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ON A ELLIPTIC PROBLEM INVOLVING VARIABLE-ORDER
FRACTIONAL p(-)- LAPLACIAN AND LOGARITHMIC
NONLINEARITY

SALIFOU KORBEOGO, TIYAMBA VALEA AND AROUNA OUEDRAOGO

ABSTRACT. This paper investigates the existence of weak solutions for a frac-
tional elliptic problem with variable exponent and variable order, using Eke-
land’s variational principle. The equation studied involves the generalised frac-
tional Laplacian operator, denoted (—A);E:)), specialised in modelling complex
real or physical phenomena, where p and s are continuous functions of real
variables with values in (0, 00) and (0, 1), respectively. The method is based
on the variational formulation associated with the fractional elliptic equation.
We consider a functional for which a minimizer is sought in a fractional Sobolev
space. Under certain assumptions on the exponents and the order of deriva-
tion, we have shown that this functional admits a minimizer. This minimizer
is a weak solution of the elliptic equation. This approach makes it possible to
treat non-local problems with variable exponents and order of derivation, thus
offering an extension of the classical results to more complex cases. The func-
tional setting involves Lebesgue and Sobolev spaces with variable exponent
and variable-order.

1. INTRODUCTION

The fractional variable order derivatives suggested by Lorenzo and Hartley in [15]
have become indispensable in the mathematical description or modeling of complex
phenomena, where traditional operators have shown their limitations. Physics, biol-
ogy, finance, electromagnetism, nuclear (strong) interactions, epidemics, and others
are among the fields of application of these operators, see [1, 2, 6, 9]. This situa-
tion has attracted many researchers to study problems involving these operators,
see [17, 19] . In 2017, U.Kaufman et al. [11] introduced the variable exponent
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fractional Laplacian (—A)j ., defined by:

[u(z) — u(y) P02 (u(z) — u(y))

N
|z — y|N+s-p(@y) dy, z € R,

(—A)y ¢ ul@) = P.V/

RN
where P.V. is a commonly used abbreviation for the Cauchy principal value. It
is a fractional version of the p(x)-Laplacian operator given by div(|Vu[P®)~2Vu),
associated with the variable exponent Sobolev space WP (‘”)(Q).

They also presented very interesting results on Sobolev embeddings in variable
exponent fractional Sobolev spaces and they proved the existence and uniqueness
of weak solution for the following problem

Lu(z) + [u(x)]?2u(z) = Af(z) inQ,
{ u =0 on 052 (1)

with f € L%®) for some a(z) > 1.

Other authors, such as M. Hsini et al. [10], S. Korbeogo et al. [12] and A. Sabri
et al. [17] , have been interested in problems involving the fractional Laplacian
with variable exponent. In particular, M. Hsini et al. proved the existence of weak
solution of the following problem via Ekeland’s variational principle:

{(—A&ﬂww+wuwo2mm AP o, o)
U =0 in 092,

where F' € C'(Q x R,R), locally Lipschitz and ) a positive parameter.
On the other hand, M. Xiang et al. [19] introduced the variable-order fractional
p-Laplacian, defined by,

S(- w(z) —u()P2(u(z) — u(€
e = P [ MO ) )

N
s ¢, z € RV,

RN
also demonstrating embedding results. When s(-) = s(constant) € (0, 1), the oper-
ator (—A)Z(‘) reduces to the usual fractional p-Laplacian.

Later, researchers quickly turned to a more general operator, namely the variable-
order fractional Laplacian with a variable exponent, denoted by (fA);((% and de-
fined by:

|u(@) — u(y)|P@Y) 2 (u(e) — u(y))
|z — y|N+s(@y)-pley)

(=AY Ou(z) = PV

p()U dy, = € RV,

RN
In [18] A. Sabri proved the existence and uniqueness of the weak solution to the
problem formulated as follows:

u+ (A u =f  inQri=0x(0,7),

u =0 in 9Q x (0,7),

u(-,0) =up(-) in Q.

Where f € L (Qr) and ug € L>(Q).
First of its kind, this paper aims to demonstrate the existence of weak solution to
an elliptic problem (P),(.) () involving a fractional operator of variable order and
exponent, using Ekeland’s variational principle.
(P) (~A)u+ 7020 = Aul*O%ulog(lul) in
*()p() u(.,0) = up(.) on 09,
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where Q@ ¢ RY, N > 2 is a bounded smooth domain and \ is a positive parameter.
The problem addressed in this work generalises the work of M. Hsini et al. in
[10], and therefore represents a significant advancement in the study of problems
involving fractional derivatives.

We start by defining p : @ x Q — (0,00) and s : 2 x Q — (0,1) be two continuous
and symmetric functions such that

l1<p = min _p(y,2) <ply,z) <p" = max _p(y,z) < oo
(y,2)€QxQ (y,2)EQXQ
and
0<s™ = min _s(y,2) <s(y,2) <st = max _s(y,2) <1,
(y,2)€QXQ (y,2)EQXQ
with
N > p(-)s(-).

Moreover, the function ¢ : Q — (0, 00) is continuous satisfying

1< ¢~ =ming(y) < q(y) < ¢ =maxq(y) < co.
yeN yeQ

The rest of the paper is organized as follows: In section 2, we recall some basic

proprieties of Lebesgue and Sobolev spaces with variable exponent and variable-

order and in section 3, we state and prove our main result.

2. PRELIMINARIES

To start, we define the space

C4(Q) = {h;h € C(),h(y) > 1 for any y € Q}.
For ¢ € C(9), we consider the function space
a(y)
dy < o0

L10)(Q) is separable, uniformly convex Banach space with variable exponents em-
dowed with the norm:
a(y)
dy < 1}

[ £l Lacr (@) = inf {)\ >0: /Q

(LIO(Q), |||l ac) is generalized Lebesgue space.
1

ay) ' dy)

L1O(Q) = {f(measurable) Q—R:3IXN>0: / @
Q

fw)
A

=1 then L) and L¢") are conjugate.

Holder-type inequality : if u(y) € LYV (Q) and v(y) € LY )(Q) then the follow-
ing inequality holds:

[ty < (qi_ n q}_) la@llaco (@)l -

In the absence of any ambiguity, we use | - |4.) instead of || - || Lac).

Lemma 2.1 (see [12]). If (u,), u € LIO(Q) and ¢* < oo, then we have the
following relations:

. - T +
(1) |u|q(‘) >1= ‘u|g(_) < /Q |u|q( )dx < |u‘g(_);
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.o + -
(i) Julqy <1= \u|g(,) < /Q |u|‘1(1’)dx < WZ(.):’
(iii) |un — ulq.y — 0 if and only zf/ |t — u|?® dz — 0.
Q
Proposition 2.1 (see [10]). Let p and q be measurable functions such that p €

L®(RY) and
1 < p(y)q(y) < oo for anyy € RN, Let u € L’I(')(RN), u#0. Then

. + - - +
min ([ul7 g0y gy ) < @y < ma (Jul 0 [l ) - 3)

If k is a positive integer number and ¢ € Cy (), we define the variable exponent
Sobolev space by:

Wt (Q) = {u € L90)(Q) : D € LI)(Q), for all |a| < k}

N
Here oo = (a1, ..., a) is a multi-index, |a] = Zai and
i=1

o aloly,
Do = e gan )
On W*40)(Q) we consider the following norm
||u||k,q(-) = Z |Dau|q(y)' (5)
la| <k

We denote by W )(Q) the closure of C5°(€) in W*90)(Q).
We consider the variable exponent Sobolev fractional space as follows:

W =w0rt(Q) = {u 1Q—R:ue IPO(Q):

uly) = u(z)">)
/Q/Q TRy — VG dydz < 00, VA >0 3,

with p(y) = p(y, y), Yy € Q.

Let o)
_ |uly) —u(z)]"*
[u]s(.)yp(.) = inf {/\ >0, /Q/Q )\p(y,Z)|y — Z|N+s(y,z)p(y,z) dydz < 1 (6)

be the variable exponent Gagliardo seminorm.
W is a separable reflexive banach space with the norm

lullw = [u]seype) + ullpe)- (7)

We denote by Wy = Wo‘q(')’p(')(Q) the closure of C§°(£2) in W, then W is a Banach
space with the norm ||ullw, = [u]s(.)p()-

Lemma 2.2 (see Proposition 1 in [17]). Let u € Wy and u,, € Wy, then
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() [ulseyp) <1 (resp. =1, >1) <=

lu(z) — u(y)|P@y) B .
/QXQ |z — y[N+s@w)p(e.y) dedy <1 (resp. =1, >1);

(ii) If1 < [u]s(_)’p(.) < 00, then
u(z) — u(y) [Py
(O S/ u(z) — uy) "

N++ .
axa |z — vl +s(z,y)p(z,y)

dedy < ([u] s p())" " (8)

(iii) If [u]s(,)’p(.) <1, then

([u]s(y p)PF < /

QxQ |1‘ -

Ju(x) — u(y)[P )
y|N+S(I7y)p(w,y)

drdy < ([uls()p))" s (9)
(iv) hmoo[“n]S(')m(') = 0(c0) <=

n—
lim |un (x) — Up (y) |p(m1y)

n—oo Joq | — y|N+S(z,y)p(w,y)

dxdy = 0(c0);

(V) lim [un - u]s(.))p(.) =0+

n—=o0

lim [n (2) = un(y) — u(x) +uly) [P
nTo0 JaxQ |LL‘ — y|N+S(a:,y)p(w,y)

dxdy =0

Lemma 2.3 (see Theorem 1 in [17]). Let Q € RY be a smooth bounded domain and
s € (0,1). Letp and s be two continuous variable exponents with s(y, z).p(y, z) < N
for (y,z) € Qx Q. Assume that r : Q — (1,00) is a continuous function such that

Np() . —=

ps(y) = ——— >r(y) >r~ =minr(y), fory e Q.
W=Ns0m0 7R =W
Then, there exists a constant C = C(N,s,p,r,) such that for every u € Wy, it
holds that
HuHr(~) < CHUHWO

That is, the space W is continuously embedded in LT(')(Q). Moreover, this embed-
ding is compact.
Lemma 2.4 (see [3]). For all u, v € Wy, we consider the following I : Wy — W
such that

w(x) — u(y)|PEY =2 (u(z) —u v(xr) —v
) = [ [ 1) HF ) o) =10 o,

|z — y|N+s(ﬂc,y)p(w7y)

Then

(i) I is a bounded and strictly monotone operator;

(ii) I satisfy (S+) condition, that is, if u, — u € Wy and
lim0 sup I (up)(un, —u) <0, then u, — u € Wy;
n—s

(iii) I is a homeomorphism.
Lemma 2.5 (see [5]). If 1 < pg < psp < p1 < 00, then

llullpe < llully, “llullp, (10)
1-0 0
+

1
for all w € LP°(2) N LP*(Q) with 0 € (0,1) defined by — =
Po Po b1
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Lemma 2.6 (see [5]). Let § be a positive number. Then the following inequality
holds

1
| log(0)| < 5|Q|5, (11)

for all o € [1,00).

3. MAIN RESULTS

We define the weak solution to problem (P)(.) p(.) as follows

Definition 3.1. A function u € Wy is said to be a weak solution of (P)s(.y () if

[ - u() P2 uly) —u( ) v,
QxQ

ly — Z|n+s(y7Z)p(yVZ)
L+ /|u|q(y)—2uvdy:)\/ |9 =2y log(|u|)vdy, (12)
o Q

for every v € Wy.

Theorem 3.1. There exists \* > 0, such that for all X € (0, \*), problem (P)s(.y p(.)
has a weak solution.

Proof. In order to formulate the variational approach, we introduce the energy
function Jy defined from Wy to R by:

u(y) — u(z)[P@=) / Ju(y)|1®)
dydz + | 4/ —g
/ /Qp (y,z Iy - zl"“(y’z)f’(y oY 0 a)

|u]7™) log(|u|) / |u1(®)
—)\/ 2oy + A dy
0 q(y) o (q(y))?

Note that Jy is well-defined and Gateaux differentiable on Wj. Using standard
arguments, we can demonstrate the equivalence between the minimizer of Jy and
the weak solution of the problem (P),(.y (). Indeed, let u € Wy be a minimizer of
Jx. We will show that u satisfies problem (P),(.yp.). We have:

d
0 = —J>\( +t’U)’t 0

u(y p(y:2)
//dl L u(z) +t(v(y) — v(2))| dydz

2)|y — z|N+py:2)s(y,2)

/ d |u(y) + to(y)|"™
dt q(y)

d |u(y) + tv(?/)V’(y) log(|u(y) + tv(y)
_)\/ﬂ dt q(y)

_ / [u(y) — u(2) [P D=2 (uly) — u(2)(v(y) - vZ))

ly — z|ts(w.2)p(y.2)

dydz+/ u| 1) =2y dy
Q

)\/ [u| =24, log (|ul)udy.
Q

Thus, u is weak solution of (P).) ,(.), With v being a test function. Conversely, let
us consider a weak solution u of problem (P)(.) ,(.) and show that it minimizes Jy.

d t a(y)
+)\/ |u(y + v 2)| dy
=0

t=0

(13)
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Let v € Wy, then we have the following weak formulation:

[ - w2 uy) —u)ly) —vlE) o
QxQ

ly — z|n+5(yﬁz)p(yw)

/Q Ju| 1~ 2ypdy — )\/Q [u| 9™~y Jog(|u|)vdy = 0, (14)

which corresponds exactly to J}(u) = 0, thus u minimizes J).
The remainber of the proof of the Theorem 3.1 relies on the following lemmas:

Lemma 3.7. For all € > 0, there exists C(€) such that:

.
[l vox(uidy < Ce) (1l + Hulli)- (15)

Proof. Let us consider two disjoint subsets €2; and 5 of  defined as follows:
O ={yeQ:|uly) <1} and Oy = {y € Q : |u(y)| > 1}. We have:

/Q 19 log(Jul)dy = /Q 19 logfu)dy + / 119 logful)dy
1

Qo
1 s
< = |u|2¥)+
5 QQ

o
< Sl (16)

By choosing ¢ such that p(-) < ¢(-)+0 < pi(-) and using the interpolation inequality
followed by the injection Wy < LP*¥)| we obtain:

[l ogubdy <l ul 557
Q
0(qt+5 1-0) (¢t +6
< C[u}séq + )H H( )(aT+96)
0(qt+5 (1- 9 t+s
< Clt Ofull§57@ (17)
here 6 no € (0,1). Since q(-) + 0 < pi(y) and u € Q9, then using
w = ,1). . : ,
(r"() + 9)sp" () i
Young inequality, we obtain:
+45 :+
/Q ‘U|q(y) log(|ul)dy < C(e) ([u]g(.)—tp(.) + ||U||Z£5<)) : (18)
O

Lemma 3.8. Suppose we are under hypotheses of Theorem 3.1. Then for all p €
(0,1), there exists \* >0 and 8 > 0 such that for all u € Wy with [u]s.y p) = p

Jx(u) > B for all X € (0,\"). (19)

Proof. Since the embedding Wy < L10)F9(€2,) is continuous, then

H’LLHLq( I+8(Q) < C [ ]5( ).p(4) with C > 0. (20)
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1
Are p € (0,1), we are allowed to assume that [u]s.)pc) < min{l,a}. Then

|[ullLacr+6(q) < 1, and we have:

. ju(y) — u(z) ) lutwl®)
Talu) = //Qp (y,z Iy—z\"“(y’z)”(y z)dydz+/gz q(y) W

a(y) | a(y)
o[ Lo
y) a (a(y))
— u(z) P Al |a+
/ /Q Py, 2 Iy — z|n+s(w:2)p(y:2) dydz = S llullacr s o,
tts
2 p+[ ulf ()p() ||U\|Lq( )45 (Qy)" (21)

+
. L At Ol a0
Thus, by taking 8 = —[ul? . — =[[ull?, s and \* = —————==——~
ptoOr0 g @) p+‘|U||(JI;z:>ia(Qz)
obtain that for all A € (0, A*), Jx(u) > 5. O

Lemma 3.9. There exists ¢ € Wy such that ¢ > 0,0 # 0 and Jx(tp) < 0, for
t > 0 small enough and q(y) + 6 < p(y, z) Vy,z € Q.

ot
Proof. Observe that when ¢ € (0,1) and ¢ < p, it follows that — < — and we
p q

have:

to(y) —t p(y,2) Q(y)
I(ty) = //pr o(2)| Isal

Yy — z|ntsw2)p(y, Z)

[t 1) log([te]) / Itwlq(y)
- )\/ T 08D gy + 2 dy
q(y ) o (q(y))?

P |p(y %) ta o)
dyd — d
/ / |y_z|n+syz p(y,2) Y 2z + = /{2‘()0' Y

t7
L / 017 log([t])dy — A / 1017 log [l dy
q Q q Q

IN

Since ¢ is assumed to be quite small, then log(|t]) < 0, and we have

—/Q\SOIq(y)log(\tl)dy=/Q|<P|q(y)llog(lt\)|dy-

In short, (22) becomes:
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|p(y7 dud tr 1) q

e
e / |¢|q<y)uog<|t|>|dy—Aq—, | telotog

- () t qa(y)
/ / ly —z\"+8(v, )p(y, Z)dydz—i- T/ |1 dy

t? |log(Jt])
+ M/| |90 gy — A—/ o] log(

[piv-2 a(y) a(y)
/ /Q|y_z|n+s<yz>p(yz>dydz+ Il + Altog()| QI@I dy

) / (el og(ehdy + [ [oftay]
Q Q

IA

Ia(te)

IN

IN

" ’ - + _
< re [max ([@]g(.),p(.)» [‘P]Z(.),p(,)) + 2max (H90||Z(.)7 H‘»OHZ(.))

.
+ Allog(Jtl) max (J[¢ll2, lIll?,) = A / 1" og(|iel)dy] .

Therefore Jy(tp) < 0, for

X )
3 [ 1ol tog(l¢l)dy - max (1612 00 01 10
0<t< 1, exp & " —
max ([lgll%, lellZ )

.
2max (|20 el ) } o
max (|20 el )

Consider the boundary ball B,(0) with centered at the origin and radius p.
By the Lemma 3.8 we deduce that a]ignf )J,\ > 0. Also, by Lemma 3.9, there exists
(0

v € Wy such that Jy(tp) < 0 for all ¢ > 0 small enough. It follows that

—00 < ¢:= inf Jy <0. (25)
B,(0)
Let 0<n < inf Jy— inf J,. According to pevious informations, Jy is lower
9B,(0) B, (0)
bounded on B,(0) and Jy € C*(B,(0), R). Then by Ekeland’s variational principle,
there exists u, € B,(0) such that

¢ < Ja(uy) <c+1n
(26)
0 < JIx(u) = In(uy) +nllu —uyllw, , w# uy.

O

|q(y)dy

|9 y)dy
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Since inf Jy < inf Jy, then
B,(0) B,(0)

I(uy) < _inf Jy+9

and we deduce that u, € B,(0).

We define x» : B,(0) — R by xa(u) = Ja(u) + nl|lu — uyl|.
It clear that u, is a minimum point of x and thus

X (ug +tv) — xa(uy)

>0
P >
for small t > 0 and any v € B,(0).
The above relation yields
In(uy + tv) — Jx(u

t
Letting t — 0, it follows that

(A (un), v) + nl[vllwg = 0.

For v = —J3(uy), we have ||J} (uy)||lw, < 7.
Let sequence {wy} C B,(0) such that

J(w,) — m < 0 and J'(w,) — Ow;-.

JFCA-2025/16(2)

(27)

(31)

Since {w,} C B,(0) then ||w,||lw, < p, therefore w,, is bounded in W,. We can
therefore extract a subsequence again denoted {w,} such that w, — w and since
for all p such that 1 < o(-) < pi(y) the injection Wy — LO) is compact, we deduce

that
w, — w in L) when n — oo. (32)
In the following, we will need the next proposition:
Proposition 3.1. If w, converges weakly to w in Wy, then
: ; q(y)—2 _ —0-
(i) nhjlm/gz [wn, | Wy (wy, — w)dy = 0;
(ii) lim / |wn |79~ 20w, log(|wn|) (w, — w)dy = 0;
n—o0 Q
soe . / _
(iii) nh_r)n()@(J (wp,), wy, —w) =0.
Proof. For (i), we will use the compact injection Wy < LC) . We have:
_2 )—2
/Q \wn|q(y) wp (W, —w)dy < Hwn\q() wn| a() |wn — w|q(.)
q() -1
qt .
S lwnlgeywn —wly, (33)

Therefore, for o(-) = ¢q(+) < pi(y) passing to the limit, we have the result thanks to

(32).
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For (ii),

1
[ 2 tog(funl)wn = w)dy < 5 [ w02, — w)dy
Q Q

IN

1
S/Q ‘wn‘Q(y)72+5wn(wn - w)dy

1 S
< Gl O ] g fun =l

qt+s

q(_)+5|wn7w|q(')+5. (34)

< —1| |
Wy,
d

Since o(-) = q(+) + ¢ < pZ(y) then, thanks to (32) and (34), we obtain (ii).
To prove (iii), start from J'(w,) — Ow;. Since wy, is bounded in Wy, we have:

wlw, (35)

(T (wn), wn = w) < [T (wn)llw [[wnllwy, + (17" (wn) Twg

By passing to the limit in (35), we obtain lim (J'(wy),w, —w) = 0. Therefore,

n—aoo

lim |wn (y) = wa (2)[PY2) 2 (i (y) — wa(2)) (wn — w)(y) = (W, — w)(2))
n—oo Jo.q ly — z|ts(:2)p(y:2)

=0.

Thus, thanks to the Lemma 2.4 and the equation (36), we obtain strong convergence
of w, to w in Wy. Moreover, Jy being in the space Cl(Wo7 R), it follows that:

J\(wy,) — J§(w), when n — oo. (37)

From relations (31) and (37),we deduce that J} (w) = 0 and thus w is weak solution
of problem (P)(.) pn(.)- O

Theorem 3.2. Assume that q* +6 < p~. Then, for any A > 0, problem (P)s(.) (.
has a weak solution.

Proof. Since q(-) + 0 < p;(-), thanks to the Lemma 2.2 and 2.3, for [u]s.) p) > 1,
we have:

1 - )\ +t44
Ia(u) > F[U]Z(.),p(.)_SHUH%q(J-r)M(QZ))
L p (AL gts
> p__,_[u]s(.),p(.) -C S[u]s(.)}p(.y (38)

Given gt 46 < p~, it follows that the functional Jy is coercive. Furthermore, since
J is weakly lower semicontinuous, it attains its infimum; thus, it admits a global
minimizer, which corresponds to a weak solution of the problem (P)g(.) p(.)- O

4. CONCLUSION

At the end of this study, we have shown the existence of a weak solution to an el-
liptic problem involving the operator (—A);('_). This is due to Ekeland’s variational
principle. The study also highlighted the impact of the variable exponent.

dydz

(36)
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