harvesting Systems. In 2024 International Conference on Future Telecommunications and Artificial Intelligence (IC-FTAI) (pp. 1–5). 2024 International Conference on Future Telecommunications and Artificial Intelligence (IC-FTAI). IEEE. https://doi.org/10.1109/ic-ftai62324.2024.10950022.
- Ahmed, R., Mohammed, Mohammed. A., & Kabeel, Ahmed. A. (2022). Characterization of tunable Ultra-Wideband Square Microstrip antenna with several gaps. In 2022 International Telecommunications Conference (ITC-Egypt) (pp. 1–6). 2022 International Telecommunications Conference (ITC-Egypt). IEEE.
- Hemour, S., Zhao, Y., Lorenz, C. H. P., Houssameddine, D., Gui, Y., Hu, C.-M., & Wu, K. (2014). Towards Low-Power High-Efficiency RF and Microwave Energy Harvesting. IEEE Transactions on Microwave Theory and Techniques, 62(4), 965–976. https://doi.org/10.1109/tmtt.2014.2305134
- M. Ramahi, T. S. Almoneef, M. AlShareef, and M. S. Boybay, “Metamaterial particles for electromagnetic energy harvesting,” Appl. Phys. Lett., vol. 101, no. 17, p. 173903, Oct. 2012, Doi: 10.1063/1.4764054.
- Alavikia, T. S. Almoneef, and O. M. Ramahi, “Electromagnetic energy harvesting using complementary split-ring resonators,” Appl. Phys. Lett., vol. 104, no. 16, p. 163903, Apr. 2014, Doi: 10.1063/1.4873587.
- Alavikia, T. S. Almoneef, and O. M. Ramahi, “Complementary split ring resonator arrays for electromagnetic energy harvesting,” Appl. Phys. Lett., vol. 107, no. 3, p. 033902, Jul. 2015, Doi: 10.1063/1.4927238.
- Amiri, F. Tofigh, N. Shariati, J. Lipman, and M. Abolhasan, “Wide-angle metamaterial absorber with highly insensitive absorption for TE and TM modes,” Sci. Rep., vol. 10, no. 1, pp. 1–13, 2020, Doi: 10.1038/s41598-020-70519-8.
- L. Hakim, T. Alam, A. F. Almutairi, M. F. Mansor, and M. T. Islam, “Polarization insensitivity characterization of dual-band perfect metamaterial absorber for K band sensing applications,” Sci. Rep., vol. 11, no. 1, pp. 1–15, 2021, Doi: 10.1038/s41598-021-97395-0.
- Amiri, F. Tofigh, N. Shariati, J. Lipman, and M. Abolhasan, “Miniature tri-wideband Sierpinski-Minkowski fractals metamaterial perfect absorber,” IET Microwaves, Antennas Propag., vol. 13, no. 7, pp. 991–996, 2019, Doi: 10.1049/iet-map.2018.5837.
- A. G. Amer, S. Z. Sapuan, A. Alzahrani, N. Nasimuddin, A. A. Salem, and S. S. M. Ghoneim, “Design and Analysis of Polarization-Independent, Wide-Angle, Broadband Metasurface Absorber Using Resistor-Loaded Split-Ring Resonators,” Electronics, vol. 11, no. 13, p. 1986, Jun. 2022, Doi: 10.3390/electronics11131986.
- El Badawe, T. S. Almoneef, and O. M. Ramahi, “A metasurface for conversion of electromagnetic radiation to DC,” AIP Adv., vol. 7, no. 3, p. 035112, Mar. 2017, Doi: 10.1063/1.4978321.
- S. Almoneef, F. Erkmen, and O. M. Ramahi, “Harvesting the Energy of Multi-Polarized Electromagnetic Waves,” Sci. Rep., vol. 7, no. 1, p. 14656, Dec. 2017, Doi: 10.1038/s41598-017-15298-5.
- El Metaafy, H., Mohana, M., Gomaa, A., Yacoub, M. S., & Kassem, G. (2014). A PROPOSED DESIGN OF UWB MONOPOLE ANTENNA AND ITS LINEAR ARRAYS. JES. Journal of Engineering Sciences, 42(6), 1392–1413. https://doi.org/10.21608/jesaun.2014.115131
- A. Ghaleb Amer, S. Z. Sapuan, and N. Nasimuddin, “Wide-Coverage Suspended Metasurface Energy Harvester for ISM Band Applications,” in 2021 IEEE 19th Student Conference on Research and Development (SCOReD), Nov. 2021, pp. 87–90. Doi: 10.1109/SCOReD53546.2021.9652779.
- A. G. Amer, S. Z. Sapuan, N. Nasimuddin, and M. F. Hassan, “A Broadband Wide-Angle Metasurface Absorber for Energy Harvesting Applications,” 2021 Int. Conf. Technol. Sci. Adm. ICTSA 2021, no. April, 2021, Doi: 10.1109/ICTSA52017.2021.9406540.
- Zhao and Y. Cheng, “Ultrabroadband Microwave Metamaterial Absorber Based on Electric SRR Loaded with Lumped Resistors,” J. Electron. Mater., vol. 45, no. 10, pp. 5033–5039, Oct. 2016, Doi: 10.1007/s11664-016-4693-0.
- P. Kaur, T. Upadhyaya, M. Palandoken, and C. Gocen, “Ultrathin dual-layer triple-band flexible microwave metamaterial absorber for energy harvesting applications,” Int. J. RF Microw. Comput. Eng., vol. 29, no. 1, pp. 1–7, 2019, Doi: 10.1002/mmce.21646.
- A. Aldhaeebi and T. S. Almoneef, “Double-sided metasurface array for a dual-band and polarization-independent microwave-energy-harvesting system,” Materials (Basel)., vol. 14, no. 21, pp. 1–12, 2021, Doi: 10.3390/ma14216242.
- -T. Zhong, X.-X. Yang, X.-T. Song, Z.-Y. Guo, and F. Yu, “Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer,” Appl. Phys. Lett., vol. 111, no. 21, p. 213902, Nov. 2017, Doi: 10.1063/1.4986320.
- Duan, X. Chen, Y. Zhou, L. Zhou, and S. Hao, “Wideband Metamaterial Electromagnetic Energy Harvester with High Capture Efficiency and Wide Incident Angle,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 9, pp. 1617–1621, Sep. 2018, Doi: 10.1109/LAWP.2018.2858195.
- Ghaneizadeh, M. Joodaki, J. Borcsok, A. Golmakani, and K. Mafinezhad, “Analysis, Design, and Implementation of a New Extremely Ultrathin 2-D-Isotropic Flexible Energy Harvester Using Symmetric Patch FSS,” IEEE Trans. Microw. Theory Tech., vol. 68, no. 6, pp. 2108–2115, 2020, Doi: 10.1109/TMTT.2020.2982386.
- Ghaderi, V. Nayyeri, M. Soleimani, and O. M. Ramahi, “Multi-polarisation electromagnetic energy harvesting with high efficiency,” IET Microwaves, Antennas Propag., vol. 12, no. 15, pp. 2271–2275, Dec. 2018, Doi: 10.1049/iet-map.2018.5011.
- Zhang, H. Liu, and L. Li, “Electromagnetic Power Harvester Using Wide-Angle and Polarization-Insensitive Metasurfaces,” Appl. Sci., vol. 8, no. 4, p. 497, Mar. 2018, Doi: 10.3390/app8040497.
- Ghaneizadeh, K. Mafinezhad, and M. Joodaki, “Design and fabrication of a 2D-isotropic flexible ultra-thin metasurface for ambient electromagnetic energy harvesting,” AIP Adv., vol. 9, no. 2, p. 025304, Feb. 2019, Doi: 10.1063/1.5083876.
- -T. Zhong, X.-X. Yang, C. Tan, and K. Yu, “Triple-band polarization-insensitive and wide-angle metamaterial array for electromagnetic energy harvesting,” Appl. Phys. Lett., vol. 109, no. 25, p. 253904, Dec. 2016, Doi: 10.1063/1.4973282.
- Ghaderi, V. Nayyeri, M. Soleimani, and O. M. Ramahi, “Pixelated Metasurface for Dual-Band and Multi-Polarization Electromagnetic Energy Harvesting,” Sci. Rep., vol. 8, no. 1, p. 13227, Dec. 2018, Doi: 10.1038/s41598-018-31661-6.
- Wei, Y., Duan, J., Jing, H., Yang, H., Deng, H., Song, C., Wang, J., Qu, Z., & Zhang, B. (2022). Scalable, Dual-Band Metasurface Array for Electromagnetic Energy Harvesting and Wireless Power Transfer. Micromachines, 13(10), 1712. https://doi.org/10.3390/mi13101712
- Li, X. Zhang, C. Song, W. Zhang, T. Jia, and Y. Huang, “Compact Dual-Band, Wide-Angle, Polarization- Angle -Independent Rectifying Metasurface for Ambient Energy Harvesting and Wireless Power Transfer,” IEEE Trans. Microw. Theory Tech., vol. 69, no. 3, pp. 1518–1528, 2021, Doi: 10.1109/TMTT.2020.3040962.
- Lee and S. K. Hong, “Rectifying Metasurface with High Efficiency at Low Power for 2.45 GHz Band,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 12, pp. 2216–2220, Dec. 2020, Doi: 10.1109/LAWP.2020.3027833.
- El Badawe and O. M. Ramahi, “EFFICIENT METASURFACE RECTENNA FOR ELECTROMAGNETIC WIRELESS POWER TRANSFER AND ENERGY HARVESTING,” Prog. Electromagn. Res., vol. 161, no. January, pp. 35–40, 2018, Doi: 10.2528/PIER18011003.
- Xu, S.-Y. Wang, and W. Geyi, “Design of an effective energy receiving adapter for microwave wireless power transmission application,” AIP Adv., vol. 6, no. 10, p. 105010, Oct. 2016, Doi: 10.1063/1.4966050.
- Zhang, H. Liu, and L. Li, “Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting,” Appl. Phys. Lett., vol. 111, no. 7, p. 071902, Aug. 2017, Doi: 10.1063/1.4999327.
- N. Yoon, N. Ha-Van, and C. Seo, “High-gain and wideband aperture coupled feed patch antenna using four split ring resonators,” Microw. Opt. Technol. Lett., Aug. 2018.
- Luo, L. Pu, G. Wang, and Y. Zhao, “RF Energy Harvesting Wireless Communications: Rf Environment, Device Hardware and Practical İssues,” Sensors, 2019.
- Özkaya, L. Seyfi and Ş. Öztürk, “Çoklu banda sahip mikroşerit antenlerde boyut optimizasyonunun derin öğrenme yöntemleri ile gerçekleştirilmesi” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 229-233, 2021.
- Mohan and S. Mondal, “An impedance matching strategy for micro-scale RF energy harvesting systems,” IEEE Transactions on Circuits and Systems II: Express Briefs, 2020
- Khemar, A., Kacha, A., Takhedmit, H., & Abib, G. “Design and experiments of a dual-band rectenna for ambient RF energy harvesting in urban environments,” IET Microwaves, Antennas & Propagation, 2017.
- Shrestha, S.K. Noh, and D.Y. Choi, “Comparative Study of Antenna Designs for RF Energy Harvesting,” Int. J. Antennas Propagation, vol. 2013, Feb. 2013.
- Liu, X.; Li, M.; Chen, X.; Zhao, Y.; Xiao, L.; Zhang, Y. A Compact RF Energy Harvesting Wireless Sensor Node with an Energy Intensity Adaptive Management Algorithm. Sensors 2023, 23, 8641.
- Kadir, E.A.; Hu, A.P.; Biglari-Abhari, M.; Aw, K.C. Indoor Wi-Fi Energy Harvester with Multiple Antenna for Low-Power Wireless Applications. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4 June 2014; pp. 526–530.
- DeLong, B.J.; Kiourti, A.; Volakis, J.L. A Radiating Near-Field Patch Rectenna for Wireless Power Transfer to Medical Implants at 2.4 GHz. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 2, 6
- Kim, S.; Bito, J.; Jeong, S.; Georgiadis, A.; Tentzeris, M.M. A Flexible Hybrid Printed RF Energy Harvester Utilizing Catalyst- Based Copper Printing Technologies for Far-Field RF Energy Harvesting Applications. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–4.
- Liu, X.; Li, M.; Chen, X.; Zhao, Y.; Xiao, L.; Zhang, Y. A Compact Stacked RF Energy Harvester with Multi-Condition Adaptive Energy Management Circuits. Micromachines 2023, 14, 1967.
- Li, P.; Long, Z.; Yang, Z. RF Energy Harvesting for Batteryless and Maintenance-Free Condition Monitoring of Railway Tracks. IEEE Internet Things J. 2021, 8, 3512–3523.
- Loubet, G.; Takacs, A.; Dragomirescu, D. Implementation of a Battery-Free Wireless Sensor for Cyber-Physical Systems Dedicated to Structural Health Monitoring Applications. IEEE Access 2019, 7, 24679–24690.
- Khan, N.U.; Ullah, S.; Khan,F.U.; Merla, A. Development of 2400–2450 MHz Frequency Band RF Energy Harvesting System for Low-Power Device Operation. Sensors 2024, 24, 2986. https://doi.org/10.3390/s241029
|