| 
		
  
Alzahrani, B. (2025). Comparative Analysis of Nano-powder Reinforcements on Tribological Properties of AA5754 Composites Fabricated via Friction Stir Processing. JES. Journal of Engineering Sciences, 53(4), 100-124.Santosh, S., Ambhore, N., Javvadi, E. M., Rao, D. S., & Mohan, R. R. (2025). Sustainable machining strategies for metal matrix composites: A comprehensive review. Engineering Research Express, 7, 1-20.Patole, R., Ambhore, N., & Agrawal, D. (2023). Carbon composites in aerospace application: A comprehensive review. Material International, 5(4), 1-12.Rizvi, S. J. A., & Bhatnagar, N. (2011). Microcellular PP vs. Microcellular PP/MMT nanocomposites: A comparative study of their mechanical behavior. International Polymer Processing, 26, 375–382.Mohamed, M., Ahmed, A. R., Ahmed, M., & Farghal, O. A. (2023). Prediction of Axial Compressive Strength of Hybrid Reinforced Concrete Columns under Static Loading. JES. Journal of Engineering Sciences, 51(1), 1-16.Trifol, J., Plackett, D., Sillard, C., Hassager, O., Daugaard, A. E., Bras, J., & Szabo, P. (2016). A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites. Journal of Applied Polymer Science.Venkatram, B., Kailasanathan, C., Seenikannan, P., & Paramasamy, S. (2015). Study on the evaluation of mechanical and thermal properties of natural sisal fiber/GP composites reinforced with nanoclay. International Journal of Polymer Analysis and Characterization, 20(7), 572–581.Koricho, E. G., Khomenko, A., Haq, M., Drzal, L. T., Belingardi, G., & Martorana, B. (2015). Effect of hybrid (micro- and nano-) fillers on impact response of GFRP composite. Composite Structures.Amir, W. W., Jumahat, A., & Mahmud, J. (2015). Effect of nanoclay content on flexural properties of glass fiber reinforced polymer (GFRP) composites. Jurnal Teknologi, 76(3), 31–35.Kamar, N. T., Hossain, M. M., Khomenko, A., Haq, M., Drzal, L. T., & Loos, A. (2015). Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Composites Part A: Applied Science and Manufacturing, 70, 82–92.Sopu, D., Stoica, M., & Eckert, J. (2015). Deformation behavior of metallic glass composites reinforced with shape memory nanowires studied via molecular dynamics simulations. Applied Physics Letters, 106, 211902.Ji, L., Wang, W., Jin, D., Zhou, S., & Song, X. (2015). In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites. Materials Science and Engineering: C, 46, 1–9.Rafiqa, A., Al-Qadhi, M., Merah, N., & Ali, Y. (2014). Mechanical behavior of hybrid glass fibre/epoxy clay nanocomposites. Advanced Materials Research, 894, 336–341.Eesaee, M., & Shojaei, A. (2014). Effect of nanoclay on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments. Composites Part A: Applied Science and Manufacturing, 63, 149–158.Karsli, N. G., Yesil, S., & Aytac, A. (2014). Effect of hybrid carbon nanotube/short glass fiber reinforcement on the properties of polypropylene composites. Composites Part B: Engineering, 63, 154–160.Pedrazzoli, D., Pegoretti, A., & Kalaitzidou, K. (2015). Synergistic effect of graphite nanoplatelets and glass fibers in polypropylene composites. Journal of Applied Polymer Science, 132Babu, K. M., & Mettilda, M. (2014). Studies on mechanical, thermal, and morphological properties of glass fibre reinforced polyoxymethylene nanocomposite. Journal of Applied Chemistry, 2014, 782618.Li, W., Ji, C., Zhu, H., Xing, F., Wu, J., & Niu, X. (2013). Experimental investigation on the durability of glass fiber-reinforced polymer composites containing nanocomposite. Journal of Nanomaterials, 2013, 352639.Rajmohan, T., Koundinya, U. K., Premnath, A. A., & Harish, G. (2013, July 24–26). Evaluation of mechanical properties of nano filled glass fiber reinforced composites. In International Conference on Advanced Nanomaterials and Emerging Engineering Technologies, Sathyabama University, India.Ferreira, J. A. M., Reis, P. N. B., Costa, J. D. M., & Richardson, M. O. W. (2013). A study of the mechanical behaviour on injection moulded nanoclay enhanced polypropylene composites. Journal of Thermoplastic Composite Materials, 26(6), 721–732.Ma, P. C., Liu, J. W., Gao, S. L., & Mäder, E. (2013). Development of functional glass fibres with nanocomposite coating: A comparative study. Composites Part A: Applied Science and Manufacturing, 44, 16–22.Hegde, R. R., Bhat, G. S., Spruiell, J. E., & Benson, R. (2013). Structure and properties of polypropylene-nanoclay composites. Journal of Polymer Research, 20, 323.Esfahani, J. M., Esfandeh, M., & Sabet, A. R. (2012). High-velocity impact behavior of glass fiber-reinforced polyester filled with nanoclay. Journal of Applied Polymer Science, 125, E583–E591.Mohan, T. P., & Kanny, K. (2012). Effect of nanoclay in HDPE–glass fiber composites on processing, structure, and properties. Advanced Composite Materials, 21(4), 315–331.Hossain, M. K., Hossain, M. E., Hosur, M. V., & Jeelani, S. (2011). Flexural and compression response of woven E-glass/polyester–CNF nanophased composites. Composites Part A: Applied Science and Manufacturing, 42, 1774–1782.Gitiara, Y., Barbaz-Isfahani, R., Saber-Samandari, S., & Sadighi, M. (2025). Low-velocity impact behavior of incorporated GFRP composites with nanoclay and nanosilica in a corrosive environment: Experimental and numerical study. Journal of Composite Materials, 0(0), 1–22.Madhu, P., Bharath, K. N., Sanjay, M. R., Arpitha, G. R., & Saravanabavan, D. (2025). Effect of nano fillers on glass/silk fibers based reinforced polymer composites. Materials Today: Proceedings.Sundareswaran, S. K., Rajendran, B., & Dinesh Kumar, P. K. (2025). Experimental evaluation of glass fiber composite reinforced with cellulose nanoparticles. 2nd International Conference on Recent Trends in Metallurgy, Materials Science and Manufacturing.Nayak, B. A., Shubham, Prusty, R. K., & Ray, B. C. (2025). Effect of nanosilica and nanoclay reinforcement on flexural and thermal properties of glass fiber/epoxy composites. 2nd International Conference on Recent Trends in Metallurgy, Materials Science and Manufacturing.Ho, M. W., Lam, C. K., Lau, K. T., Ng, D. H. L., & Hui, D. (2006). Mechanical properties of epoxy-based composites using nanoclays. Composites Structures, 75, 415–421.Shi, Y., Kanny, K., & Jawahar, P. (2009). Hybrid nanocomposites: Processing and properties. Advanced Composite Materials, 18, 365–379.Kanny, K., & Mohan, T. P. (2014). Resin infusion analysis of nanoclay filled glass fiber laminates. Composites Part B: Engineering, 58, 328–334.Karippal, J. J., Murthy, H. N., Rai, K. S., Sreejith, M., & Krishna, M. (2020). Study of mechanical properties of epoxy/glass/nanoclay hybrid composites. Journal of Composite Materials, 0(0), 1–7.Yoon, J. D., Kim, J. H., & Cha, S. W. (2005). The effect of control factors and the effect of CaCO₃ on the microcellular foam morphology. Polymer-Plastics Technology and Engineering, 44, 805–814.Hwang, S. S., Hsu, P. P., Yeh, J. M., Yang, J. P., Chang, K. C., & Lai, Y. Z. (2009). Effect of clay and compatibilizer on the mechanical/thermal properties of microcellular injection molded low-density polyethylene nanocomposites. International Communications in Heat and Mass Transfer, 36, 471–479.Wang, X. C., Jing, X., Peng, Y. Y., Ma, Z. K., Liu, C. T., & Turng, L. S. (2016). The effect of nanoclay on the crystallization behavior, microcellular structure, and mechanical properties of thermoplastic polyurethane nanocomposite foams. Polymer Engineering & Science, 56, 319–327.Chan, M. L., Lau, K. T., Wong, T. T., Ho, M. P., & Hui, D. (2011). Mechanism of reinforcement in a nanoclay/polymer composite. Composites Part B: Engineering, 42, 1708–1712.Nor Mohd Hussin, F. N., Abdul Wahab, R., & Attan, N. (2020). Nanocellulose and nanoclay as reinforcement materials in polymer composites: A review. Malaysian Journal of Fundamental and Applied Sciences, 16(2), 145–153.Mahesh, G. G., & Jayakrishna, K. (2020). Evaluation of mechanical properties of nano filled glass fiber reinforced composites. Materials Today: Proceedings, 22, 3305–3311.Sen, B., Fulmali, A. O., Gupta, B. N. V. S. K., Prusty, R. K., & Ray, B. C. (2025). A study of the effect of carbon nanotube/nanoclay binary nanoparticle reinforcement on glass fibre/epoxy composites. 10th International Conference of Materials Processing and Characterization.Abou, A., Megahed, E., & Megahed, M. (2017). Fabrication and characterization of functionally graded nanoclay/glass fiber/epoxy hybrid nanocomposite laminates. Iranian Polymer Journal. https://doi.org/10.1007/s13726-017-0552-ySingh, K., Nanda, T., & Mehta, R. (2017). Compatibilization of polypropylene fibers in epoxy based GFRP/clay nanocomposites for improved impact strength. Composites Part A: Applied Science and Manufacturing.Li, J., Chen, Z., Wang, X., Liu, T., Zhou, Y., & Luo, S. (2013). Cell morphology and mechanical properties of microcellular MuCell® injection molded polyetherimide and polyetherimide/fillers composite foams. Journal of Applied Polymer Science, 130, 4171–4181.Pilla, S., Kramschuster, A., Gong, S., Chandra, A., & Turng, L. S. (2007). Solid and microcellular polylactide-carbon nanotube nanocomposites. International Polymer Processing, 22, 418–428.Hwang, S. S., & Hsu, P. P. (2013). Effects of silica particle size on the structure and properties of polypropylene/silica composites foams. Journal of Industrial and Engineering Chemistry, 19, 1377–1383.Ding, W., Jahani, D., Chang, E., Alemdar, A., Park, C. B., & Sain, M. (2016). Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Composites Part A: Applied Science and Manufacturing, 83, 130–139.Mylsamy, B., Palaniappan, S. K., Subramani, S. P., Pal, S. K., & Aruchamy, K. (2019). Impact of nanoclay on mechanical and structural properties of treated Coccinia indica fibre reinforced epoxy composites. Journal of Materials Research and Technology.Bian, Z., Xie, P. C., Ding, Y. M., & Yang, W. M. (2012). Effect of processing conditions on the shrinkage and warpage of glass fiber reinforced PP using microcellular injection molding. Key Engineering Materials, 501, 294–299.Gao, S. L., Mäder, E., & Plonka, R. (2007). Nanostructured coatings of glass fibers: Improvement of alkali resistance and mechanical properties. Acta Materialia, 55, 1043–1052.Karippal, J. J., Murthy, H. N., Rai, K. S., Sreejith, M., & Krishna, M. (2011). Study of mechanical properties of epoxy/glass/nanoclay hybrid composites. Journal of Composite Materials, 0(0), 1–7.Coppola, L., Cadoni, E., Forni, D., & Buoso, A. (2011). Mechanical characterization of cement composites reinforced with fiberglass, carbon nanotubes or glass reinforced plastic (GRP) at high strain rates. Applied Mechanics and Materials, 82, 190–195.Erklig, A., & Doğan, N. F. (2020). Nanographene inclusion effect on the mechanical and low velocity impact response of glass/basalt reinforced epoxy hybrid nanocomposites. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 83.Prabhakar, K., Debnath, S., Anwar, M., & Palanikumar, K. (2019). Experimental analysis on the effect of surface treatment of glass fibers and nanoclay on mechanical properties of glass fiber reinforced polymer nanocomposites. Materials Science and Engineering, 495, 01209.Shelly, D., Singh, K., Nanda, T., & Mehta, R. (2025). Addition of nanomer clays to GFRPs for enhanced impact strength and fracture toughness. Materials Research Express.Megahed, A. A., Agwa, M. A., & Megahed, M. (2025). Improvement of hardness and wear resistance of glass fiber-reinforced epoxy composites by the incorporation of silica/carbon hybrid nanofillers. Polymer-Plastics Technology and Engineering.Ambhore, N., Dhumal, A., Borawake, O., Marathe, V., & Nalawade, D. (2024). Fatigue analysis of polylactide manufactured by fused deposition method of 3D printing. Journal of Mines, Metals & Fuels, 957–964.Rafiqa, A., Merah, N., Boukhilib, R., & Al-Qadhi, M. (2016). Impact resistance of hybrid glass fiber reinforced epoxy/nanoclay composite. Polymer Testing. S0142-9418(16)30853-4.Seretis, G. V., Kouzilos, G., Manolakos, D. E., & Provatidis, C. G. (2017). On the graphene nanoplatelets reinforcement of hand lay-up glass fabric/epoxy laminated composites. Composites Part B: Engineering.Manikanta, J. E., Raju, B. N., Ambhore, N., & Santosh, S. (2024). Optimizing sustainable machining processes: A comparative study of multi-objective optimization techniques for minimum quantity lubrication with natural material derivatives in turning SS304. International Journal on Interactive Design and Manufacturing (IJIDeM), 18(2), 789–800.Zafar, M. T., Zarrinbakhsh, N., Mohanty, A. K., Misra, M., Maiti, S. N., & Ghosh, A. K. (2016). Biocomposites based on poly(lactic acid)/willow-fiber and their injection moulded microcellular foams. eXPRESS Polymer Letters, 10, 176–186.Manikanta, J. E., Ambhore, N., Nikhare, C., & Gurajala, N. K. (2024). Machining performance of SS 304 steel with hybrid nanocutting fluids using Taguchi-based gray relational analysis. Journal of Mechanical Engineering Science, 10290–10302.Kramschuster, A., Pilla, S., Gong, S., Chandra, A., & Turng, L. S. (2007). Injection molded solid and microcellular polylactide compounded with recycled paper shopping bag fibers. International Polymer Processing, 22, 436–445.Yuan, M., Winardi, A., Gong, S., & Turng, L. S. (2005). Effects of nano- and micro-fillers and processing parameters on injection-molded microcellular composites. Polymer Engineering & Science, 45, 773–788.Gaikwad, M. U., Gaikwad, P. U., Ambhore, N., Sharma, A., & Bhosale, S. S. (2025). Powder bed additive manufacturing using machine learning algorithms for multidisciplinary applications: A review and outlook. Recent Patents on Mechanical Engineering, 18(1), 12–25.Ashori, A., & Nourbakhsh, A. (2011). Preparation and characterization of polypropylene/wood flour/nanoclay composites. European Journal of Wood and Wood Products, 69, 663–666.Binu, P. P., George, K. E., & Vinodkumar, M. N. (2016). Effect of nanoclay, Cloisite 15A on the mechanical properties and thermal behavior of glass fiber reinforced polyester. Procedia Technology, 25, 846–853.Shi, Y., Kanny, K., & Jawahar, P. (2009). Hybrid nanocomposites: Processing and properties. Advanced Composite Materials, 18, 365–379.Manikanta, J. E., Ambhore, N., Nikhare, C., & Gurajala, N. K. (2024). Machining performance of SS 304 steel with hybrid nanocutting fluids using Taguchi-based gray relational analysis. Journal of Mechanical Engineering Science, 10290–10302.Bozkurt, E., Kaya, E., & Tanolu, M. (2007). Mechanical and thermal behavior of non-crimp glass fiber reinforced layered clay/epoxy nanocomposites. Composites Science and Technology, 67, 3394–3403.Chinchanikar, S., Shinde, S., Shaikh, A., Gaikwad, V., & Ambhore, N. H. (2024). Multi-objective optimization of FDM using hybrid genetic algorithm-based multi-criteria decision-making (MCDM) techniques. Journal of the Institution of Engineers (India): Series D, 105(1), 49–63.Jeyakumar, R., Sampath, P. S., Ramamoorthi, R., & Ramakrishnan, T. (2017). Structural, morphological and mechanical behaviour of glass fibre reinforced epoxy nanoclay composites. International Journal of Advanced Manufacturing Technology, 93, 527–535.Bledzki, A. K., & Faruk, O. (2005). Microcellular wood fiber reinforced PP composites: Cell morphology, surface roughness, impact, and odor properties. Journal of Cellular Plastics, 41, 539–550.Rahman, A. S., Mathur, V., & Asmatulu, R. (2017). Effect of nanoclay and graphene inclusions on the low-velocity impact resistance of Kevlar-epoxy laminated composites. Composites Structures.Ashori, A., Ghiyasi, M., & Fallah, A. (2025). Glass fiber-reinforced epoxy composite with surface-modified graphene oxide: Enhancement of interlaminar fracture toughness and thermo-mechanical performance. Polymer Bulletin.Gurusideswar, S., & Velmurugan, R. (2014). Strain rate sensitivity of glass/epoxy composites with nanofillers. Materials, 60, 468–478.Yetgin, S., Unal, H., & Mimaroglu, A. (2014). Influence of foam agent content and talc filler on the microcellular and mechanical properties of injection molded polypropylene and talc filled polypropylene composite foams. Journal of Cellular Plastics, 50, 563–576.Gwon, J. G., Lee, S. Y., Kang, H., & Kim, J. H. (2012). Effects of sizes and contents of exothermic foaming agent on physical properties of injection foamed wood fiber/HDPE composites. International Journal of Precision Engineering and Manufacturing, 13, 1003–1007.Bledzki, A. K., & Faruk, O. (2006). Microcellular wood fibre reinforced PP composites. International Polymer Processing, 21, 256–262.Zhang, Z. X., Fan, J. L., Pal, K., Kim, J. K., & Xin, Z. X. (2011). Influence of compatibilizers and processing temperature on microcellular injection-molded polypropylene/(waste tire powder) composites. Journal of Vinyl and Additive Technology, 17, 254–259.Srithep, Y., & Turng, L. S. (2014). Microcellular injection molding of recycled poly(ethylene terephthalate) blends with chain extenders and nanoclay. Journal of Polymer Engineering, 34, 5–13.Yetgin, S., Unal, H., & Mimaroglu, A. (2014). Influence of foam agent content and talc filler on the microcellular and mechanical properties of injection molded polypropylene and talc filled polypropylene composite foams. Journal of Cellular Plastics, 50, 563–576.Gurajala, N. K., Abdullah, M., Manikanta, J. E., & Ambhore, N. (2025). Effect of AA 6351-ZrB₂ in-situ composition on dry sliding wear performance at elevated temperatures. Oxford Open Materials Science, 5(1), itaf010.Yetkin, S. H., Unal, H., Mimaroglu, A., & Findik, F. (2013). Influence of process parameters on the mechanical and foaming properties of PP polymer and PP/TALC/EPDM composites. Polymer-Plastics Technology and Engineering, 52, 433–439.Ameli, A., Jahani, D., Nofar, M., Jung, P. U., & Park, C. B. (2013). Processing and characterization of solid and foamed injection-molded polylactide with talc. Journal of Cellular Plastics, 49, 351–374.Zhao, H., Cui, Z., Wang, X., Turng, L. S., & Peng, X. (2013). Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/clay nanocomposites. Composites Part B: Engineering, 51, 79–91.Xi, Z., Sha, X., Liu, T., & Zhao, L. (2014). Microcellular injection molding of polypropylene and glass fiber composites with supercritical nitrogen. Journal of Cellular Plastics, 50, 489–505.Roch, A., Huber, T., Henning, F., & Elsner, P. (2014). LFT foam – Lightweight potential for semi-structural components through the use of long-glass-fiber-reinforced thermoplastic foams. AIP Conference Proceedings, 1593, 471–476.Roch, A., Kehret, L., Huber, T., Henning, F., & Elsner, P. (2015). Investigations on injection molded, glass-fiber reinforced polyamide 6 integral foams using breathing mold technology. AIP Conference Proceedings, 1664, 110013.Ameli, A., Jung, P. U., & Park, C. B. (2013). Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon, 60, 379–391.Kamble, D., Gadekar, T., & Ambhore, N. (2024). A predictive system based on experimental study of lubricant blended with composite additives. Tribology: Finnish Journal of Tribology, 41(3–4), 37–48.Arjmand, M., Mahmoodi, M., Park, S., & Sundararaj, U. (2014). Impact of foaming on the broadband dielectric properties of multi-walled carbon nanotube/polystyrene composites. Journal of Cellular Plastics, 50, 551–562.Ambhore, N., & Kamble, D. (2020). Experimental investigation of tool wear and induced vibration in turning high hardness AISI52100 steel using cutting parameters and tool acceleration. Facta Universitatis, Series: Mechanical Engineering, 18(4), 623–637.Apate, A., Kumar, S., & Ambhore, N. H. (2024). Optimization of layered hybrid laminates using ANSYS for enhanced tensile properties and performance analysis. SSRG International Journal of Mechanical Engineering, 12(1), 99–112.Ho, M. W., Lam, C. K., Lau, K. T., Ng, D. H. L., & Hui, D. (2006). Mechanical properties of epoxy-based composites using nanoclays. Composites Structures, 75, 415–421.Ebrahimnezhad-Khaljiri, H., Eslami-Farsani, R., Khosravi, H., & Shahrabi-Farahani, A. (2019). Improving the flexural properties of E-glass fibers/epoxy isogrid stiffened composites through addition of 3-glycidoxypropyltrimethoxysilane functionalized nanoclay. Silicon.Jawahar, P., & Balasubramanian, M. (2006). Influence of nanosize clay platelets on the mechanical properties of glass fiber reinforced polyester composites. Journal of Nanoscience and Nanotechnology, 6, 3973–3976.Najafi, M., Darvizeh, A., & Ansari, R. (2018). Effect of nanoclay addition on the hygrothermal durability of glass/epoxy and fiber metal laminates. Fibers and Polymers, 19, 1956–1969.Sarathi, R., Sahu, R. K., & Rajeshkumar, P. (2007). Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites. Materials Science and Engineering A, 445–446, 567–578.Sevkat, E., Liaw, B., & Delale, F. (2012). Ballistic performance of hybrid and non-hybrid composite plates. Journal of Strain Analysis for Engineering Design, 47(7), 453–470.Dan, C. H., Kim, Y. D., Lee, M., Min, B. H., & Kim, J. H. (2008). Effect of solvent on the properties of thermoplastic polyurethane/clay nanocomposites prepared by solution mixing. Journal of Applied Polymer Science, 108, 2128–2138.Prabhu, P., Iqbal, S. M., Balaji, A., & Karthikeyan, B. (2018). Experimental investigation of mechanical and machining parameters of hybrid nanoclay glass fiber-reinforced polyester composites. Advanced Composites and Hybrid Materials.Ragunath, S., Rathod, M. L., Saravanan, K. G., Rakesh, N., & Kifetew, M. (2023). Optimization of machining parameters of natural/glass fiber with |