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Abstract. Non–Destructive Inspection (NDI) using phased arrays is used to detect
defects in structures of Aerospace vehicles, such as cracks, corrosion spots, composite
material delaminations and others. Ultrasonic Imaging, an advanced NDI technique,
relies on advanced signal processing methods to accurately localize defects. The Multiple
Signal Classification (MUSIC) is a high resolution spectral estimation method typically
used for Angle of Arrival (AOA) estimation. This work examines the applicability and
performance of the MUSIC method for localization, rather than AOA estimation, of point
defects and finite–length cracks in structures. The advantages of MUSIC over traditional
methods like the Delay and Sum Beamformer (DSBF) are highlighted.

1 Introduction
The aviation industry is one of the most safety-critical sectors, where minor structural defects can lead to
catastrophic failures. The integrity of the aircraft structure is essential to ensure the safety of crew and
aircraft. Structural defects such as cracks, corrosion, and delamination, if undetected, can propagate over
time and ultimately lead to catastrophic failures [1]. Early detection of these defects is a critical research
focus, particularly in the aerospace industry, where plate-like structures require thorough inspection.
Early detection not only ensures high levels of operational safety but also extends the service life of these
structures. Consequently, the implementation of reliable inspection methods during both manufacturing
and in–service operations is essential to prevent catastrophic failures [2]. Non–Destructive Inspection
(NDI) serves as a pivotal solution to achieve these objectives.

NDI is widely utilized in many industrial fields such as aerospace, oil and gas, power generation, trans-
portation, and medical diagnostics. Common NDI methods include Visual Inspection, Liquid Penetrant
Testing (LPT), Magnetic Particle Testing (MPT), Eddy Current Testing (ECT), Radiographic Testing
(RT), and Ultrasonic Testing (UT) [3]. Among these methods, Ultrasonic Imaging (UI) stands out as one
of the most advanced and reliable NDI techniques. UI offers several advantages, including the ability to
detect both internal and surface defects, safe for human operators as it does not emit ionizing radiation,
high sensitivity, a long detection range, testing speed, ease, and instantaneous printable results [4, 5, 6].

A critical aspect of UI is the application of signal processing methods to translate the measured signals
into images that reveal defect locations [7]. There are several methods that can estimate the Angle of
Arrival (AOA) of received signals. Typical example is the well–known Delay and Sum Beamformer
(DSBF). In this paper, It is demonstrated that AOA estimation using DSBF reduces to the periodogram
non–parametric spectral estimation method [8, 9]. The Multiple Signal Classification (MUSIC) is another
spectral estimation method known for its super resolution. In this work, the DSBF and MUSIC spectral
estimation methods are both formulated for estimating the location (range r and AOA θ) of a Near–Field
(NF) source. Their performance is examined in a great details. The performance of these methods for
structural defect detection is examined in detail.

https://creativecommons.org/licenses/by/4.0/
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Figure 1: Signal model

2 FF AOA Estimation using DSBF
As shown in figure 1, for a signal coming from a Far–field (FF) source at an Angle of Arrival (AOA) θ0,
the signal received at the m–th sensor of a sensor array can be written as

sm (t) = u0 (t+ τm (θ0)) (1)

where u0 (t) is the signal arriving at the origin

τm (θ) ≡ xm cos (θ)

c
(2)

and c is the propagation speed.
For an array of M receivers, the Delay and Sum BeamFormer (DSBF) steers the array output at an

angle θ as [10]

y (t, θ) =

M−1∑
m=0

sm (t− τm (θ)) (3)

When θ coincides with the true source angle θ0, the summation in equation (3) yields constructive
interference [10]. Equation (3) can be implemented in the temporal frequency domain as [9]

Y (ω, θ) =

M−1∑
m=0

Sm (ω) e−jωτm(θ) (4)

where
Sm (ω) ≡ Ft [sm (t)] (5)

is the temporal Fourier Transform (FT) of sm (t). Substituting equation (2) in (4) yields

Y (ω, θ) =

M−1∑
m=0

Sm (ω) e−j ω
c xm cos(θ) (6)

=

M−1∑
m=0

Sm (ω) e−jkxm cos(θ) (7)

where

k ≡ ω

c
(8)
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Figure 2: Illustration of the SXFT, or BF using a (fictitious) linear aperture

=
2π

λ
(9)

is the spatial frequency (also known as “wave–number”).
By defining

kx ≡ k cos (θ) (10)

equation (7) is written as

Y (ω, kx) =

M−1∑
m=0

Sm (ω) e−jkxxm (11)

Similar to the temporal Short–Time Fourier Transform (STFT) [8], the spatial Short x Fourier Trans-
form (SXFT) can be written as

Sw (kx) =

∫ Lx/2

−Lx/2

sw (x) e−jkxxdx (12)

By comparing equations (12) and (11), it is clear that Y (ω, kx) is the SXFT of S (ω, x) over a finite–width
fictitious line aperture spanning xm ∈ [−Lx/2, Lx/2]. That is

Y (ω, kx) = SXFT [S (ω, x)] (13)

= SXFT [Ft [s (t, x)]] (14)

This is illustrated in figure 2.
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Figure 3: Digital calculation of the DXSXFT by the zero–padded DFT
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Figure 4: Several spectral estimation methods detecting AOA’s of FF sources at ϕ = 30◦ and 40◦

kx can be mapped back to the source AOA as [equations (10) and (9)]

θ = cos−1

(
kx
k

)
(15)

= cos−1

(
ξx
ξ

)
(16)

ξ ≡ 1

λ
(17)

ϕ ≡ 90◦ − θ (18)

= sin−1

(
ξx
ξ

)
(19)

Using a Uniform Linear Array (ULA), the SXFT of equation (14) is discretized with ∆x ≡ Lx

M to
obtain the Discrete x Short x Fourier Transform (DXSXFT) [8]

Ys (ω, kx) = DXSXFT [Ft [s (t, x, y)]] (20)

as graphically illustrated in figure 3. Finally, the DXSXFT is digitally calculated by applying the zero–
padded Discrete Fourier Transform (DFT) [8] to obtain Ysz, as graphically illustrated in figure 3.

In the presence of measurement noise, estimating the magnitude |Ys| is a standard spectral estimation
problem [9]. The DSBF is in fact the periodogram non–parametric spectral estimation method [8, 9]

RY Y = |Ysz|2 (21)

There are several spectral estimation methods other than the periodogram method [9]. Figure 4
compares spectral estimation using DSBF with the famous Capon’s Minimum Variance Distortionless
Response (MVDR) beamformer and the MUltiple SIgnal Classification (MUSIC) methods. As shown in
the figure, in case of multiple source signals, the contribution from one source biases the DSBF estimator
output along other directions of arrivals [11]. If there are two sources located inside the the main lobe,
their peaks merge forming a single peak, deteriorating the resolution. On the other hand, the MUSIC
method has significantly higher resolution that can resolve arbitrary closely signal sources [10].
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3 NF Defect Localization using Spectral Estimation Methods
It was shown in the previous section that any spectral estimation method can be systematically applied
to the estimate the AOA of a FF source. In this section, the DSBF and MUSIC spectral estimation
methods are formulated for estimating the location (range r and AOA θ) of a Near–Field (NF) source.

3.1 NF DSBF
As shown in figure 5, for a NF source located at −→rk , the signal received at the m–th sensor can be written
as

sm (t) = αmkuk (t+ τmk) (22)

where

τmk ≡ τm (−→rk) (23)

≡ τ̄k − τ̄mk (24)

τ̄k ≡ τ̄ (−→rk) (25)

τ̄mk ≡ τ̄m (−→rk) (26)

αmk ≡ αm (−→rk) (27)

≡ ᾱmk

ᾱk
(28)

ᾱk ≡ ᾱ (−→rk) (29)

ᾱmk ≡ ᾱm (−→rk) (30)

and

ᾱm (r⃗) =
1

|−→rm − r⃗|
(31)

represents the attenuation in the source signal amplitude due to wave propagation spread in a plate.
Similar to equation (4), the NF DSBF in the temporal frequency domain becomes

Y (ω,−→rk) =
M−1∑
m=0

Sm (ω) e−jωτmk (32)
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3.2 NF MUSIC
For a set of K sources and in the presence of arbitrary noise, the received signal at the m–th sensor can
be written as

sm (t) =

K∑
k=1

αmkuk (t+ τmk) + nm (t) (33)

Equation (33) can be written in the frequency–domain as

Sm (ω) =

K∑
k=1

αmkUk (ω) e
jωτmk +Nm (ω) (34)

or in vector form
{S (ω)}M×1 = [A]M×K {U (ω)}K×1 + {N (ω)}M×1 (35)

where

{S (ω)} ≡


S0 (ω)
S1 (ω)

...
sM−1 (ω)


M×1

(36)

[A]M×K ≡ [{a1} , {a2} , . . . , {aK}] (37)

{ak}M×1 =


α0ke

jωτ0k

α1ke
jωτ1k

...
α(M−1)ke

jωτ(M−1)k

 (38)

{U (ω)}K×1 =


U1 (ω)
U2 (ω)

...
UK (ω)

 (39)

By defining the array output auto–spectrum matrix

[RSS (ω)] ≡ E

[[
{S (ω)} {S (ω)}†

]
M×M

]
ensemble

(40)

and assuming the noise signals are uncorrelated among themselves and with source signals yields

[RSS ]M×M = [A]M×K E
[
{U (ω)}K×1 {U (ω)}†1×K

]
[A]

†
K×M +

⌈
diag

(
σ2

)⌋
M×M

(41)

= [A]M×K [RUU ]K×K [A]
†
K×M +

⌈
diag

(
σ2

)⌋
M×M

(42)

= [RSS ]M×M +
⌈
diag

(
σ2

)⌋
M×M

(43)

where [RUU ]K×K is the sources auto–spectrum matrix,

[RSS ]M×M = [A]M×K [RUU ]K×K [A]
†
K×M (44)

is the noise free sensors auto–spectrum matrix,

⌈
diag

(
σ2

)⌋
=


σ2
0 0 · · · 0
0 σ2

1 · · · 0
...

...
. . .

...
0 0 · · · σ2

M−1


M×M

(45)

and σ2
m is the noise power at the m–th sensor.
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Figure 6: Signal transmission and reception model

If the K source signals are uncorrelated, then the [RUU ]K×K matrix will have full rank. Otherwise,
it will have a rank equal to the number of uncorrelated signals. By definition [equation (40)] [RSS (ω)]
is Hermitian and always non–negative definite. Assuming uncorrelated source signals, [RUU ]K×K is
full rank. Hence, eigenvalues of the positive definite auto–spectrum matrix [RUU ]K×K are all positive

µ1 ⩾ µ2 ⩾ . . . ⩾ µK > 0 [10]. Thus, eigenvalues of [RSS ] are denoted as [10]

λm =


µk=m m = 1, 2, . . . ,K

0 m = K + 1, . . . ,M

(46)

Then for the ideal model described by equation (41), eigenvalue decomposition of [RSS ] yields the M
eigenvalues

λm =


µk=m + σ2

m m = 1, 2, . . . ,K

σ2
m m = K + 1, . . . ,M

(47)

and their associated eigenvectors {β1} , {β2} , . . . , {βK} , {βK+1} , . . . , {βM}. Based on these assumptions,
peaks of the function

PMUSIC (−→rk) =
1

{a (−→rk)}
†
[Bn] [Bn]

† {a (−→rk)}
(48)

will correspond to the true positions, where [Bn] is the matrix whose columns are the eigenvectors
associated with the noise eigenvalues

[Bn] = [{βK+1} , . . . , {βM}] (49)

4 Simulation Methodology
As shown in figure 6, the n–th element of the array transceivers transmits a signal sn(t). This signal
propagates omni–directionally till it is reflected at a defect located at −→rk , back to the sensor array. The
m–th sensor thus receives

sm (t) = Bᾱmkᾱnksn (t− (τ̄mk + τ̄nk)) (50)

where B represents the relative reflection attenuation at the defect.
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5 Simulation and Results
A MATLAB code was built to implement equation (50), with B = 0.05, and the NF DSBF and MUSIC
methods explained in sec. 3. The test configurations of [12] are used. That is, Hann smoothed tone–burst
excitation signal having three cycles of fc = 300 kHz are used. This signal is initially transmitted from
the 1st element of the sensor array so that it is reflected at the defects and returns back to the array
sensors. For a 1 mm thick Aluminum alloy plate, the wave propagation speed in 5440 m/s. A ULA having
M = 8 and sensor spacing d = 8 mm is used. The sampling frequency is set to fs = 4fc. Contrary to [12],
Additive White Gaussian Noise (AWGN) is added to the received signals so that the Signal–to–Noise
Ratio (SNR) is SNR = 1. N = 2048 time samples were used to estimate the auto–spectrum matrix [10].
The origin of the x − z coordinate system is set at the sensor array center, as shown in figure 7. The
simulated defect/crack is set at z = 100 mm and θ = 60◦, unless otherwise specified. The results of
MUSIC method are compared to those of the conventional DSBF.

To demonstrate the high resolution of MUSIC, a very fine calculation grid with ∆θ = 0.25◦ and
100 radial steps is used for the B–scan image. The grid spans the range θ = [45◦ − ∆θ

2 , 135◦ + ∆θ
2 ]

and r = [90mm, 150mm]. The angular grid span is shifted by ∆θ
2 in order to prevent grid points from

coinciding with cracks located at integer values of θ. This yields practical results, as explained later in
the following section.

5.1 Point Defect
A point defect is simulated at θ = 60◦ + ∆θ

2 so that it coincides with one of the calculation grid points
[7]. As shown in figure 8, MUSIC detects the defect location (AOA and radius (range)) with exceptional
resolution. On the other hand, DSBF could only detect the AOA rather than the range. For the practical
case where the point defect does not coincide with a grid point, θ = 60◦, the results of figure 9(a) are
obtained. This figure shows that MUSIC still yields much higher localization resolution as compared with
DSBF, which fails to detect the range. In fact, for all the subsequent results, the DSBF fails to detect
the defect range.
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5.2 Finite–Length Crack
So far, we modeled the crack as a point. Real cracks however have finite lengths. To simulate a finite–
length crack, 100 adjacent points spanning the crack length are used. The simulated cracks lengths are
λ/4 long and are oriented normal to the crack position vector, unless otherwise specified.

The B–scan images calculated using both NF MUSIC and DSBF are shown in figure 9(b). As shown
in the figure, the MUSIC resolution is superior to DSBF.

5.3 Factors Affecting the Detection
To further analyze the MUSIC method, the effects of crack angle, orientation, size, and SNR are discussed.

5.3.1 Crack Angular position The crack may exist at any arbitrary position. For three cracks are
assumed at angles θ = 90◦, 75◦ &60◦, the B–scan images of figures 9(b)–9(d) are calculated. As shown
in the figure, MUSIC could detect cracks at all angular positions with superior resolution as compared
to DSBF.

5.3.2 Crack Orientation For the same crack of figure 9(b), several crack orientation angles [figure 7] are
studied and their resulting images are displayed in figure 10. As the figure shows, as the crack orientation
angle deviates away from the normal to, or the coincident with, the crack position vector [figure 7], the
resolution (especially the range) deteriorates considerably. This conforms with the analysis in [13].

5.3.3 Crack Size In this section, several crack lengths are analyzed as shown in figure 11. As noticed
from the figure, the crack’s range is correctly detected for crack sizes smaller than the signal wavelength λ.
As the crack length exceeds the wavelength, the range resolution deteriorates, while the AOA resolution
remains satisfactory. This suggests an upper limit for the crack size that is accurately detectable for a
typical signal frequency.

Additionally, it is noticed that the AOA resolution is linearly proportional to the crack size. That is,
an empirical relation can be obtained to calculate the crack size from the calculated AOA resolution.

5.3.4 Signal–to–Noise Ratio (SNR) In this section, the effect of the SNR, of the AWGN, on the pro-
posed method is examined. Doing so, AOA is estimated for several SNR values, as shown in figure 12.
As the figure shows, MUSIC resolution hardly changes with changing the SNR. This is explained due to
the high number of time samples used in simulations, N = 2048 [14]. Figure 12 shows that the resulting
high averaging could diminish the noise for the studied SNR cases, and hence all the cases are all nearly
the same.

To verify this reasoning, the amount of averaging is reduced by reducing the number of time samples
down to N = 16, to obtain the results of figure 13. For SNR as low as 0.1, 13(a) shows that MUSIC
could correctly detect the AOA, rather than the range. This is however still better than the best possible
DSBF results shown in figure 13(e). For higher SNR’s, figures 13(b) to 13(d) show that MUSIC could
accurately localize the crack with resolutions enhancing proportionally with the SNR. Further studies of
the SNR effects can be found in [15, 9].
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Figure 9: (left) DSBF, and (right) MUSIC; 9(a) Point defect, (9(b)–9(d)) finite–length cracks at various
angular positions
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Figure 10: (left) DSBF, and (right) MUSIC for a crack versus varying crack orientation angles, α (same
color map as figure 9). Subfigures are organized counter–clock–wise for easy understanding. (continued
in the next page)
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Figure 10: (continued) (left) DSBF, and (right) MUSIC for a crack versus varying crack orientation angles,
α (same color map as figure 9). Subfigures are organized counter–clock–wise for easy understanding.
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Figure 11: (left) DSBF, and (right) MUSIC for a crack located at θ = 60◦ and different crack lengths
(same color map as figure 9) (continued in the next page).
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Figure 11: (continued) (left) DSBF, and (right) MUSIC for a crack located at θ = 60◦ and different crack
lengths (same color map as figure 9).
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Figure 12: (left) DSBF and (right) MUSIC for a crack located at θ = 60◦, using high averaging, N = 2048
(same color map as figure 9)
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Figure 13: (left) DSBF and (right) MUSIC for a crack located at θ = 60◦, using Low averaging, N = 16
(same color map as figure 9).
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6 Conclusion
This study comprehensively evaluated the performance of NF MUSIC algorithm for crack localization,
by comparing it with the conventional DSBF method. The analysis examined several factors including
crack angular position, orientation, size and SNR.

• Crack angular position:NF MUSIC accurately localizes cracks at arbitrary angles.

• Crack orientation: Resolution degrades as the crack deviates from orientations normal or parallel
to the position vector.

• Crack size: While MUSIC correctly detects the range for sub-wavelength cracks, range resolution
deteriorates for cracks exceeding the signal wavelength, though AOA resolution remains robust and
linearly correlated with crack size.

• SNR: MUSIC exhibits strong noise resilience, maintaining high resolution even at low SNR levels
when sufficient time averaging is applied. With reduced averaging, MUSIC still outperforms DSBF,
though its range detection capability diminishes at very low SNR.

The results demonstrate that NF MUSIC achieves exceptional resolution in detecting both the AOA
and range, whereas DSBF fails to resolve the range in all cases. These findings highlight MUSIC su-
periority in high–resolution defect localization, particularly in scenarios involving noise, arbitrary crack
positions, and sub-wavelength defects. Future work could explore experimental validation under real–
world conditions.
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