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ABSTRACT 
    This research was conducted through the 2024 and 2025 seasons on Tomato (Solanum 
lycopersicum var. Staffy 409). Tomato fruits were harvested at the turning stage (20–30% red 
coloration) to study the effect of postharvest treatments, chitosan (CS, 125 ppm), potassium 
permanganate (7.5 ppm), salicylic acid (SA, 0.4 mM), pomegranate peel extract + chitosan (PPE-
CS, 125 ppm each), liquorice root extract + chitosan (LRE - CS, 125 ppm each), and zeolite + 
chitosan (ZE-CS, 125 ppm each), in addition to an untreated control, on delaying ripening and 
maintaining quality attributes, and extending storability during cold storage at 10°C and 90–95% 
relative humidity for 30 days. The obtained results revealed that the application of a zeolite 
composite solution at 125 ppm and salicylic acid at 0.4 mM was notably effective in reducing 
weight loss and lycopene accumulation, as well as changes in color, with no signs of decay. In 
addition to retention and maintained firmness, titratable acidity, ascorbic acid, antioxidant 
content and lightness. Moreover, after 30 days of storage at 10°C, SA treatment yields an 
excellent appearance, while Ze-CS treatment achieves a good appearance during the same 
period.      
Keywords: Tomatoes- chitosan- potassium permanganate- salicylic acid- pomegranate peel   
                      extract. 

INTRODUCTION 
Tomato (Solanum lycopersicum L.) is 

ranked among the most important 
horticultural fruits worldwide, prized for its 
nutritional value and economic significance. 
However, its postharvest shelf life is 
severely limited by its highly perishable 
nature. As a climacteric fruit, tomato 
continues to ripen after harvest through a 
burst of ethylene production and respiratory 
activity, leading to rapid tissue softening, 
pigment changes, and quality degradation 
(Zapata et al., 2008). These physiological 
changes, combined with high transpiration 
rates and susceptibility to pathogenic fungi, 
result in significant losses through 
shriveling, decay, and senescence during 
storage, distribution, and marketing (El-
Ramady et al., 2015; Chrysargyris et al., 
2016). In order to mitigate these issues, most 
postharvest storage methods focus on 
regulating respiration and ethylene activity 
to slow down these changes (Martínez-
Romero et al., 2007). Therefore, the 

development of effective and sustainable 
postharvest strategies to mitigate these 
issues is crucial for reducing losses and 
extending the marketability of products. 

A primary focus of postharvest 
technology is controlling the action of 
ethylene and regulating respiration rates. A 
promising strategy to achieve this is the 
application of edible coatings and bioactive 
compounds that can modify the internal 
atmosphere, scavenge ethylene, and bolster 
the fruit's innate defense mechanisms. 
Among these, chitosan (CS), a 
biodegradable and non-toxic polysaccharide, 
has emerged as a leading material. CS-based 
coatings form semi-permeable barriers that 
reduce respiration, minimize water loss, and 
delay ripening, thereby preserving firmness 
and weight in tomatoes and other fruits 
(Wang et al., 2022). Furthermore, its 
antimicrobial and antifungal properties 
enhance its role in postharvest management 
(Gasilova et al., 2024). Several reports 
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confirm that CS-based edible films extend 
the shelf life and maintain the quality of 
various horticultural commodities, including 
cherry tomatoes (Buthelezi et al., 2023) and 
strawberries (Saleem et al., 2021). 

The efficacy of chitosan can be 
significantly enhanced by integrating it with 
other functional materials. Zeolites, 
crystalline aluminosilicates with high 
porosity and cation-exchange capacity, are 
excellent adsorbents for ethylene. Their 
incorporation into chitosan matrices creates 
composite coatings that actively remove 
ripening hormones from the storage 
environment, further delaying senescence 
(de-Bruijn et al., 2020). Their abundance, 
low cost, nontoxicity, and environmental 
safety make them excellent sorbents for 
ethylene removal in the agro-food sector 
(Hosseinnia et al., 2024). Tomato fruits 
treated with zeolite at 3% (w/w, based on 
chitosan) exhibited improved coating 
properties, thereby delaying the ripening of 
the tomatoes. Zeolite is utilized due to its 
high porosity and large surface area, which 
enable effective adsorption of ethylene, 
carbon dioxide, and oxygen gases (García et 
al., 2014). Similarly, potassium 
permanganate (KMnO₄ ) acts as a potent 
ethylene oxidizer, converting it to carbon 
dioxide and water, a technology proven to 
reduce respiration and extend the shelf life 
of various climacteric fruits (Atala and El-
Gendy, 2020). 

Beyond physical barriers and 
adsorbents, the use of plant-derived 
bioactive compounds offers a biological 

strategy to delay ripening and enhance 
resistance. Salicylic acid (SA), a natural 
phenolic compound, acts as a signaling 
molecule that suppresses endogenous 
ethylene biosynthesis and respiration, 
thereby delaying senescence and softening. 
SA treatment also enhances the antioxidant 
system, helping to maintain ascorbic acid 
levels and reduce oxidative stress in fruits 
such as tomatoes and kiwis (Aghdam et al., 
2014). 

Furthermore, agro-industrial waste 
extracts represent a sustainable and potent 
source of antimicrobial and antioxidant 
agents. Pomegranate peel extract (PPE), rich 
in phenolic compounds, provides potent 
antioxidant and antimicrobial activities that 
can reduce microbial burden and slow 
oxidative degradation when incorporated 
into coatings (Nicosia et al., 2016). 
Furthermore, liquorice root extract possesses 
well-documented antifungal, antioxidant, 
and anti-inflammatory properties, showing 
great potential as a natural bio-preservative 
to control postharvest diseases and maintain 
quality (Madanipour et al., 2019). 

Therefore, this study aims to evaluate 
and compare the effectiveness of several 
postharvest treatments, including chitosan 
coatings functionalized with pomegranate 
peel extract, liquorice root extract, and 
zeolite, as well as applications of potassium 
permanganate and salicylic acid delaying 
ripening, maintaining quality attributes, and 
extending the storability of tomato fruits 
during 30 days of storage at 10°C and 90-
95% relative humidity. 

MATERIALS AND METHODS 
Tomato fruits (Solanum lycopersicum 

var. Staffy 409) were harvested at the 
turning stage (20-30%) of surface in the 
aggregate shows a definite change in colour 
from green to tarnish yellow, pink, red or 
orange from a private farm in Fayoum 
Governorate, Egypt, on April 3

rd
 and 5

th
 

during the 2024 and 2025 seasons, 
respectively. Immediately after harvest, the 
fruits were transported to the Vegetable 
Handling Research Department laboratory at 

the Horticultural Research Institute, 
Agricultural Research Center, Giza. 

For the storage experiment, only 
tomatoes that were free from physiological 
defects and fungal diseases, and that 
exhibited uniform size (diameter: 4-5 cm) 
and weight (100-110 g), were selected. The 
fruits were washed in a 0.05% sodium 
hypochlorite solution for 5 minutes to ensure 
surface sanitation before applying the 
coating treatments, then rinsed with distilled 
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water, and air-dried at room temperature, as 
described by Chrysargyris et al. (2016). 
 
Preparation of pomegranate peel extract 
(PPE) and liquorice root extract (LRE): 
Pomegranates (Punica granatum L.) were 
obtained from a local market (Giza, Egypt). 
The fruits were thoroughly washed with 
distilled water, and the seeds were removed. 
Liquorice roots (Glycyrrhiza glabra) were 
purchased from the local market, Cairo, 
Egypt and washed with distilled water. Both 
dried pomegranate peels and liquorice roots 
were dried in a hot air oven (D-63450 
Heraeus, Germany) at 50 °C. After drying, 
the samples were ground into a fine powder 
before extraction of the bioactive 
compounds. Ethanolic extracts were 

obtained using a previous methodology 
(Babu et al., 2003). Preparation of solutions 
for PPE and LRE: A 0.25% chitosan solution 
with 0.25% PPE or LRE, respectively, was 
prepared separately.  
Preparation of Zeolite solutions: The 
zeolite-chitosan composite, a 3% zeolite 
suspension (relative to 0.5% chitosan), was 
prepared according to Xu et al. (2006). A 
0.25% chitosan solution was prepared by 
dissolving chitosan in 0.5% acetic acid at 
45°C under continuous magnetic stirring 
until complete dissolution. Zeolite powder 
was dispersed in 2 L of 1% acetic acid and 
stirred vigorously for 24 hours. Then, 8 L of 
the 0.22% chitosan solution was gradually 
added to the zeolite suspension, followed by 
24 h of continuous stirring. 

Table (1). Bioactive compound of PPE-CS, LRE-CS extracts, and ZE-CS composite: 

Treatments 
Bioactive compounds 

Total phenolic content 
(mg GAE/g) 

Total flavonoid content 
(mg QC/g) 

Antioxidant activity 
(%) 

Pomegranate peel 
extract (PPE) 

112.73±0.24a 73.61±0.25a 83.49±0.49a 

Liquorice root extract 
(LRE) 

44.96±0.27
b
 26.11±0.26

b
 58.13±0.30

b
 

Zeolite composite (ZE) 1.09±0.02c 3.23±0.01c 4.71±0.23c 

Table (2): Mineral composition of zeolite: 

 
Component Fe2O3 MnO CaO K2O P2O5 SiO2 MgO 

% 12.89 0.15 10.97 1.63 0.90 39.27 9.23 

Analytical methods: Proximate analysis of minerals was determined according to the standard methods of 
the A.O.A.C. (2016). 

Coating treatments: Tomato fruits were 
dipped for 5 minutes in the following 
solutions:  

 Chitosan (CS) at 125 ppm. 
 Pomegranate peel extract (PPE) at 

125 ppm + chitosan at 125 ppm 
(PPE-CS). 

 Liquorice root extract (LRE) at 125 
ppm + chitosan at 125 ppm (LRE-
CS) 

 Zeolite composite (ZE) at 125 ppm + 
chitosan at 125ppm (ZE-CS) 

 Potassium permanganate (KMnO4) 
at 7.5 ppm. 

 Salicylic acid (SA) at 0.4 mM.  
 Untreated fruits (control). 

After treatment, all samples were air-
dried and packed into carton boxes (25 cm × 
15 cm × 10 cm), each containing 
approximately 1000 g of fruit, to constitute 
an experimental unit (EU). Each treatment 
consists of twenty experimental units. The 
samples were stored at 10°C and 90–95% 
relative humidity under a completely 
randomized design. For each treatment and 
time point, three experimental units were 
randomly selected and analyzed 
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immediately after treatments as well as after 
7, 14, 21, and 30 days of storage.  

 

Postharvest Quality Assessments 

Weight loss: This was measured using the 
following equation: [(Wa-Wb)/Wa] x 
100.Where: Wa= Initial fruit weight, Wb = 
fruit weight at the sampling period 

General appearance (score): was evaluated 
using a scale of 9 to 1, where 9 = 
excellent, 7 = good, 5 = fair, 3 = poor, and 1 
= unsalable. Fruits with a rating of 5 or 
lower were considered unmarketable, 
following the criteria established by Kader 
(2002). 

Decay: Tomato decay and disorder severity 
were assessed using a subjective scoring 
system based on (1 = none, 2 = slight, 3 = 
moderate, 4 = severe, 5 = extreme), 
following the description by Wang and Qi 
(1997). 

Color: Tomato color was measured using a 
Minolta CR-400 Chroma Meter, recording 
the a* value (red-green intensity: a* > 0 = 
red, a* < 0 = green) and lightness (L* 
value).   

Firmness: was evaluated with a hand 
pressure tester (Italian model) featuring an 8 

mm plunger, and the results were recorded 
in kg/cm

2 
(Abbott, 1999). 

Titratable acidity (%): This was measured 
through titration with 0.1 N NaOH using 
phenolphthalein as an indicator outlined by 
A.O.A.C. (1990). 

Ascorbic acid (vitamin C) content: 
(mg/100g fresh weight) was measured using 
the iodometric titration method (Satria et al., 
2021).  

Lycopene content (mg/g fresh weight): 
was assessed according to the method 
outlined by Anthon and Barrett (2006). 

Antioxidant activity using DPPH: was 
assessed using the DPPH radical scavenging 
assay (Brand-Williams et al., 1995).  
Total phenolic content “in extract”: was 
determined following a method described by 
Wolfe et al. (2003).  
Total flavonoid content “in extract”: was 
assessed according to the method described 
by Zhishen et al. (1999). 
Statistical Analysis: Duncan's multiple 
range test method was applied for 
comparing means, as described by Waller 
and Duncan (1969). Data were statistically 
analyzed using the analysis of variance 
described by Snedecor and Cochran (1980). 

RESULTS AND DISCUSSION 
 Weight Loss: Water loss is a major factor 
in crop deterioration, leading to a reduction 
in marketable weight and resulting in 
quantitative crop losses. Additionally, it 
negatively impacts quality by causing 
wilting, shriveling, and tissue softening 
(Hasan et al., 2024). The data in Table (3) 
indicate a gradual increase in weight loss 
percentage with prolonged storage periods. 
These results are in agreement with Álvarez-
Pérez et al. (2025). They may be due to 
nutrient consumption during respiration and 
the exchange of water caused by differences 
in the water vapor pressure gradient between 
the tissue and the ambient air during the 
storage period (Al-Dairi et al., 2021).  

Among both seasons, all postharvest 
treatments reduced weight loss relative to 
the control. However, tomatoes treated with 
salicylic acid (SA) and zeolite with chitosan 
(ZE-CS) were the most effective in reducing 
weight-loss percentages, with no significant 
difference between them. At the same time, 
the other treatments were less effective in 
this regard, consistent with prior reports in 
tomatoes (García et al., 2014, and 
Baninaiem et al., 2016). 

Weight loss during storage results from 
the combined effects of substrate utilization 
through respiration and water loss through 
transpiration. Salicylic acid can curb both: it 
interferes with mitochondrial electron 
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transport (acting as an inhibitor/uncoupler) 
to lower O2 uptake, and it can promote 
stomatal closure in many contexts, reducing 
transpiration and thus water loss (Hanaei et 
al., 2022). Moreover, zeolite adsorbs 
headspace ethylene, thereby delaying 
ripening and respiration, improving visual 
quality, and reducing weight loss. 
Formulation-dependent tuning of gas 
permeation and adsorption 
(O2/CO2/ethylene) further helps control 
degradative changes and support mass 
retention during storage (Hosseinnia et al., 
2024). 

After 30 days of storage, the lowest 
weight loss was recorded for SA-treated 
tomato fruits, followed by ZE-CS treatment, 
with a significant difference between the 
two. The highest weight loss was observed 
in the untreated (control) group. 
General Appearance score (GA): 

The general appearance score of tomato 
fruits was significantly influenced by 
postharvest treatments, storage durations, 
and their interactions in the two seasons, as 
illustrated in Table (4). Showed a significant 
decline in general appearance with 
prolonged storage periods, these are 
confirmed by Mohammed et al. (2021). This 
decline may be attributed to wilting, 
shriveling, decay, color changes, and overall 
deterioration (Zhang et al., 2020), as well as 
delayed ripening (Wakene and Sharew, 
2024). Shrinkage is a key indicator of 
deterioration, resulting in a deterioration of 
quality and a reduction in quantity (Bapary 
et al., 2024). However, tomato fruits treated 
with all postharvest treatments had 
significantly higher appearance than 
untreated fruits. SA maintained an excellent 
appearance with no noticeable changes over 
30 days of storage. ZE-CS maintained good 
visual quality. Meanwhile, ZE-CS exhibited 
good appearance during the same period. 
These results also support the view of 
Baninaiem et al. (2016) on SA and de-
Bruijna et al., (2019) on ZE, who reported 
that the application of SA and ZE-CS 
prolonged the storage life of tomato fruits, 

as measured by a delay in the accumulation 
of lycopene and a decrease in decay 
development, exhibited longer storage life, 
and reduced spoilage. 

Salicylic acid (SA) inhibits ethylene 
biosynthesis and transpiration, as well as 
delaying some fruit ripening processes 
during postharvest storage (Ennab et al., 
2020). Senescent changes, which result in 
losses of physicochemical properties and 
nutritional qualities, can also be inhibited. 
Consequently, fruit storage life could be 
markedly prolonged. Exogenous SA could 
be effective in reducing the rate of 
respiration and ethylene production (Wang 
et al., 2024) and delaying the senescence. 
On the other hand, SA treatment reduces 
cellular metabolic activities, such as 
respiration and ethylene production, thereby 
maintaining the membranes and cell walls 
and preventing an abnormal increase in 
soluble solids (Şahin et al., 2025). 
Additionally, it also inhibits the spread of 
fungal contamination (Xu et al., 2023). 

Zeolite with chitosan coatings was 
assessed for extending tomato shelf life by 
tracking fungal decay, respiration, core 
quality metrics, and visual appearance. 
Zeolite delays ripening by scavenging 
ethylene in the package headspace, 
dampening the signal that accelerates 
softening and red color development. When 
integrated into a chitosan–zeolite coating, 
performance improves: the composite 
adsorbs ethylene and carbon dioxide while 
moderating oxygen, forms a semi-permeable 
barrier that curbs water loss, and suppresses 
microbes through chitosan's antimicrobial 
action and a mildly acidified 
microenvironment. As a result, tomatoes 
retain their firmness and surface integrity, 
exhibit reduced decay, and maintain their 
taste and color over a longer marketable 
period (do-Nascimento et al., 2020). 
Deacy (score): 

As presented in Table (5), the data 
reveal that postharvest applications, storage 
durations, and their interaction significantly 
impact decay (score) in both seasons. The 
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decay score of tomato fruits increased 
significantly with prolonged storage period, 
which aligns with Mohammed et al. (2021). 
This was attributed to physiological changes 
that occurred in the fruits through storage, 
including increased respiration rates, 
enhanced enzyme activity, and cell wall 
degradation. These factors led to fruit 
softening and ripening, resulting in greater 
moisture condensation on the fruit's surface, 
reduced firmness, and increased 
susceptibility to fungal infections (Silva et 
al., 2021). Furthermore, all postharvest 
treatments had a significantly greater effect 
in minimizing the decay score compared to 
untreated fruits. Additionally, the SA and 
ZE-CS treatments showed no signs of decay 
throughout the storage period. In contrast, 
the untreated fruits recorded the highest 
decay score. These findings are consistent 
with Baninaiem et al. (2016). 

SA contributes to fungal activity and 
redox modulation, enhancing peroxidase 
while suppressing PPO enzyme (Yao and 
Tian, 2005), while ZE -CS lowers headspace 
ethylene, jointly preserving firmness and 
limiting infection. (Davarynejad et al., 
2015). Also, zeolite possesses antimicrobial, 

anti-inflammatory, and antioxidant 
properties. In packaging applications, zeolite 
reduces headspace ethylene through 
adsorption, which delays ripening and 
reduces disease susceptibility. Accordingly, 
some studies report no visible fungal decay 
in stored tomato fruits treated with ZE-CS 
during storage (Kordala and Wyszkowski, 
2024). 

There was a significant interaction 
between all treatments and all storage times 
for both seasons. The control fruit 
(untreated) showed the highest decay scores, 
which began to exhibit signs of decay after 
ten days of storage and recorded the highest 
decay score after 30 days of cold storage at 
10°C for both seasons. This could be due to 
elevated respiration and ethylene emission, 
which accelerate ripening and increase 
susceptibility to infection. On the other 
hand, tomato fruits dipped in SA or ZE-CS 
treatments do not show any decay 
throughout all storage times for both 
seasons. The other treatments recorded 
significantly lower decay compared to those 
obtained from the control treatment, 
consistent with delayed ripening. 
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Firmness: 
A significant problem with postharvest 

tomatoes is their susceptibility to damage, 
including ripening and softening, during 
storage, distribution, and marketing (Sophea 
et al., 2024). As presented in Table (6), fruit 
firmness had significantly declined as the 
storage period extended; this aligns with 
Gharezi et al. (2012). 

Fruit softening occurs as a result of the 
breakdown of cell wall components, 
deterioration of the cell structure, and 
changes in turgor pressure. This process is 
driven by the depolymerization of cell wall 
polysaccharides, particularly through 
polygalacturonase-mediated pectin 
degradation, which is tightly integrated with 
ethylene-regulated ripening programs (Qin 
and Zhou, 2025). Softening is thus a 
coordinated process involving cell wall 
remodeling enzymes, ethylene-driven 
transcriptional control, and biophysical 
factors. The level of polygalacturonase 
activity has been positively correlated with 
fruit ripening and softening in tomato fruits. 
This is closely related to ethylene 
production, ultimately leading to fruit 
softening (Vicente et al., 2007). 

All postharvest treatments in the present 
study preserved firmness compared to 
controls, by tempering ethylene-induced 
delay in cell wall weakening and limiting 
cell wall disassembly (Aprilyanto et al., 
2025). However, tomatoes treated with 
salicylic acid (SA) and zeolite with chitosan 
(ZE-CS) were the most efficient treatment in 

preserving firmness, with no significant 
difference between them. 

 The physiological basis for the effect of 
salicylic acid (SA) involves multiple 
mechanisms. SA inhibits tissue softening in 
fruit by reducing the activity of cell wall 
hydrolases and maintaining membrane 
integrity (Chen et al., 2023). It 
downregulates metabolic activity, including 
respiration and ethylene production, which 
slows ripening and helps maintain cell wall 
structure (Tipu and Sherif, 2024). Wei et al. 
(2011) reported that the exogenous 
application of SA enhances defense 
mechanisms and the production of 
antioxidants in fruits during storage, leading 
to a decrease in lipid peroxidation of the cell 
membrane and a maintained cell membrane 
structure. 

The application of zeolite-chitosan 
composite (ZE-CS) coatings significantly 
extended the postharvest shelf life of 
tomatoes by mitigating the ripening process. 
This effect is primarily attributed to the high 
adsorption capacity of the zeolite for 
ethylene gas, a volatile plant hormone that 
triggers and accelerates ripening and 
senescence (Siangyai et al., 2024). 
After 30 days of storage, SA treatment 
exhibited the highest fruit firmness 
retention, making it the most efficient 
treatment, followed by ZE-CS treatment, 
with no significant difference observed 
between them across both seasons. 
Meanwhile, untreated fruits recorded the 
lowest value of fruit firmness levels. 
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Color “Lightness (L* value)”: 
To quantify the visual impact of the 

coating, the surface color of the tomatoes 
was evaluated throughout the storage period. 
A significant decrease in lightness (L* 
value) was observed over time in both 
experimental seasons Table (7), indicating a 
progressive darkening of the fruit. These 
results are consistent with the findings of 
Park et al. (2018). The observed reduction in 
L* value is likely due to surface 
dehydration, which diminishes the fruit's 
glossiness and results in a darker appearance 
(Sumonsiri et al., 2022). 

After 30 days of storage, significant 
differences in lightness (L* value) were 
observed among postharvest treatments. All 
postharvest treatments significantly 
maintained higher L* values compared to 
the untreated control. Meanwhile, at the end 
of the storage period, both salicylic acid 

(SA) and ZE-CS treatments were the most 
effective at preserving lightness (high L* 
values), with no significant difference 
between them. SA-treated fruits exhibited a 
statistically higher mean L* value, followed 
by the other treatments, while the untreated 
control consistently resulted in the lowest L* 
values, indicating fruit darkening. These 
findings are consistent with those of Abou-
Zaid et al. (2020). The superior preservation 
of L* values by SA and ZE-CS is likely 
related to their role in mitigating fruit water 
loss, a key factor in surface darkening. The 
pronounced darkening of the untreated 
control fruits aligns with the results of 
Dehestani-Ardakani and Mostofi (2019). 
The higher loss of peel luminosity in the 
untreated control was possibly related to the 
higher water loss in the control fruit. In 
contrast, SA treatment exhibited a higher L* 
value, resulting in a darker peel and 
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maintaining the skin brightness of the 
pomegranate compared to control samples 
(Koyuncu et al., 2019). Additionally, Fischer 
et al. (2018) demonstrated that ZE-CS 
application reduced water loss in passion 
fruit by absorbing degradative gases, such as 
ethylene and oxygen, and by forming a 
barrier that minimizes water evaporation, 
thereby preserving the taste and color. 
Zeolite, along with other additives such as 
chitosan, can have a more significant effect 
on enhancing the properties of the polymer 
(Hosseinnia et al., 2024). The use of CS as 
an edible coating on the fruit surface could 
provide an additional gloss, which increases 
and conserves the L* value during storage 
(Jurić et al., 2023).  
Color (a* value): 

The surface color of tomatoes is a 
critical visual indicator of ripeness, directly 
influencing their marketability and 
consumer preference (Umeohia and 
Olapade, 2024). The a* value is a critical 
visual indicator for assessing color change 
and, thus, the degree of ripening in 
tomatoes. It is one of the key factors 
influencing consumer perception of the 
quality of fresh tomatoes (Thole et al., 
2020).  

As shown in Table (8), the a* values 
significantly increased with prolonged 
storage periods, indicating more red and ripe 
fruits, a finding consistent with Park et al. 
(2018). This color shift is driven by the 
natural ripening process, where a climacteric 
peak in ethylene production accelerates the 
transformation of chloroplasts into 

chromoplasts. This transformation is 
associated with the degradation of 
chlorophyll and the accumulation of 
lycopene, the pigment responsible for the 
characteristic red hue of ripe tomatoes 
(Zhang et al., 2020). Ethylene stimulates 
chlorophyll degradation and enhances 
lycopene biosynthesis; therefore, inhibiting 
or removing ethylene can slow color 
changes and prolong shelf life (Kumaran et 
al., 2025). 

All postharvest treatments resulted in 
significantly lower a* values compared to 
the untreated control. After 30 days of 
storage, tomato fruits treated with salicylic 
acid (SA) or ZE-CS exhibited lower a* 
values (indicating less skin redness), with no 
significant difference observed between 
them. In contrast, untreated tomatoes had 
higher a* values (greater skin redness) 
throughout storage.  

The mechanism for this delay is 
treatment-specific: Salicylic acid (SA) acts 
by directly inhibiting ethylene biosynthesis, 
thereby delaying senescence. Zeolite (ZE), 
functioning as an ethylene absorber, delays 
color development by removing the ethylene 
gas from the storage environment. This 
slows senescence, thereby retarding 
chlorophyll breakdown and lycopene 
accumulation. Zeolite was used as an 
antioxidant, neuroprotective, and 
cardioprotective agent, and it was observed 
to reduce various degradation parameters, 
including color change and browning index 
(Jiang et al., 2024). 
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Titratable acidity: 
The data shown in Table (9) indicate 

that as storage time increased, all 
postharvest applications significantly slowed 
the degradation of titratable acidity (TA) 
during storage compared to the control, 
aligning with the findings of Mohammed et 
al. (2021). The reduction in TA through 
storage duration occurs because organic 
acids serve as substrates in respiratory 
processes throughout ripening (Atoo et al., 
2022). However, all postharvest applications 
significantly slowed the degradation of 
titratable acidity (TA) throughout storage in 
comparison to the control.  

After 30 days, among the treatments, 
tomato fruits treated with SA showed the 
highest TA levels, followed by those treated 
with ZE-CS, with no significant differences 
between them. In contrast, the control 
treatment recorded the lowest TA levels at 
the end of the storage duration.  

Furthermore, the slight differences in 
TA values observed during storage between 
treated and untreated tomatoes could be 
attributed to the loss of water by the 
samples, as TA is expressed as a percentage 
of citric acid per tomato wet weight (Antala 
et al., 2025). The efficiency of SA and ZE-
CS treatments in maintaining TA levels can 
be attributed to their roles in slowing down 
respiration, reducing ethylene production, 
and delaying ripening, which in turn slows 
the decrease in TA (Changwal et al., 2021, 
and Jiang et al., 2024). 
Vitamin C content: 

Tomato fruits commonly exhibit 
progressive loss of vitamin C during storage 
due to oxidative and senescence-related 
processes that convert ascorbic acid to less 
stable forms, thereby accelerating its 
degradation. As revealed in Table (01), all 
postharvest treatments were significantly 
more effective in preserving vitamin C 
content during storage as compared with 
control treatments. Among the treatments, 

salicylic acid (SA) and ZE-CS were the 
most effective, recording the highest vitamin 
C values with no significant difference 
between them, while the lowest values were 
observed in untreated fruits across both 
seasons, which is consistent with previous 
studies on tomato postharvest physiology 
(Elkelish et al., 2020). Vitamin C loss occurs 
primarily through enzymatic and oxidative 
pathways. The enzyme ascorbic acid oxidase 
converts ascorbic acid to dehydroascorbic 
acid, while general oxidative degradation is 
accelerated by respiratory metabolism 
during senescence. Additionally, the rate of 
sugar consumption through respiration often 
exceeds water loss via transpiration, leading 
to a concentration effect that further reduces 
vitamin C levels (Cao et al., 2023). 

On the other hand, a significant 
interaction was observed between 
postharvest treatments and storage duration. 
After 30 days of storage at 10°C, SA and 
ZE-CS treatments were the most effective at 
maintaining vitamin C content and reducing 
its loss, confirming their role in delaying 
postharvest senescence and preserving 
nutritional quality. Salicylic acid (SA) 
preserves vitamin C by enhancing the 
activity of antioxidant enzymes, which 
inhibit ascorbic acid oxidase (AAO) and 
slow down ascorbic acid oxidation. 
Additionally, SA reduces respiration and 
ethylene production, thereby delaying 
senescence and conserving vitamin C as 
dehydroascorbic acid (Mwelase et al., 
2024). Meanwhile, ZE-CS is associated with 
the preservation of vitamin C, potentially 
through the gradual release of beneficial 
compounds or by modifying the storage 
microenvironment to slow metabolic decay 
(Zeinalipour and Saadati, 2024).  
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Lycopene content: 
The postharvest ripening of tomato fruit 

is characterized by complex biochemical 
changes, most notably the rapid synthesis 
and accumulation of lycopene, a compound 
valued for both its visual and nutritional 
properties. Data presented in Table (00) 
indicate that the lycopene content of tomato 
fruits increased significantly during storage 
at 10ºC in both seasons. This result is 
consistent with the well-documented pattern 
of lycopene accumulation during postharvest 
ripening, as reported by Abou-Zaid et al. 
(2020). However, significant differences in 
lycopene accumulation were observed 
among the postharvest treatments. All 
treatments effectively slowed lycopene 
synthesis compared to the untreated control. 
Fruits treated with salicylic acid (SA) or 
zeolite (ZE-CS) were the most effective, 
resulting in the lowest lycopene content by 
the end of the storage period in both 
seasons, with no significant difference 
between them. In contrast, untreated control 
fruits exhibited the highest accumulation of 
lycopene. 

The effectiveness of SA and ZE-CS in 
delaying lycopene accumulation is attributed 
to their distinct mechanisms of ripening 
inhibition. SA acts internally, suppressing 
ethylene biosynthesis and reducing 
respiration rates (Kumar et al., 2021), 
thereby delaying chlorophyll degradation 
and carotenoid accumulation. In contrast, 
ZE functions externally by adsorbing 
ethylene from the storage environment, 
consequently dampening the ethylene 
signaling that triggers lycopene synthesis 
(de-Bruijna et al., 2019).  

At the end of the storage period in 
twoseasons, tomato fruits dipped in SA or 
ZE-CS were the superior treatment in 
reducing lycopene accumulation, resulting 
in the lowest lycopene content, with no 
significant differences observed between 
them. In contrast, the highest lycopene 
content was observed in untreated fruits. 
Antioxidant content:  

The degradation of antioxidant 
compounds is a significant factor 
contributing to the deterioration of tomato 
quality during storage. The antioxidant 
activity (%) in tomato fruits decreased 
significantly with prolonged storage in both 
seasons Table (12), a finding consistent with 
that of Singh et al. (2025). This decline is 
attributed to the oxidation of polyphenols 
and ascorbic acid, which reduces DPPH 
scavenging activity. Additionally, 
antioxidant levels diminish as they scavenge 
reactive oxygen species (ROS) produced 
under postharvest stress conditions 
(Lecholocholo et al., 2022). 

In addition, all postharvest treatments 
effectively mitigated this decline compared 
to the untreated control. Pomegranate peel 
extract+chitosan (PPE-CS) at 125 ppm was 
the most effective treatment, followed by 
zeolite chitosan composite (ZE-CS) at 125 
ppm and salicylic acid (SA), with no 
significant differences between them in the 
second season. These results align with 
those of Mohlamonyane et al. (2024), who 
reported minimal degradation of antioxidant 
compounds in treated tomatoes. 
Furthermore, after 30 days, PPE-CS and ZE-
CS were most effective in reducing 
antioxidant decline, with no significant 
difference between them, followed by SA 
compared to control samples.  

The protective effect of these treatments 
is attributed to PPE-CS, which protects 
against oxidative stress by reducing gaseous 
exchange, thereby slowing oxidation and 
senescence processes. PPE-CS treated fruits 
exhibit a higher antioxidant capacity due to 
the presence of bioactive compounds in the 
extract (Parsa et al., 2021). At the same time, 
ZE-CS adsorbs ethylene and modifies the 
storage atmosphere, thereby reducing 
respiration and oxidative stress. The efficacy 
of zeolite treatment can be attributed to 
multiple mechanisms. Zeolites are known to 
act as elicitors, activating secondary 
metabolic pathways and defense systems 
within plant cells, thereby enhancing the 
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synthesis and retention of phytochemicals, 
including phenolics. Additionally, its 
function as an ethylene scavenger reduces 
senescence, a key driver of phenolic 
degradation, resulting in a higher preserved 
phenol content and antioxidant activity 
compared to control fruits (de-Bruijna et al., 
2019). 

SA delays ripening by inhibiting 
ethylene biosynthesis and respiration rates. 
It enhances antioxidant production, 
decreases lipid peroxidation, and maintains 
cell membrane integrity, thereby preserving 
antioxidant content and extending the 
storage period (Kumar et al., 2021). 

The interaction between postharvest 
treatments and storage periods was 
significant during the two seasons of this 
study after 30 days of storage at 10°C. 

Tomato fruits treated with Pomegranate peel 
extract 125ppm and zeolite composite at 
solution 125 ppm were most effective in 
reducing the decline of antioxidant content, 
with non-significant differences between 
them, followed by SA. In contrast, the 
lowest antioxidant was observed in 
untreated fruits. 
Conclusion: 

The use of SA and ZE-CS treatments 
reduced ethylene production, slowed the 
ripening process, and helped maintain the 
quality attributes of the fruits during storage. 
After 30 days of storage at 10°C, tomato 
fruits treated by SA retained an excellent 
appearance with no signs of decay, while 
ZE-CS treatment gave a good appearance 
with no signs of decay during the same 
period.  
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 ملخص العربيال

لثمار الطماطم باستخدام بعض معاملات ما بعد الحصاد أثناء  صفات الجودةتأخير النضج والحفاظ على 

 التخزين المبرد

صفاء زكريا
0

صالح أبو الوفا -
0

إبراهيم عبد الرحيممني  -
0 

ايمان صديق الاشعل -
2

 

‏.قسم‏ما‏بعد‏الحصاد‏وتداول‏محاصيل‏الخضر،‏معهد‏بحوث‏البساتين،‏مركز‏البحوث‏الزراعية،‏الجيزة،‏مصر 1

‏.،‏الجيزة،‏مصرالزراعيةوالمواد‏المتقدمة،‏المركز‏الإقليمي‏للأغذية‏والأعلاف،‏مركز‏البحوث‏‏للنانوتكنولوجيالمعمل‏المركزي‏2

،‏حيث‏تم‏(Solanum lycopersicum var. Staffy 409)على‏الطماطم‏صنف‏‏2222و‏2222البحث‏خلال‏موسمي‏‏أجري

تأثير‏بعض‏معاملات‏،لدراسة‏(نسبة‏اللون‏الاحمر‏من‏سطح‏الثمرة%‏02-22)حصاد‏ثمار‏الطماطم‏فى‏مرحلة‏التحول‏اللوني‏

،‏حمض‏المليون‏فيجزء‏‏7.5،‏برمنجنات‏البوتاسيومالمليون‏فيجزء‏122توزان‏تركيز‏الكي:‏ما‏بعد‏الحصاد‏باستخدام‏كل‏من

‏،‏ومستخلص‏جذور‏العرقسوسجزء‏فى‏المليون‏122تركيز‏‏مستخلص‏قشر‏الرمان‏،ملمول‏0.4بتركيز‏(SA) الساليسيليك

،‏على‏(الكنترول)بالإضافة‏إلى‏معاملة‏المقارنة‏‏‏المليون‏فيجزء‏‏122ت‏بتركيز‏مركب‏الزيولي‏جزء‏فى‏المليون،‏122بتركيز‏

لحصاد‏وأثناء‏التخزين‏المبرد‏على‏درجة‏وإطالة‏فترة‏التخزين‏لثمار‏الطماطم‏بعد‏ا‏صفاتالجودةتأخير‏النضج‏‏والحفاظ‏على‏

جزءًا‏في‏المليون،‏‏122وأظهرت‏النتائج‏أن‏معاملة‏الزيوليت‏بتركيز‏.يومًا‏02لمدة‏%‏02–02م‏ورطوبة‏نسبية‏°12حرارة‏

‏ ‏بتركيز ‏حمض‏الساليسيليك ‏معاملة ‏‏2.2وكذلك ‏مولكانتملي ‏‏فاعليةالأكثر ‏‏تقليلفي ‏الوزن ‏في ‏وتأخيرالفقد ‏،الليكوبينتراكم

‏ ‏مع ‏للثمار، ‏اللونية ‏والتغيرات ‏ظهور ‏إصابةعدم ‏بالاعفانأي ‏. ‏كما ‏الحفاظأدت ‏‏إلى ‏الصلابة، وفيتامين‏‏والحموضة،على

معاملة‏‏يوم‏من‏التخزين‏على‏درجة‏عشرة‏مئوية‏أعطت‏02بعد‏على‏ذلك،‏‏وعلاوة.‏اللمعان‏،‏وكذلك‏درجةومضادات‏الاكسدةج

‏.بعد‏نفس‏المدةالزيوليت‏مظهرًا‏جيداً‏مركب‏معاملة‏‏أعطت،‏في‏حين‏زحمض‏الساليسيليك‏مظهر‏ممتا

 

 


