-
- Alzahrani, B. (2025). Comparative Analysis of Nano-powder Reinforcements on Tribological Properties of AA5754 Composites Fabricated via Friction Stir Processing. JES. Journal of Engineering Sciences, 53(4), 100-124.
- Santosh, S., Ambhore, N., Javvadi, E. M., Rao, D. S., & Mohan, R. R. (2025). Sustainable machining strategies for metal matrix composites: A comprehensive review. Engineering Research Express, 7, 1-20.
- Patole, R., Ambhore, N., & Agrawal, D. (2023). Carbon composites in aerospace application: A comprehensive review. Material International, 5(4), 1-12.
- Rizvi, S. J. A., & Bhatnagar, N. (2011). Microcellular PP vs. Microcellular PP/MMT nanocomposites: A comparative study of their mechanical behavior. International Polymer Processing, 26, 375–382.
- Mohamed, M., Ahmed, A. R., Ahmed, M., & Farghal, O. A. (2023). Prediction of Axial Compressive Strength of Hybrid Reinforced Concrete Columns under Static Loading. JES. Journal of Engineering Sciences, 51(1), 1-16.
- Trifol, J., Plackett, D., Sillard, C., Hassager, O., Daugaard, A. E., Bras, J., & Szabo, P. (2016). A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites. Journal of Applied Polymer Science.
- Venkatram, B., Kailasanathan, C., Seenikannan, P., & Paramasamy, S. (2015). Study on the evaluation of mechanical and thermal properties of natural sisal fiber/GP composites reinforced with nanoclay. International Journal of Polymer Analysis and Characterization, 20(7), 572–581.
- Koricho, E. G., Khomenko, A., Haq, M., Drzal, L. T., Belingardi, G., & Martorana, B. (2015). Effect of hybrid (micro- and nano-) fillers on impact response of GFRP composite. Composite Structures.
- Amir, W. W., Jumahat, A., & Mahmud, J. (2015). Effect of nanoclay content on flexural properties of glass fiber reinforced polymer (GFRP) composites. Jurnal Teknologi, 76(3), 31–35.
- Kamar, N. T., Hossain, M. M., Khomenko, A., Haq, M., Drzal, L. T., & Loos, A. (2015). Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Composites Part A: Applied Science and Manufacturing, 70, 82–92.
- Sopu, D., Stoica, M., & Eckert, J. (2015). Deformation behavior of metallic glass composites reinforced with shape memory nanowires studied via molecular dynamics simulations. Applied Physics Letters, 106, 211902.
- Ji, L., Wang, W., Jin, D., Zhou, S., & Song, X. (2015). In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites. Materials Science and Engineering: C, 46, 1–9.
- Rafiqa, A., Al-Qadhi, M., Merah, N., & Ali, Y. (2014). Mechanical behavior of hybrid glass fibre/epoxy clay nanocomposites. Advanced Materials Research, 894, 336–341.
- Eesaee, M., & Shojaei, A. (2014). Effect of nanoclay on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments. Composites Part A: Applied Science and Manufacturing, 63, 149–158.
- Karsli, N. G., Yesil, S., & Aytac, A. (2014). Effect of hybrid carbon nanotube/short glass fiber reinforcement on the properties of polypropylene composites. Composites Part B: Engineering, 63, 154–160.
- Pedrazzoli, D., Pegoretti, A., & Kalaitzidou, K. (2015). Synergistic effect of graphite nanoplatelets and glass fibers in polypropylene composites. Journal of Applied Polymer Science, 132
- Babu, K. M., & Mettilda, M. (2014). Studies on mechanical, thermal, and morphological properties of glass fibre reinforced polyoxymethylene nanocomposite. Journal of Applied Chemistry, 2014, 782618.
- Li, W., Ji, C., Zhu, H., Xing, F., Wu, J., & Niu, X. (2013). Experimental investigation on the durability of glass fiber-reinforced polymer composites containing nanocomposite. Journal of Nanomaterials, 2013, 352639.
- Rajmohan, T., Koundinya, U. K., Premnath, A. A., & Harish, G. (2013, July 24–26). Evaluation of mechanical properties of nano filled glass fiber reinforced composites. In International Conference on Advanced Nanomaterials and Emerging Engineering Technologies, Sathyabama University, India.
- Ferreira, J. A. M., Reis, P. N. B., Costa, J. D. M., & Richardson, M. O. W. (2013). A study of the mechanical behaviour on injection moulded nanoclay enhanced polypropylene composites. Journal of Thermoplastic Composite Materials, 26(6), 721–732.
- Ma, P. C., Liu, J. W., Gao, S. L., & Mäder, E. (2013). Development of functional glass fibres with nanocomposite coating: A comparative study. Composites Part A: Applied Science and Manufacturing, 44, 16–22.
- Hegde, R. R., Bhat, G. S., Spruiell, J. E., & Benson, R. (2013). Structure and properties of polypropylene-nanoclay composites. Journal of Polymer Research, 20, 323.
- Esfahani, J. M., Esfandeh, M., & Sabet, A. R. (2012). High-velocity impact behavior of glass fiber-reinforced polyester filled with nanoclay. Journal of Applied Polymer Science, 125, E583–E591.
- Mohan, T. P., & Kanny, K. (2012). Effect of nanoclay in HDPE–glass fiber composites on processing, structure, and properties. Advanced Composite Materials, 21(4), 315–331.
- Hossain, M. K., Hossain, M. E., Hosur, M. V., & Jeelani, S. (2011). Flexural and compression response of woven E-glass/polyester–CNF nanophased composites. Composites Part A: Applied Science and Manufacturing, 42, 1774–1782.
- Gitiara, Y., Barbaz-Isfahani, R., Saber-Samandari, S., & Sadighi, M. (2025). Low-velocity impact behavior of incorporated GFRP composites with nanoclay and nanosilica in a corrosive environment: Experimental and numerical study. Journal of Composite Materials, 0(0), 1–22.
- Madhu, P., Bharath, K. N., Sanjay, M. R., Arpitha, G. R., & Saravanabavan, D. (2025). Effect of nano fillers on glass/silk fibers based reinforced polymer composites. Materials Today: Proceedings.
- Sundareswaran, S. K., Rajendran, B., & Dinesh Kumar, P. K. (2025). Experimental evaluation of glass fiber composite reinforced with cellulose nanoparticles. 2nd International Conference on Recent Trends in Metallurgy, Materials Science and Manufacturing.
- Nayak, B. A., Shubham, Prusty, R. K., & Ray, B. C. (2025). Effect of nanosilica and nanoclay reinforcement on flexural and thermal properties of glass fiber/epoxy composites. 2nd International Conference on Recent Trends in Metallurgy, Materials Science and Manufacturing.
- Ho, M. W., Lam, C. K., Lau, K. T., Ng, D. H. L., & Hui, D. (2006). Mechanical properties of epoxy-based composites using nanoclays. Composites Structures, 75, 415–421.
- Shi, Y., Kanny, K., & Jawahar, P. (2009). Hybrid nanocomposites: Processing and properties. Advanced Composite Materials, 18, 365–379.
- Kanny, K., & Mohan, T. P. (2014). Resin infusion analysis of nanoclay filled glass fiber laminates. Composites Part B: Engineering, 58, 328–334.
- Karippal, J. J., Murthy, H. N., Rai, K. S., Sreejith, M., & Krishna, M. (2020). Study of mechanical properties of epoxy/glass/nanoclay hybrid composites. Journal of Composite Materials, 0(0), 1–7.
- Yoon, J. D., Kim, J. H., & Cha, S. W. (2005). The effect of control factors and the effect of CaCO₃ on the microcellular foam morphology. Polymer-Plastics Technology and Engineering, 44, 805–814.
- Hwang, S. S., Hsu, P. P., Yeh, J. M., Yang, J. P., Chang, K. C., & Lai, Y. Z. (2009). Effect of clay and compatibilizer on the mechanical/thermal properties of microcellular injection molded low-density polyethylene nanocomposites. International Communications in Heat and Mass Transfer, 36, 471–479.
- Wang, X. C., Jing, X., Peng, Y. Y., Ma, Z. K., Liu, C. T., & Turng, L. S. (2016). The effect of nanoclay on the crystallization behavior, microcellular structure, and mechanical properties of thermoplastic polyurethane nanocomposite foams. Polymer Engineering & Science, 56, 319–327.
- Chan, M. L., Lau, K. T., Wong, T. T., Ho, M. P., & Hui, D. (2011). Mechanism of reinforcement in a nanoclay/polymer composite. Composites Part B: Engineering, 42, 1708–1712.
- Nor Mohd Hussin, F. N., Abdul Wahab, R., & Attan, N. (2020). Nanocellulose and nanoclay as reinforcement materials in polymer composites: A review. Malaysian Journal of Fundamental and Applied Sciences, 16(2), 145–153.
- Mahesh, G. G., & Jayakrishna, K. (2020). Evaluation of mechanical properties of nano filled glass fiber reinforced composites. Materials Today: Proceedings, 22, 3305–3311.
- Sen, B., Fulmali, A. O., Gupta, B. N. V. S. K., Prusty, R. K., & Ray, B. C. (2025). A study of the effect of carbon nanotube/nanoclay binary nanoparticle reinforcement on glass fibre/epoxy composites. 10th International Conference of Materials Processing and Characterization.
- Abou, A., Megahed, E., & Megahed, M. (2017). Fabrication and characterization of functionally graded nanoclay/glass fiber/epoxy hybrid nanocomposite laminates. Iranian Polymer Journal. https://doi.org/10.1007/s13726-017-0552-y
- Singh, K., Nanda, T., & Mehta, R. (2017). Compatibilization of polypropylene fibers in epoxy based GFRP/clay nanocomposites for improved impact strength. Composites Part A: Applied Science and Manufacturing.
- Li, J., Chen, Z., Wang, X., Liu, T., Zhou, Y., & Luo, S. (2013). Cell morphology and mechanical properties of microcellular MuCell® injection molded polyetherimide and polyetherimide/fillers composite foams. Journal of Applied Polymer Science, 130, 4171–4181.
- Pilla, S., Kramschuster, A., Gong, S., Chandra, A., & Turng, L. S. (2007). Solid and microcellular polylactide-carbon nanotube nanocomposites. International Polymer Processing, 22, 418–428.
- Hwang, S. S., & Hsu, P. P. (2013). Effects of silica particle size on the structure and properties of polypropylene/silica composites foams. Journal of Industrial and Engineering Chemistry, 19, 1377–1383.
- Ding, W., Jahani, D., Chang, E., Alemdar, A., Park, C. B., & Sain, M. (2016). Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Composites Part A: Applied Science and Manufacturing, 83, 130–139.
- Mylsamy, B., Palaniappan, S. K., Subramani, S. P., Pal, S. K., & Aruchamy, K. (2019). Impact of nanoclay on mechanical and structural properties of treated Coccinia indica fibre reinforced epoxy composites. Journal of Materials Research and Technology.
- Bian, Z., Xie, P. C., Ding, Y. M., & Yang, W. M. (2012). Effect of processing conditions on the shrinkage and warpage of glass fiber reinforced PP using microcellular injection molding. Key Engineering Materials, 501, 294–299.
- Gao, S. L., Mäder, E., & Plonka, R. (2007). Nanostructured coatings of glass fibers: Improvement of alkali resistance and mechanical properties. Acta Materialia, 55, 1043–1052.
- Karippal, J. J., Murthy, H. N., Rai, K. S., Sreejith, M., & Krishna, M. (2011). Study of mechanical properties of epoxy/glass/nanoclay hybrid composites. Journal of Composite Materials, 0(0), 1–7.
- Coppola, L., Cadoni, E., Forni, D., & Buoso, A. (2011). Mechanical characterization of cement composites reinforced with fiberglass, carbon nanotubes or glass reinforced plastic (GRP) at high strain rates. Applied Mechanics and Materials, 82, 190–195.
- Erklig, A., & Doğan, N. F. (2020). Nanographene inclusion effect on the mechanical and low velocity impact response of glass/basalt reinforced epoxy hybrid nanocomposites. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 83.
- Prabhakar, K., Debnath, S., Anwar, M., & Palanikumar, K. (2019). Experimental analysis on the effect of surface treatment of glass fibers and nanoclay on mechanical properties of glass fiber reinforced polymer nanocomposites. Materials Science and Engineering, 495, 01209.
- Shelly, D., Singh, K., Nanda, T., & Mehta, R. (2025). Addition of nanomer clays to GFRPs for enhanced impact strength and fracture toughness. Materials Research Express.
- Megahed, A. A., Agwa, M. A., & Megahed, M. (2025). Improvement of hardness and wear resistance of glass fiber-reinforced epoxy composites by the incorporation of silica/carbon hybrid nanofillers. Polymer-Plastics Technology and Engineering.
- Ambhore, N., Dhumal, A., Borawake, O., Marathe, V., & Nalawade, D. (2024). Fatigue analysis of polylactide manufactured by fused deposition method of 3D printing. Journal of Mines, Metals & Fuels, 957–964.
- Rafiqa, A., Merah, N., Boukhilib, R., & Al-Qadhi, M. (2016). Impact resistance of hybrid glass fiber reinforced epoxy/nanoclay composite. Polymer Testing. S0142-9418(16)30853-4.
- Seretis, G. V., Kouzilos, G., Manolakos, D. E., & Provatidis, C. G. (2017). On the graphene nanoplatelets reinforcement of hand lay-up glass fabric/epoxy laminated composites. Composites Part B: Engineering.
- Manikanta, J. E., Raju, B. N., Ambhore, N., & Santosh, S. (2024). Optimizing sustainable machining processes: A comparative study of multi-objective optimization techniques for minimum quantity lubrication with natural material derivatives in turning SS304. International Journal on Interactive Design and Manufacturing (IJIDeM), 18(2), 789–800.
- Zafar, M. T., Zarrinbakhsh, N., Mohanty, A. K., Misra, M., Maiti, S. N., & Ghosh, A. K. (2016). Biocomposites based on poly(lactic acid)/willow-fiber and their injection moulded microcellular foams. eXPRESS Polymer Letters, 10, 176–186.
- Manikanta, J. E., Ambhore, N., Nikhare, C., & Gurajala, N. K. (2024). Machining performance of SS 304 steel with hybrid nanocutting fluids using Taguchi-based gray relational analysis. Journal of Mechanical Engineering Science, 10290–10302.
- Kramschuster, A., Pilla, S., Gong, S., Chandra, A., & Turng, L. S. (2007). Injection molded solid and microcellular polylactide compounded with recycled paper shopping bag fibers. International Polymer Processing, 22, 436–445.
- Yuan, M., Winardi, A., Gong, S., & Turng, L. S. (2005). Effects of nano- and micro-fillers and processing parameters on injection-molded microcellular composites. Polymer Engineering & Science, 45, 773–788.
- Gaikwad, M. U., Gaikwad, P. U., Ambhore, N., Sharma, A., & Bhosale, S. S. (2025). Powder bed additive manufacturing using machine learning algorithms for multidisciplinary applications: A review and outlook. Recent Patents on Mechanical Engineering, 18(1), 12–25.
- Ashori, A., & Nourbakhsh, A. (2011). Preparation and characterization of polypropylene/wood flour/nanoclay composites. European Journal of Wood and Wood Products, 69, 663–666.
- Binu, P. P., George, K. E., & Vinodkumar, M. N. (2016). Effect of nanoclay, Cloisite 15A on the mechanical properties and thermal behavior of glass fiber reinforced polyester. Procedia Technology, 25, 846–853.
- Shi, Y., Kanny, K., & Jawahar, P. (2009). Hybrid nanocomposites: Processing and properties. Advanced Composite Materials, 18, 365–379.
- Manikanta, J. E., Ambhore, N., Nikhare, C., & Gurajala, N. K. (2024). Machining performance of SS 304 steel with hybrid nanocutting fluids using Taguchi-based gray relational analysis. Journal of Mechanical Engineering Science, 10290–10302.
- Bozkurt, E., Kaya, E., & Tanolu, M. (2007). Mechanical and thermal behavior of non-crimp glass fiber reinforced layered clay/epoxy nanocomposites. Composites Science and Technology, 67, 3394–3403.
- Chinchanikar, S., Shinde, S., Shaikh, A., Gaikwad, V., & Ambhore, N. H. (2024). Multi-objective optimization of FDM using hybrid genetic algorithm-based multi-criteria decision-making (MCDM) techniques. Journal of the Institution of Engineers (India): Series D, 105(1), 49–63.
- Jeyakumar, R., Sampath, P. S., Ramamoorthi, R., & Ramakrishnan, T. (2017). Structural, morphological and mechanical behaviour of glass fibre reinforced epoxy nanoclay composites. International Journal of Advanced Manufacturing Technology, 93, 527–535.
- Bledzki, A. K., & Faruk, O. (2005). Microcellular wood fiber reinforced PP composites: Cell morphology, surface roughness, impact, and odor properties. Journal of Cellular Plastics, 41, 539–550.
- Rahman, A. S., Mathur, V., & Asmatulu, R. (2017). Effect of nanoclay and graphene inclusions on the low-velocity impact resistance of Kevlar-epoxy laminated composites. Composites Structures.
- Ashori, A., Ghiyasi, M., & Fallah, A. (2025). Glass fiber-reinforced epoxy composite with surface-modified graphene oxide: Enhancement of interlaminar fracture toughness and thermo-mechanical performance. Polymer Bulletin.
- Gurusideswar, S., & Velmurugan, R. (2014). Strain rate sensitivity of glass/epoxy composites with nanofillers. Materials, 60, 468–478.
- Yetgin, S., Unal, H., & Mimaroglu, A. (2014). Influence of foam agent content and talc filler on the microcellular and mechanical properties of injection molded polypropylene and talc filled polypropylene composite foams. Journal of Cellular Plastics, 50, 563–576.
- Gwon, J. G., Lee, S. Y., Kang, H., & Kim, J. H. (2012). Effects of sizes and contents of exothermic foaming agent on physical properties of injection foamed wood fiber/HDPE composites. International Journal of Precision Engineering and Manufacturing, 13, 1003–1007.
- Bledzki, A. K., & Faruk, O. (2006). Microcellular wood fibre reinforced PP composites. International Polymer Processing, 21, 256–262.
- Zhang, Z. X., Fan, J. L., Pal, K., Kim, J. K., & Xin, Z. X. (2011). Influence of compatibilizers and processing temperature on microcellular injection-molded polypropylene/(waste tire powder) composites. Journal of Vinyl and Additive Technology, 17, 254–259.
- Srithep, Y., & Turng, L. S. (2014). Microcellular injection molding of recycled poly(ethylene terephthalate) blends with chain extenders and nanoclay. Journal of Polymer Engineering, 34, 5–13.
- Yetgin, S., Unal, H., & Mimaroglu, A. (2014). Influence of foam agent content and talc filler on the microcellular and mechanical properties of injection molded polypropylene and talc filled polypropylene composite foams. Journal of Cellular Plastics, 50, 563–576.
- Gurajala, N. K., Abdullah, M., Manikanta, J. E., & Ambhore, N. (2025). Effect of AA 6351-ZrB₂ in-situ composition on dry sliding wear performance at elevated temperatures. Oxford Open Materials Science, 5(1), itaf010.
- Yetkin, S. H., Unal, H., Mimaroglu, A., & Findik, F. (2013). Influence of process parameters on the mechanical and foaming properties of PP polymer and PP/TALC/EPDM composites. Polymer-Plastics Technology and Engineering, 52, 433–439.
- Ameli, A., Jahani, D., Nofar, M., Jung, P. U., & Park, C. B. (2013). Processing and characterization of solid and foamed injection-molded polylactide with talc. Journal of Cellular Plastics, 49, 351–374.
- Zhao, H., Cui, Z., Wang, X., Turng, L. S., & Peng, X. (2013). Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/clay nanocomposites. Composites Part B: Engineering, 51, 79–91.
- Xi, Z., Sha, X., Liu, T., & Zhao, L. (2014). Microcellular injection molding of polypropylene and glass fiber composites with supercritical nitrogen. Journal of Cellular Plastics, 50, 489–505.
- Roch, A., Huber, T., Henning, F., & Elsner, P. (2014). LFT foam – Lightweight potential for semi-structural components through the use of long-glass-fiber-reinforced thermoplastic foams. AIP Conference Proceedings, 1593, 471–476.
- Roch, A., Kehret, L., Huber, T., Henning, F., & Elsner, P. (2015). Investigations on injection molded, glass-fiber reinforced polyamide 6 integral foams using breathing mold technology. AIP Conference Proceedings, 1664, 110013.
- Ameli, A., Jung, P. U., & Park, C. B. (2013). Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon, 60, 379–391.
- Kamble, D., Gadekar, T., & Ambhore, N. (2024). A predictive system based on experimental study of lubricant blended with composite additives. Tribology: Finnish Journal of Tribology, 41(3–4), 37–48.
- Arjmand, M., Mahmoodi, M., Park, S., & Sundararaj, U. (2014). Impact of foaming on the broadband dielectric properties of multi-walled carbon nanotube/polystyrene composites. Journal of Cellular Plastics, 50, 551–562.
- Ambhore, N., & Kamble, D. (2020). Experimental investigation of tool wear and induced vibration in turning high hardness AISI52100 steel using cutting parameters and tool acceleration. Facta Universitatis, Series: Mechanical Engineering, 18(4), 623–637.
- Apate, A., Kumar, S., & Ambhore, N. H. (2024). Optimization of layered hybrid laminates using ANSYS for enhanced tensile properties and performance analysis. SSRG International Journal of Mechanical Engineering, 12(1), 99–112.
- Ho, M. W., Lam, C. K., Lau, K. T., Ng, D. H. L., & Hui, D. (2006). Mechanical properties of epoxy-based composites using nanoclays. Composites Structures, 75, 415–421.
- Ebrahimnezhad-Khaljiri, H., Eslami-Farsani, R., Khosravi, H., & Shahrabi-Farahani, A. (2019). Improving the flexural properties of E-glass fibers/epoxy isogrid stiffened composites through addition of 3-glycidoxypropyltrimethoxysilane functionalized nanoclay. Silicon.
- Jawahar, P., & Balasubramanian, M. (2006). Influence of nanosize clay platelets on the mechanical properties of glass fiber reinforced polyester composites. Journal of Nanoscience and Nanotechnology, 6, 3973–3976.
- Najafi, M., Darvizeh, A., & Ansari, R. (2018). Effect of nanoclay addition on the hygrothermal durability of glass/epoxy and fiber metal laminates. Fibers and Polymers, 19, 1956–1969.
- Sarathi, R., Sahu, R. K., & Rajeshkumar, P. (2007). Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites. Materials Science and Engineering A, 445–446, 567–578.
- Sevkat, E., Liaw, B., & Delale, F. (2012). Ballistic performance of hybrid and non-hybrid composite plates. Journal of Strain Analysis for Engineering Design, 47(7), 453–470.
- Dan, C. H., Kim, Y. D., Lee, M., Min, B. H., & Kim, J. H. (2008). Effect of solvent on the properties of thermoplastic polyurethane/clay nanocomposites prepared by solution mixing. Journal of Applied Polymer Science, 108, 2128–2138.
- Prabhu, P., Iqbal, S. M., Balaji, A., & Karthikeyan, B. (2018). Experimental investigation of mechanical and machining parameters of hybrid nanoclay glass fiber-reinforced polyester composites. Advanced Composites and Hybrid Materials.
- Ragunath, S., Rathod, M. L., Saravanan, K. G., Rakesh, N., & Kifetew, M. (2023). Optimization of machining parameters of natural/glass fiber with
|