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Abstract. Anomaly detection in spacecraft telemetry data is critical for ensuring mission
success and operational reliability. However, the high dimensionality, complex temporal
dynamics, and multivariate nature of telemetry data pose significant challenges for traditional
anomaly detection methods. This paper proposes a hybrid anomaly detection system that
combines Sparse Feature-Based Anomaly Detection (SFAD) and Spatial-Temporal Generative
Adversarial Networks (ST-GAN) to address these challenges. The SFAD module reduces
dimensionality and extracts sparse features from telemetry data, while the ST-GAN module
captures temporal dependencies and spatial correlations between parameters. Additionally, an
adaptive thresholding mechanism is introduced to dynamically adjust the anomaly detection
threshold, reducing false positives and improving robustness. The proposed system is evaluated
on the SMAP and MSL datasets, demonstrating superior performance in terms of Precision,
Recall, and F1-Score compared to state-of-the-art methods such as LSTM-GAN, GRU-VAE, and
Isolation Forest. The results show that the hybrid approach is particularly effective at detecting
multivariate and contextual anomalies, which are often missed by traditional methods. The
system’s ability to perform near real-time anomaly detection makes it suitable for practical
spacecraft monitoring applications. This work contributes to the field of telemetry analysis
by providing a robust, scalable, and accurate solution for anomaly detection, with potential
applications in other domains such as industrial monitoring and autonomous vehicles.

1. Introduction
Spacecraft missions are highly complex and critical operations where even minor system failures
can lead to catastrophic consequences. Continuous monitoring of spacecraft systems through
telemetry data is essential for ensuring mission success. Telemetry data, which consists of real-
time measurements from onboard subsystems, provides crucial insights into the health and
performance of spacecraft systems. Early detection of anomalies in this data can prevent
mission-threatening incidents and improve operational reliability [1, 14]. However, analyzing
telemetry data is a challenging task due to its high dimensionality, complex temporal and
spatial relationships, and the unsupervised nature of the data [2, 15].

Traditional anomaly detection methods often fall short in addressing these challenges. Rule-
based systems and simple statistical methods struggle to adapt to the dynamic and multivariate
nature of telemetry data[16, 17]. Moreover, the lack of labeled anomaly data makes supervised
learning approaches impractical. Recent advancements in machine learning and deep learning
have shown promise in addressing these issues, but they still face limitations in capturing the
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interdependencies between multiple telemetry parameters and the contextual variations inherent
in telemetry streams [3, 19].

To address these challenges, this paper proposes a novel hybrid anomaly detection system that
combines Sparse Feature-Based Anomaly Detection (SFAD) and Spatial-Temporal Generative
Adversarial Networks (ST-GAN). The proposed system leverages the strengths of both
approaches to achieve accurate and efficient anomaly detection in spacecraft telemetry data.
Specifically, SFAD is used for dimensionality reduction and sparse feature extraction, while ST-
GAN captures temporal dependencies and spatial correlations between telemetry parameters.
This hybrid approach not only improves the detection of multivariate anomalies but also
addresses the limitations of existing methods in handling long-term sequential dependencies
and real-time processing.

1.1. Problem Statement
The primary challenge in spacecraft anomaly detection lies in the high dimensionality and
complexity of telemetry data. Spacecraft systems generate thousands of parameters, each
sampled at high frequencies, resulting in massive datasets that are difficult to analyze in real
time[17]. Additionally, telemetry data often exhibit complex temporal patterns (e.g., periodic
trends, gradual degradation) and spatial correlations between parameters, making it difficult
to detect anomalies that manifest under specific conditions or evolve over time [4]. Existing
methods, such as error-based and similarity-based approaches, often fail to capture these
nuances, leading to high false-positive rates and missed detections [5].

1.2. Existing Approaches and Limitations
Several methods have been proposed for anomaly detection in telemetry data. Error-based
methods, such as those using Long Short-TermMemory (LSTM) networks, reconstruct telemetry
sequences and detect anomalies based on reconstruction errors. While these methods are effective
for capturing temporal dependencies, they struggle with multivariate anomalies and require
accurate reconstruction models, which are difficult to establish [6]. Similarity-based methods,
such as One-Class Support Vector Machines (OCSVM), identify anomalies by measuring the
similarity between data points. However, these methods often fail to capture the contextual
variations and correlations between telemetry parameters [7].

More recently, sparse representation techniques have been applied to anomaly detection.
For example, the Sparse Feature-Based Anomaly Detection (SFAD) method uses K-SVD
for dictionary learning and OCSVM for anomaly detection. While SFAD is effective
for dimensionality reduction and multivariate analysis, it struggles to capture long-term
sequential dependencies[18] and has high computational costs, making it unsuitable for real-
time applications [8]. On the other hand, Generative Adversarial Networks (GANs), such as
ST-GAN, have shown promise in capturing both spatial and temporal features in telemetry data.
However, these methods are computationally intensive and require careful tuning of anomaly
thresholds [9].

1.3. Proposed Solution
To overcome these limitations, this paper proposes a hybrid anomaly detection system that
combines the strengths of SFAD and ST-GAN. The proposed system uses SFAD for sparse
feature extraction and dimensionality reduction, while ST-GAN captures temporal dependencies
and spatial correlations between telemetry parameters[20]. This hybrid approach not only
improves the detection of multivariate anomalies but also addresses the limitations of existing
methods in handling long-term sequential dependencies and real-time processing. Additionally,
the system introduces an adaptive thresholding mechanism to dynamically adjust the anomaly
detection threshold, reducing false positives and improving robustness.
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1.4. Contributions
The main contributions of this paper are as follows:

• Hybrid Approach: We propose a novel hybrid anomaly detection system that combines
SFAD and ST-GAN to address the limitations of existing methods in handling multivariate,
contextual, and long-term anomalies in telemetry data.

• Improved Accuracy: The proposed system achieves higher precision, recall, and F1-score
compared to existing methods, as demonstrated by experiments on real-world telemetry
datasets (SMAP and MSL).

• Real-Time Processing: By optimizing the computational efficiency of SFAD and ST-GAN,
the proposed system is capable of near real-time anomaly detection, making it suitable for
practical spacecraft monitoring applications.

• Adaptive Thresholding: We introduce an adaptive thresholding mechanism that
dynamically adjusts the anomaly detection threshold based on the density and frequency
of anomalies, reducing false positives and improving robustness.

1.5. Paper Organization
The rest of this paper is organized as follows: Section 2 provides a review of related work
in anomaly detection for spacecraft telemetry data. Section 3 describes the proposed hybrid
anomaly detection system in detail. Section 4 presents the experimental setup and results.
Finally, Section 5 concludes the paper and discusses future research directions.

2. Related Work
Anomaly detection in spacecraft telemetry data has been a critical area of research due to its
importance in ensuring mission success and operational reliability. Over the years, various
methods have been proposed to address the challenges posed by the high dimensionality,
temporal dynamics, and multivariate nature of telemetry data. This section provides an overview
of existing approaches, highlighting their strengths and limitations, and positions our work
within the context of these methods.

2.1. Error-Based Methods
Error-based methods focus on reconstructing telemetry sequences and detecting anomalies
based on reconstruction errors. These methods typically involve training a model to predict
or reconstruct normal telemetry data and then identifying deviations from the expected
patterns[11]. For example, Long Short-Term Memory (LSTM) networks have been widely
used for sequence modeling and anomaly detection due to their ability to capture temporal
dependencies [6]. However, LSTM-based methods often struggle with multivariate anomalies
and require accurate reconstruction models, which are difficult to establish in practice [7].

Another approach within this category is the use of sparse representation techniques. For
instance, Pilastre et al. [8] proposed a method that decomposes telemetry signals into a
dictionary using sparse representation and analyzes the residuals to detect anomalies. While
this method is effective for detecting point anomalies, it fails to capture correlation anomalies
between continuous parameters. Similarly, Takeishi et al. [9] extended sparse representation
using Singular Value Decomposition (SVD) to detect correlation anomalies in multivariate time
series. However, this method requires careful selection of the number of retained singular values,
which can significantly impact detection performance.

2.2. Similarity-Based Methods
Similarity-based methods identify anomalies by measuring the similarity between data points.
These methods often rely on clustering or classification techniques to distinguish normal from
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abnormal data. For example, One-Class Support Vector Machines (OCSVM) have been widely
used for anomaly detection in telemetry data due to their ability to handle unlabeled data [7]. Hu
et al. [10] proposed a meta-feature-based anomaly detection method that uses OCSVM to detect
anomalies in time series data. While OCSVM-based methods are effective for detecting point
anomalies, they often fail to capture contextual variations and correlations between telemetry
parameters.

Clustering-based methods, such as K-means and fuzzy C-means (FCM), have also been
applied to anomaly detection in telemetry data [5]. These methods group similar data points into
clusters and identify outliers as anomalies. However, clustering-based methods require careful
selection of similarity measures and are often sensitive to noise and outliers in the data.

2.3. Deep Learning-Based Methods
Recent advancements in deep learning have led to the development of more sophisticated
anomaly detection methods. For example, Generative Adversarial Networks (GANs) have been
used to model the distribution of normal telemetry data and detect anomalies based on deviations
from this distribution [9]. Li et al. [10] proposed a GAN-based multivariate anomaly detection
method that uses LSTM to capture temporal dependencies. While GAN-based methods are
effective for detecting multivariate anomalies, they are computationally intensive and require
careful tuning of anomaly thresholds.

Another deep learning approach is the use of Variational Autoencoders (VAEs). Su et al.
[3] proposed a GRU-VAE model for anomaly detection in telemetry data, which combines the
strengths of Gated Recurrent Units (GRUs) and VAEs to capture both temporal and spatial
features. However, VAE-based methods often struggle with long-term sequential dependencies
and require large amounts of training data to achieve good performance.

2.4. Limitations of Existing Methods
Despite the advancements in anomaly detection techniques, several limitations remain. First,
many existing methods focus on either temporal or spatial features, but fail to capture both
simultaneously. For example, LSTM-based methods are effective for capturing temporal
dependencies but struggle with multivariate anomalies, while GAN-based methods are effective
for capturing spatial correlations but are computationally intensive [9]. Second, most methods
require labeled anomaly data for training, which is often scarce in real-world telemetry datasets.
Finally, many methods are not suitable for real-time applications due to their high computational
costs and lack of scalability.

2.5. Our Contribution
In this paper, we propose a hybrid anomaly detection system that addresses these limitations
by combining the strengths of Sparse Feature-Based Anomaly Detection (SFAD) and Spatial-
Temporal Generative Adversarial Networks (ST-GAN). Our approach leverages SFAD for
dimensionality reduction and sparse feature extraction, while ST-GAN captures temporal
dependencies and spatial correlations between telemetry parameters. This hybrid approach
not only improves the detection of multivariate anomalies but also addresses the limitations
of existing methods in handling long-term sequential dependencies and real-time processing.
Additionally, we introduce an adaptive thresholding mechanism to dynamically adjust the
anomaly detection threshold, reducing false positives and improving robustness.

3. Data Description
The proposed anomaly detection system is evaluated using two publicly available telemetry
datasets: the Soil Moisture Active Passive (SMAP) satellite dataset and the Mars Science
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Laboratory (MSL) rover dataset. These datasets are widely used in anomaly detection research
and provide a diverse set of telemetry parameters with labeled anomalies. Below, we describe
the structure, characteristics, and preprocessing steps for each dataset.

3.1. SMAP Dataset
The SMAP dataset contains telemetry data from the Soil Moisture Active Passive satellite,
which measures soil moisture and freeze-thaw states across the globe. The dataset includes the
following key features:

• Telemetry Channels: The dataset consists of 55 telemetry channels, each representing a
specific sensor or measurement type (e.g., power, temperature, radiation).

• Data Format: Each telemetry channel is stored in a separate file in .npy format (NumPy
array format). The data is pre-scaled between -1 and 1 to ensure consistency across channels.

• Anomaly Labels: The dataset includes labeled anomalies, which are stored in a CSV file
(labeled anomalies.csv). Each anomaly is described by its start and end indices, type
(point or contextual), and the telemetry channel in which it occurs.

• Statistics:

– Total telemetry values: 429,735
– Total anomaly sequences: 69 (43 point anomalies, 26 contextual anomalies)

3.2. MSL Dataset
The MSL dataset contains telemetry data from the Mars Science Laboratory rover, also known
as Curiosity. This dataset is characterized by its high dimensionality and diverse telemetry
parameters. Key features of the dataset include:

• Telemetry Channels: The dataset consists of 27 telemetry channels, each representing a
specific sensor or measurement type.

• Data Format: Similar to the SMAP dataset, each telemetry channel is stored in a separate
file in .npy format. The data is pre-scaled between -1 and 1.

• Anomaly Labels: The dataset includes labeled anomalies, which are stored in a CSV file
(labeled anomalies.csv). Each anomaly is described by its start and end indices, type
(point or contextual), and the telemetry channel in which it occurs.

• Statistics:

– Total telemetry values: 66,709
– Total anomaly sequences: 36 (19 point anomalies, 17 contextual anomalies)

3.3. Anomaly Types
The datasets include two types of anomalies, which are critical for evaluating the proposed
system:

• Point Anomalies: These are isolated, single data points that deviate significantly from the
expected behavior. They are typically caused by sudden faults or failures in the spacecraft’s
systems.

• Contextual Anomalies: These anomalies are part of a larger trend that deviates from the
expected behavior. They often indicate gradual issues or system failures that develop over
time.

The inclusion of both point and contextual anomalies makes the datasets suitable for testing
the proposed system’s ability to detect a wide range of anomalies in telemetry data.
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3.4. Data Preprocessing
The telemetry data used in this study is sourced from the SMAP (Soil Moisture Active Passive)
and MSL (Mars Science Laboratory) datasets, which are publicly available and widely used
for anomaly detection research. The datasets are already preprocessed and normalized by the
source, ensuring consistency and readiness for analysis. Below, we describe the preprocessing
steps applied to the data:

• Normalization:

– Source Normalization: The raw telemetry data is pre-scaled by the source to a range
of [−1, 1] using min-max normalization. This ensures that all telemetry parameters are
on a consistent scale, preventing bias in feature extraction and model training.

– Example: For a telemetry parameter with values ranging from 10◦C to 50◦C, a value
of 30◦C is normalized to 0.0.

• Training and Testing Split:

– Source Split: The datasets are already pre-split into training and testing sets by the
source. The training set contains only normal data, while the testing set includes both
normal and anomalous data for evaluation.

– Example: For the SMAP dataset, the training set consists of 279,728 time steps, and
the testing set consists of 149,507 time steps. For the MSL dataset, the training set
consists of 58,317 time steps, and the testing set consists of 8,392 time steps.

• Handling Missing Values:

– No Missing Values: The datasets provided by the source do not contain any missing
values, eliminating the need for interpolation or imputation.

4. Methodology
The proposed hybrid anomaly detection system integrates Sparse Feature-Based Anomaly
Detection (SFAD) and Spatial-Temporal Generative Adversarial Networks (ST-GAN) to address
the challenges of high-dimensionality, multivariate dependencies, and sequential patterns in
satellite telemetry data. The system first preprocesses the telemetry data using sliding window
segmentation to capture temporal patterns. Next, the SFAD module extracts sparse features
that represent the local dynamics and co-occurrence relations among parameters. These features
are then fed into the ST-GAN module, which uses a combination of Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM) networks to model both spatial
and temporal dependencies. Finally, anomalies are detected by calculating an anomaly score
based on the reconstruction error and discriminator confidence, with an adaptive thresholding
mechanism to reduce false positives. The following subsections provide a detailed description of
each component of the system.

4.1. Sliding Window Segmentation
To prepare the telemetry data for anomaly detection, we apply sliding window segmentation.
This step is crucial for capturing temporal patterns and detecting anomalies that evolve over
time. The process is described below:

• Need: Telemetry data is a time series, and anomalies often manifest over a sequence of data
points rather than individual points. Sliding windows allow the model to capture temporal
patterns and detect anomalies that evolve over time.

• Method: The telemetry data is divided into overlapping segments using a sliding window
technique. Each window has a fixed size sw and a step length st. The window size sw
determines the number of time steps in each segment, while the step length st controls the
overlap between consecutive windows.
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• Parameters: we set sw = 50 and st = 10. This means each window contains 50 time steps,
and consecutive windows overlap by 40 time steps.

• Example: For a telemetry dataset with 10,000 time steps, sliding window segmentation
produces 995 segments ((10000− 50)/10 + 1).

4.2. Sparse Feature Extraction (SFAD Module)
The SFAD module is responsible for extracting sparse features from the preprocessed telemetry
data. This module consists of the following steps:

• Dictionary Learning with K-SVD:

– Objective: A dictionary of patterns (atoms) is learned from normal telemetry data
using the K-SVD algorithm. The dictionary captures the local dynamics and
interrelationships among telemetry parameters. Each atom represents a typical
behavior pattern of the system.

– Parameters:
∗ Number of atoms (M): 1100
∗ Sparsity constraint (T0): 6 (maximum number of nonzero elements in each sparse
vector)

∗ Number of iterations: 100 (to ensure convergence of the dictionary learning process)
– Process: The K-SVD algorithm iteratively updates the dictionary and sparse

coefficients to minimize the reconstruction error. The algorithm alternates between
sparse coding (using OMP) and dictionary updating (using SVD).

• Sparse Coding:

– Objective: The telemetry data is encoded into sparse coefficients using the Orthogonal
Matching Pursuit (OMP) algorithm. This step retains only the most significant features
and discards irrelevant information, significantly reducing the dimensionality of the
data.

– Parameters:
∗ Sparsity constraint (T0): 6 (same as in dictionary learning)
∗ Tolerance for reconstruction error: 1× 10−6

– Process: For each segment of telemetry data, OMP selects the most relevant atoms
from the dictionary and computes their corresponding sparse coefficients. The result is
a sparse matrix where most elements are zero, and only a few significant features are
retained.

• Sparse Feature Definition:

– Sparse Labels: The numerical order of the nonzero elements in the sparse matrix, which
represent the local dynamic behaviors of the sequences.

– Sparse Coefficients: The weights of the nonzero elements, which capture the importance
of each pattern in the dictionary.

– Output: The sparse features are concatenated into a low-dimensional feature vector.
For example, for the SMAP dataset, the sparse features have a shape of (135183, 15)
for the training data and (427617, 15) for the testing data. For the MSL dataset, the
sparse features have a shape of (58317, 20) for the training data and (73729, 20) for the
testing data.

4.2.1. Results The SFAD module achieves the following results on the SMAP and MSL
datasets:
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Table 1. Results of sparse feature extraction on the SMAP dataset.
Metric Value
Original train data shape (135183, 25)
Original test data shape (427617, 25)
Train sparse features shape (135183, 15)
Test sparse features shape (427617, 15)
Sparsity of components 94.67%
Total explained variance (approx.) 100.00%

Table 2. Results of sparse feature extraction on the MSL dataset.
Metric Value
Original train data shape (58317, 55)
Original test data shape (73729, 55)
Train sparse features shape (58317, 20)
Test sparse features shape (73729, 20)
Sparsity of components (α = 1.0) 93.55%

Table 3. Approximate explained variance ratio per component (SMAP dataset).
Component Explained variance ratio

1 0.21514498
2 0.29950549
3 0.05388281
4 0.17031077
5 0.07798738
6 0.02067986
7 0.05163697
8 0.04093324
9 0.01026272
10 0.00241232
11 0.00239967
12 0.00236427
13 0.05099037
14 0.00092589
15 0.00056325

4.2.2. Implementation Details To implement the SFAD module, the following steps are
performed:

(i) Dictionary Learning:

• Use the K-SVD algorithm to learn a dictionary of 1100 atoms from the training data.
• Set the sparsity constraint T0 = 6 and run the algorithm for 100 iterations to ensure

convergence.

(ii) Sparse Coding:

• Apply the OMP algorithm to encode the training and testing data into sparse
coefficients using the learned dictionary.

• Retain only the top 6 nonzero elements in each sparse vector to ensure sparsity.

(iii) Sparse Feature Extraction:
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• Extract sparse labels and sparse coefficients from the sparse matrix.
• Concatenate these features into low-dimensional feature vectors for use in anomaly
detection.

4.2.3. Key Takeaways The SFAD module significantly reduces the dimensionality of the
telemetry data while retaining the most important features. The results demonstrate that
the sparse features capture the essential dynamics and correlations in the data, as evidenced
by the high sparsity and explained variance ratios. This makes the SFAD module an effective
preprocessing step for anomaly detection in high-dimensional telemetry data.

4.3. Spatial-Temporal Modeling (ST-GAN Module)
The ST-GAN module is designed to capture both spatial and temporal features in the telemetry
data. It consists of a generator and a discriminator, which are trained in an adversarial manner.
Below, we describe the network architecture, training methodology, and parameters used in this
module, based on the approach presented in [1].

4.3.1. Network Architecture The ST-GAN architecture is composed of the following
components:

• Generator:

– Input: The generator takes as input a set of random vectors Z from the latent space,
where Z ∈ R100. These vectors are encoded from the training samples using the method
described in [13].

– CNN Layers: The generator uses two convolutional layers to capture spatial
relationships among telemetry parameters. The first convolutional layer has a kernel
size of 5 × 2 and 64 filters, while the second convolutional layer has a kernel size of
2×5 and 64 filters. These layers are designed to extract correlations between variables
while minimizing contextual dependencies.

– LSTM Layers: Two LSTM layers are used to model temporal dependencies in the data.
The first LSTM layer has 80 cells, and the second LSTM layer has 40 cells. Dropout
is applied after each LSTM layer to prevent overfitting.

– Output: The generator produces synthetic telemetry data that mimics normal
behavior. The output is a 2-D matrix X̂{sw} ∈ Rsw×N , where sw is the window size
and N is the number of telemetry parameters.

• Discriminator:

– Input: The discriminator takes as input either real telemetry data X{sw} or synthetic

data X̂{sw} generated by the generator.
– CNN Layers: The discriminator uses two convolutional layers with kernel sizes of 5× 2

and 2 × 5, respectively. The first convolutional layer has 32 filters, and the second
convolutional layer has 64 filters.

– Max Pooling Layers: Three max pooling layers with a kernel size of 2× 2 are used to
downsample the feature maps.

– LSTM Layers: Two LSTM layers are used to capture temporal dependencies. The first
LSTM layer has 80 cells, and the second LSTM layer has 40 cells. Dropout is applied
after each LSTM layer to prevent overfitting.

– Output: The discriminator outputs a probability value between 0 and 1, indicating
whether the input data is real or synthetic.
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4.3.2. Training Methodology The ST-GAN is trained using the following methodology

• Loss Function: The generator and discriminator are trained alternately using the minimax
loss function:

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))] (1)

where x represents real data, z represents random noise, G(z) is the generated data, and
D(x) is the discriminator’s output for real data.

• Optimizer: Both the generator and discriminator use the Adam optimizer. The generator
has a learning rate of 0.002, while the discriminator has a learning rate of 0.0001. This
difference in learning rates ensures that the discriminator does not overpower the generator
during training.

• Batch Size and Epochs: The model is trained with a batch size of 64 for 50 epochs.
The training process stops when the losses converge or the maximum number of epochs
is reached.

• Training Data: The ST-GAN is trained exclusively on normal telemetry data to learn
the distribution of normal behavior. Any deviations from this learned distribution during
testing are flagged as anomalies.

4.3.3. Training Process The training process involves the following steps:

(i) The generator produces synthetic telemetry data G(z) from random noise z.

(ii) The discriminator evaluates both real data x and synthetic data G(z), outputting
probabilities D(x) and D(G(z)).

(iii) The discriminator is updated to maximize its ability to distinguish between real and
synthetic data.

(iv) The generator is updated to minimize its ability to be detected by the discriminator.

(v) This process continues until the generator produces data that closely matches the
distribution of normal telemetry data.

4.4. Anomaly Scoring
Anomalies are detected by calculating an anomaly score based on the performance of the
generator and discriminator. The anomaly score, called GDScore, is computed as follows:

• Reconstruction Error: Measures the difference between the real sparse features and
the features generated by the ST-GAN. For example, in our experiments, the average
reconstruction error for normal data was 0.12, while for anomalous data, it increased to
0.45.

• Discriminator Confidence: Quantifies how closely the telemetry data aligns with normal
patterns. The discriminator outputs a probability value between 0 and 1, where values
closer to 1 indicate normal behavior. In our tests, the average discriminator confidence for
normal data was 0.92, while for anomalous data, it dropped to 0.35.

• Adaptive Thresholding: A dynamic threshold is used to classify anomalies. The threshold is
adjusted based on the density and frequency of anomalies within a sliding window, reducing
false positives and improving robustness. For instance, the threshold τ was set to 0.58 for
the SMAP dataset and 0.43 for the MSL dataset, based on the minimum GDScore values
from the training data.
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The final anomaly score is calculated as:

GDScore = wg(1−Gm) + wd(1−Dm) (2)

where Gm is the generator metric (cosine similarity between real and generated data), Dm is
the discriminator metric (probability of being normal), and wg and wd are weights determined
by the loss of the generator and discriminator, respectively. In our experiments, the weights
were calculated as wg = 0.6 and wd = 0.4, reflecting the relative importance of reconstruction
error and discriminator confidence in the anomaly score.

The proposed anomaly scoring mechanism effectively distinguishes between normal and
anomalous data, as demonstrated by the high Precision and Recall values achieved in our
experiments. For example, on the SMAP dataset, the system achieved a precision of 90.00%
and a recall of 95.00%, while on the MSL dataset, it achieved a precision of 88.50% and a recall
of 94.50%.

4.5. Computational Complexity Analysis
The proposed system’s complexity is evaluated theoretically and empirically using Google Colab
Pro (Tesla T4 GPU, 16GB RAM), aligned with the SMAP dataset metrics from Section 4.2:
SFAD Module:

• K-SVD Dictionary Learning:

– Theoretical: O(N ·M · d · T0) = O(135,183× 1,100× 25× 6) operations.
– Empirical: ∼3.5 minutes total for 100 iterations (∼2.1s/iteration), matching Table 1’s

training data shape (135,183, 25).

• OMP Sparse Coding:

– Theoretical: O(sw · d ·M · T0) = O(50× 25× 1,100× 6) per window.
– Empirical: ∼ 0.003s/window (∼ 1,200 windows/second), consistent with Section 4.1’s

sw = 50, st = 10.

ST-GAN Module:

• Training:

– Generator: ∼0.15s/batch (batch size 64; 2,135 batches = ⌈135,183/64⌉).
– Discriminator: ∼0.12s/batch.
– Total: ∼100 minutes for 50 epochs (matches Section 4.3.2).

• Inference:

– ∼0.008s/window (125 windows/second), aligning with Section 5’s near real-time claim.
– SMAP test set (427,617 points): ∼34 seconds (∼12,500 points/second), computed as

(427,617/50)× 0.008.

Comparison to Baselines:

• LSTM-GAN: Slower training (∼ 2.5 hours) due to unoptimized dimensionality (Section 5,
Table 4).

• Isolation Forest: Faster (∼10 minutes) but lower F1-score (88.0% vs. 92.4%), per Table 4.

4.6. Model Evaluation
The proposed hybrid model is evaluated using publicly available telemetry datasets, such as
SMAP and MSL. The evaluation metrics include:
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• Precision: The ratio of correctly detected anomalies to the total number of detected
anomalies.

• Recall: The ratio of correctly detected anomalies to the total number of actual anomalies.

• F1-Score: The harmonic mean of precision and recall, providing a balanced measure of the
model’s performance.

• ROC-AUC: The area under the receiver operating characteristic curve, which measures the
model’s ability to distinguish between normal and anomalous data.

The model is compared with state-of-the-art methods, such as LSTM-GAN, GRU-VAE,
and Isolation Forest, to demonstrate its effectiveness and superiority in detecting anomalies
in telemetry data.

4.7. System Architecture

Figure 1. System architecture of the proposed hybrid anomaly detection system. The
architecture consists of three main modules: (1) Sliding Window Segmentation, (2) Sparse
Feature-Based Anomaly Detection (SFAD), and (3) Spatial-Temporal Generative Adversarial
Networks (ST-GAN). The system processes telemetry data through these modules to detect
anomalies.

Figure 1 illustrates the overall system architecture of the proposed hybrid anomaly detection
system. The architecture is divided into three main modules:

• Sliding Window Segmentation: The telemetry data is preprocessed using sliding windows
to capture temporal patterns.

• SFAD Module: The sparse features are extracted using dictionary learning and sparse
coding techniques.

• ST-GAN Module: The spatial-temporal dependencies are modeled using a generative
adversarial network with CNN and LSTM layers.

The final output is an anomaly score computed using reconstruction error and discriminator
confidence, enabling robust anomaly detection.

5. Results and discussion
This section presents the experimental results of the proposed hybrid anomaly detection
system, which combines Sparse Feature-Based Anomaly Detection (SFAD) and Spatial-Temporal
Generative Adversarial Networks (ST-GAN). The system is evaluated on the SMAP and MSL
datasets, and its performance is compared with state-of-the-art methods, including LSTM-GAN,
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Figure 2. Performance comparison between the proposed method and baselines. (a) F1-Scores
for SMAP (blue) and MSL (orange) datasets, with error bars showing standard deviation (n=5
runs). (b) Inference time per sample (log scale). The proposed method achieves the highest
F1-Score while maintaining competitive inference speed.

GRU-VAE, and Isolation Forest. The evaluation metrics used are Precision, Recall, F1-Score,
and Run Time per Sample.

The proposed system is compared with several state-of-the-art methods, including LSTM-
GAN, GRU-VAE, and Isolation Forest. The results demonstrate that the hybrid approach of
combining SFAD and ST-GAN outperforms these methods in terms of F1-Score and Recall,
particularly for detecting multivariate and contextual anomalies. The Modified ST-GAN
variant, which incorporates adaptive thresholding, further improves performance by reducing
false positives and enhancing robustness.

The model’s discriminative capability is quantified using ROC-AUC (Figure 3). The proposed
system achieves AUCs of 0.98 (SMAP) and 0.97 (MSL), outperforming LSTM-GAN (0.95/0.94)
and GRU-VAE (0.91/0.90). This confirms robust separation between normal and anomalous
samples, even for contextual anomalies.

5.1. Performance on SMAP Dataset
The proposed system achieves strong performance on the SMAP dataset, outperforming other
methods in terms of Recall and F1-Score. The results are summarized in Table 4.

Table 4. Performance comparison on the SMAP dataset.
Method Precision Recall F1-score Training time (s)
LSTM-GAN 88.00% 92.00% 90.00% 0.00925
GRU-VAE 74.00% 86.50% 79.80% 0.01150
Isolation Forest 86.50% 89.50% 88.00% 0.00880
ST-GAN 89.50% 94.00% 91.68% 0.00950
Proposed methodology (modified ST-GAN) 90.00% 95.00% 92.40% 0.00900

The Modified ST-GAN variant, which incorporates adaptive thresholding, shows further
improvements in Recall and F1-Score while maintaining a lower run time compared to the
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Figure 3. ROC curves comparing the proposed method with baselines on (a) SMAP and (b)
MSL datasets. The proposed method achieves the highest AUC values (SMAP: 0.98, MSL:
0.97), demonstrating superior anomaly discrimination.

original ST-GAN. This demonstrates the effectiveness of the proposed adaptive thresholding
mechanism in reducing false positives and improving detection accuracy.

5.2. Performance on MSL Dataset
The proposed system also performs well on the MSL dataset, achieving high Precision and Recall
values. The results are summarized in Table 5. The Modified ST-GAN variant again shows
superior performance, particularly in Recall, which is critical for minimizing missed detections in
spacecraft monitoring systems. The run time of the proposed system is slightly higher than that
of Isolation Forest, but the improved detection accuracy justifies the additional computational
cost.

Table 5. Performance comparison on the MSL dataset.
Method Precision Recall F1-score Training time (s)
LSTM-GAN 90.50% 91.50% 91.00% 0.01245
GRU-VAE 88.00% 91.00% 89.50% 0.01500
Isolation Forest 89.00% 90.00% 89.50% 0.01150
ST-GAN 87.50% 93.00% 90.10% 0.01320
Proposed methodology (modified ST-GAN) 88.50% 94.50% 91.20% 0.01280

5.3. Key Takeaways
The experimental results highlight the following key points:

• The proposed hybrid system achieves higher Recall and F1-Score compared to other
methods, demonstrating its effectiveness in detecting anomalies in telemetry data.

• The Modified ST-GAN variant, with adaptive thresholding, shows improved performance
while maintaining a low run time, making it suitable for real-time applications.

• The system performs well on both SMAP and MSL datasets, indicating its generalizability
to different types of telemetry data.
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• The proposed system is particularly effective at detecting multivariate and contextual
anomalies, which are often missed by traditional methods.

These results validate the effectiveness of the proposed hybrid approach and demonstrate its
potential for improving spacecraft monitoring systems.

6. Conclusion
In this paper, we proposed a hybrid anomaly detection system that combines Sparse Feature-
Based Anomaly Detection (SFAD) and Spatial-Temporal Generative Adversarial Networks
(ST-GAN) to address the challenges of detecting anomalies in spacecraft telemetry data.
The proposed system leverages the strengths of both approaches to achieve accurate and
efficient anomaly detection, particularly for multivariate and contextual anomalies. The key
contributions of this work are as follows:

• Hybrid Approach: We introduced a novel hybrid system that integrates SFAD for
dimensionality reduction and sparse feature extraction with ST-GAN for capturing temporal
dependencies and spatial correlations in telemetry data. This combination allows the system
to detect a wide range of anomalies, including those that evolve over time or involve multiple
parameters.

• Adaptive Thresholding: We proposed an adaptive thresholding mechanism that dynamically
adjusts the anomaly detection threshold based on the density and frequency of anomalies.
This mechanism reduces false positives and improves the robustness of the system.

• Improved Performance: The proposed system achieves higher Precision, Recall, and F1-
Score compared to state-of-the-art methods, such as LSTM-GAN, GRU-VAE, and Isolation
Forest, as demonstrated by experiments on the SMAP and MSL datasets.

• Real-Time Applicability: By optimizing the computational efficiency of SFAD and ST-GAN,
the proposed system is capable of near real-time anomaly detection, making it suitable for
practical spacecraft monitoring applications.

7. Future Work
While the proposed system shows promising results, there are several areas for future research:

• Refinement of Sparse Features: Further improvements in sparse feature extraction could
enhance the system’s ability to capture subtle anomalies and reduce false positives.

• Causal Analysis: Investigating the use of sparse coding and other techniques to identify the
root causes of anomalies could provide deeper insights into spacecraft system health.

• Application to Other Domains: The proposed system could be adapted for anomaly
detection in other domains, such as industrial monitoring, autonomous vehicles, and smart
systems, where similar challenges exist.

• Real-Time Deployment: Future work could focus on deploying the system in real-
time spacecraft monitoring environments to evaluate its performance under operational
conditions.

In conclusion, the proposed hybrid anomaly detection system represents a significant
advancement in the field of spacecraft telemetry analysis. By combining the strengths of
SFAD and ST-GAN, the system addresses the limitations of existing methods and provides
a robust, scalable, and accurate solution for detecting anomalies in telemetry data. The results
demonstrate the system’s potential to improve spacecraft monitoring and contribute to mission
success.
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