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Abstract 

This project examines the rheological characteristics of a non-Newtonian Casson nanofluid model 

for blood flow through artery constriction with a catheter that has mild wall stenosis and central 

blood thrombus. Heat generation, first-order chemical reactions, and first and second order 

velocity slip conditions are all considered, along with modeling the blood flow. Implementing the 

analytical solution using Mathematica programming tools yields analytical expressions for 

velocity distribution, temperature distribution, concentration distribution, wall shear stress, and 

heat transfer coefficient. A graphic representation of the results is provided. 
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1. Introduction  

A serious health danger is arterial stenosis, which is defined by the narrowing of arteries brought 

on by the buildup of lipids and other materials. Heart attacks and strokes are among the major 

cardiovascular problems that can arise from this illness, which restricts blood circulation. 

Understanding how blood moves through constricted arteries is a useful way to address this 

problem, particularly when taking into account elements like the presence of plaques, clots, and 

the use of medical devices like catheters. Heart illnesses, including ischemia, atherosclerosis, and 

angina pectoris, are among the world's leading causes of death. Ischemia is a brief deficiency of 
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oxygen in a particular part of the body, frequently brought on by a blockage or narrowing (stenosis) 

in the blood vessel supplying that region. Stenosis is the abnormal constriction of an artery, usually 

brought on by the buildup of fatty deposits, which affects a number of blood flow-related systems. 

This disorder causes the inner walls of arteries to constrict or narrow. It is a major contributor to 

the onset of dangerous conditions, including atherosclerosis. Thus, it is useful to study blood flow 

in a stenotic artery in order to comprehend circulatory problems [1-3]. 

The thin, flexible, tubular device known as a catheter is used to occlude a vessel or enter or 

withdraw fluids. Interventional radiology uses fluoroscopic imaging to guide catheters in order to 

detect and treat vascular disorders. A catheter can be inserted into an artery, for example, to check 

for stenosis or arterial occlusions. Thrombectomy operations use specialized catheters that are 

fitted with tools to break up and extract blood clots. Likewise, percutaneous transluminal 

angioplasty increases blood flow by dilatation of constricted or blocked arteries using balloon-

tipped catheters. Kanai et al. [4] noted that the insertion of a catheter increased the pressure. 

Coaxial tubes are used to simulate blood as Newtonian fluid, with the catheter representing the 

inner tube and the artery the outer tube. Many studies [5–7] have attempted to describe the 

dynamics of blood flow in annular geometries that are frequently found in catheterized stenotic 

arteries. 

Fluids stick to surfaces, according to a common notion in fluid mechanics known as the no-slip 

condition, where the body and fluid particles have the same instantaneous velocity [8]. In certain 

physical situations, such as when a liquid spreads on a solid substrate or when polymer melts are 

extruded from a capillary tube, the no-slip presumption is no longer applicable, and the no-slip 

boundary condition must be exchanged by a slip boundary condition. For technologies like internal 

cavities and the polishing of prosthetic heart valves, fluids that permit slippage are crucial. At low 

flows, the linear navier's slip condition performs well. The Navier's slip condition fails with greater 

flows, though, as the slip length quickly grows. In order to address this, researchers created second-

order slip boundary conditions, which are used to simulate rarefied gas flows and microscale gas 

fluxes [9]. Yasin et al. [10] examined how steady boundary layer flow and heat transfer are affected 

by second-order velocity slip over a permeable shrinking sheet submerged in a porous medium. A 

second-order momentum slip model over an exponential stretching sheet was used to investigate 

the physical significance of activation energy in binary chemical reactions [11]. The second slip 

condition in mathematical modelling frequently entails higher-order corrections and includes a slip 

velocity proportionate to the shear stress at the wall. In fields such as vacuum technology, 

aeronautical engineering, and Micro-Electro-Mechanical Systems design, it enhances the precision 

of simulations and forecasts. Designing effective systems in which gas-surface interactions are 

crucial requires an understanding of and adherence to the second slip condition [12]. Sahoo and 

Nandkeolyar [12] analyzed the generation of entropy in the magnetohydrodynamic second-order 

slip flow of a Casson nanofluid over a horizontal stretching sheet within a non-Darcy porous 

medium, where nonlinear thermal radiation and Hall current predominate. Sayed et al. [13] 

investigated heat transmission analysis of Casson nanofluid flow with second-slip conditions using 

kerosene oil-suspended Al2O3 or GO nanoparticles and single and multi-walled carbon nanotubes. 
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Nanofluids represent a type of fluid composed of a base liquid and nanoparticles, initially 

introduced by Choi [14]. Nanoparticles with biochemical applications are commonly utilized in 

various medical treatment processes [15]. The proposed technique seeks to improve the thermal 

conductivity of the base fluid by integrating solid nanoparticles that possess high thermal 

conductivity [16]. A mathematical model for analyzing red blood cells loaded with nanoparticles 

in blood has been created for a stenotic catheterized artery [17]. In an obliquely skewed artery, the 

electro-osmotic ionic Rabinowitsch blood flow carrying gold and graphene oxide nanoparticles is 

studied by Paul and Das [18]. Analyzing the MHD bioconvection peristaltic motion of Reiner-

Philippoff nanofluid along a curved channel was done using a new artificial neural network model 

[19]. Ghasemi and Ranjbar [20] examined the peristaltic flow of nanofluids across a wavy channel, 

which has important uses in blood pumps and pharmacological drug delivery systems.  

The Casson fluid model, a non-Newtonian fluid model with yield stress, is frequently used to 

simulate blood flow via constricted arteries. The flow of blood in stenotic arteries at low shear 

rates has been mathematically modeled by numerous researchers using the Casson fluid model. 

Casson [21] examined the Casson fluid model's validity in his study on blood flow properties and 

found that blood shows a non-zero yield stress at low shear rates. The Casson fluid model is 

appropriate for depicting the simple shear behavior of blood in tiny arteries [22,23]. Sharma et al. 

[24] have investigated the reduction of entropy generation in an inclined artery with a superposed 

barrier by combining Au-Cu/blood hybrid nanoparticles with a non-Newtonian Casson fluid whose 

viscosity depends on the hematocrit rate. Dhinakaran et al. [25] have explored a vertically narrow 

artery to propel Cu-Al2O3/blood visco-plastic hybrid nanofluids upward. In this study, the impact 

of magnetohydrodynamics on their behavior is examined.  

Thus, the goal is to study the flow of a non-Newtonian nanofluid by anticipating its rheological 

characteristics using the Casson model while incorporating variables like the source of heat 

parameter, the first-order chemical reaction parameter, and the first and second slip parameters. In 

order to investigate the flow of nanofluid through a catheterized artery with stenosis, a thorough 

analysis of several relevant physical factors is being conducted. One specific goal is to investigate 

the nanofluid model to thoroughly study the physical effects on the flow. Utilizing analytical 

techniques aided by the Mathematica software, the issue is solved, and the results are graphically 

presented for various flow characteristics, such as the coefficient of thermal transfer and the shear 

stress. 

 

2. The physical problem's description  

Let us consider a mathematical model of steady, incompressible blood flow with (Au) metallic 

nanoparticles. Table 1 provides the nanoliquid's thermo-physical characteristics. The flow is 

limited to the annular space between two L-long coaxial tubes. An axial axis of ̃𝑧, which 

corresponds to the direction of blood movement, and a radial axis of ̃𝑟, which is oriented radially, 

are used to simulate blood circulation in this annulus. Blood flow via the artery is presumed to be 

axisymmetric, which means that flow properties vary independently of azimuthal angle.  The wall 

of the inner tube has a colt, while the outer tube has mild stenosis that is axially symmetric, as 

shown in Fig. 1 . 𝜂̅(𝑧̅)  and 𝜖(̅𝑧̅), respectively, define the outer and inner walls  
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η̅(z̅) =  R [1 – k∗ (𝑏(n−1) (z̅ − a) −  (z̅ − a)n)],   a ≤  z̅  ≤  a + b ,  

        =  R, otherwise,         

 

(1) 

 ϵ̅(z̅) =  R [c +  σ𝑒−π2(z̅− 𝑧̅𝑑−0.5)2
 ],   a ≤  z̅  ≤  a + b ,  

         =  cR, otherwise.         

 

(2) 

 

 

 
 

Fig. 1. Model schematic diagram. 

 

 

Here, 𝑏 stands for the length of the stenosis and 𝑅 for the artery's radius in the non-stenotic region. 

The stenosis's shape is described by the parameter 𝑛 ≥ 2, and its location is indicated by 𝑎. The 

shape of the stenosis is symmetrical for 𝑛 = 2, but it becomes non-symmetrical for 𝑛 = 6. The 

constant k's value is given by 

k∗ =
𝛿̅

𝑅 𝑏𝑛

𝑛
𝑛

𝑛−1

 𝑛 − 1
. 

 

 

(3) 

In which the maximum height of the stenosis at point z̅ = a +  
𝑏

𝑛
1

𝑛−1

 is represented by 𝛿̅, while the 

maximum height of the thrombus at point 𝑧̅ = 𝑧𝑑̅  + 0.5 is represented by 𝜎. The inner radius of 

the catheter is denoted by cR, where 𝑐 ≪  1 , while 𝑧𝑑  indicates the thrombus's axial 

displacement.   

A non-Newtonian nanofluid (a Casson Au/blood nanofluid) flowing steadily and incompressibly 

through a mildly stenosed artery with a catheter and a thrombus is described by the governing 

equations. The equations for momentum, energy, and concentration of the nanofluid in the 

Basic Sciences Sector, The Department of Mathematics                       136                        Volume 2, July 2025



5 
 

presence of chemical reaction, heat generation, and slip effects are provided by Fahim et al. [26] 

under the aforementioned assumptions. 

𝜕𝑢̅

𝜕𝑟̅ 
+

𝜕𝑤̅

𝜕𝑧̅
+

𝑢̅

𝑟̅
= 0, 

 

(4) 

𝜌𝑛𝑓 (𝑢̅  
𝜕𝑤̅

𝜕𝑟̅
+ 𝑤̅  

𝜕𝑤̅

𝜕𝑧̅
  ) = −

𝜕𝑝̅

𝜕𝑧̅
+ 𝜇𝑛𝑓  (1 + 

1

𝛽
 ) (  

𝜕2𝑤̅

𝜕𝑟̅  2
+

1

𝑟̅
 
𝜕𝑤̅

𝜕𝑟̅
+

𝜕2𝑤̅

𝜕𝑧̅2
), 

 

(5) 

𝜌𝑛𝑓 (𝑢 ̅
𝜕𝑢̅

𝜕𝑟̅
+ 𝑤̅

𝜕𝑢̅

𝜕𝑧̅
 ) = −

𝜕𝑝̅

𝜕𝑟̅
+ 𝜇𝑛𝑓  (1 +

1

𝛽
  ) ( 

𝜕2𝑢̅

𝜕𝑟̅2
+

1

𝑟̅
 
𝜕𝑢̅

𝜕𝑟̅
−

𝑢̅

𝑟̅2
+

𝜕2𝑢̅

𝜕𝑧̅2
 ), 

 

(6) 

(𝜌𝑐𝑝)𝑛𝑓 (𝑢 ̅ 
𝜕𝑇

𝜕𝑟̅
+ 𝑤̅

𝜕𝑇

𝜕𝑧̅
  ) =  𝑘𝑛𝑓  (

𝜕2𝑇

𝜕𝑟̅2
+

1

𝑟̅
 
𝜕𝑇

𝜕𝑟̅
+

𝜕2𝑇

𝜕𝑧̅2
 ) + 𝑄0(𝑇 − 𝑇1), 

 

(7) 

(𝑢 ̅  
𝜕𝐶

𝜕𝑟̅
+ 𝑤̅

𝜕𝐶

𝜕𝑧̅
  ) = 𝐷𝑛𝑓 (

𝜕2𝐶

𝜕𝑟̅2
+

1

𝑟̅
 
𝜕𝐶

𝜕𝑟̅
+

𝜕2𝐶

𝜕𝑧̅2
 ) − 𝐾(𝐶 − 𝐶1). 

 

(8) 

The appropriate boundary conditions are  

𝑤̅ =  𝑤̅0 + 𝜇𝑛𝑓  (1 +
1

𝛽
) (𝑎1

𝜕𝑤̅

𝜕𝑟̅
+ 𝑏1

𝜕2𝑤̅

𝜕𝑟̅2 ),  𝑇 = 𝑇0, and 𝐶 = 𝐶0    at  𝑟̅ = 𝜂̅,  

𝑤̅ = 0, 𝑇 = 𝑇1, and  𝐶 = 𝐶1      at  𝑟̅ = 𝜖.̅ (9) 

The components of axial and radial velocity are denoted by 𝑤̅ and 𝑢̅, respectively, and 𝑇 is the 

nanoblood's temperature, 𝐶 is its concentration, in equations (4)-(8).  Fluid pressure is denoted by 

𝑝̅, while 𝑄0 and 𝐾 stand for heat generation, and chemical reaction, correspondingly. Casson fluid 

parameter is denoted by 𝛽. Newtonian fluid is specified for 𝛽 → ∞, whereas non-Newtonian fluid 

is represented by 𝛽 ≠ 0 . The heat transfer is accounted for by specifying 𝑇𝑜  and 𝑇1 as the 

temperatures at the artery wall and the catheter, respectively and 𝐶0 and 𝐶1 are the concentration 

at the wall of the artery and catheter, respectively. 

Table 1 Refer to [27] for the thermophysical characteristics of the blood and Au nanoparticles. 

Properties SI units Blood Gold (Au) 

Density (𝝆) kg m-3 1063 19320 

Thermal conductivity (k) W m-1 K-1 0.492 314 

Heat capacity (cp) J k-1 g-1 K-1 3594 129 

Prandtl number (Pr)  21 --- 

 

For the proposed nanofluid model, the thermophysical characteristics of blood, Au, and nanofluid 

are represented by the symbols (𝑓, 𝑠, 𝑛𝑓), orderly. The Au nanoparticles' solid volume fraction is 

symbolized by 𝜑.  

Basic Sciences Sector, The Department of Mathematics                       137                        Volume 2, July 2025



6 
 

𝜌𝑛𝑓

ρ𝑓
= (1 − 𝜑) + 𝜑

𝜌𝑠

𝜌𝑓
,  

(10) 

μ𝑛𝑓

μ𝑓
= (1 − 𝜑)−2.5,  

(11) 

(𝜌𝑐𝑝)𝑛𝑓

(𝜌𝑐𝑝)𝑓
= (1 − 𝜑) + 𝜑

(𝜌𝑐𝑝)𝑠

(𝜌𝑐𝑝)𝑓
, 

 

(12) 

k𝑛𝑓

k𝑓
=

(k𝑠 − k𝑛𝑙𝑟)𝜑k𝑛𝑙𝑟(y2
2 − y1

2 + 1) + (k𝑠 + k𝑛𝑙𝑟)y2
2(𝜑y1

2(k𝑛𝑙𝑟 − k𝑓) + k𝑓)

y2
2(k𝑠 + k𝑛𝑙𝑟) − (k𝑠 − k𝑛𝑙𝑟)𝜑(y2

2 − y1
2 + 1)

, 

in which  𝑘𝑛𝑙𝑟 = 3𝑘𝑓 , 𝑦2 = 1 +
𝑁ℎ

2𝑁𝑟
, 𝑦1 = 1 +

𝑁ℎ

𝑁𝑟
, 

 

 

(13) 

D𝑛𝑓

D𝑓
= 1 − 𝜙. 

(14) 

The symbols 𝑁𝑟, 𝑁ℎ, and k𝑛𝑙𝑟 refer, respectively, to the diameter of the nanoparticle, the thickness 

of the interfacial nanoparticle, and the interfacial thermal conductivity. The symbols ( 𝜇, 𝐷 ) 

represent ordered dynamic viscosity and thermal diffusivity. 

To simplify the governing equations, we introduce the following dimensionless quantities and 

approximations 

𝑟 =
𝑟̅

𝑅
,  𝑧 =

𝑧̅

𝐿
 , 𝑤 =

𝑤̅

𝑢0
 ,  𝑝 =

𝑅2 𝑝̅

𝜇𝑓 𝑢0 𝐿
,  𝑢 =

𝐿 𝑢

𝛿̅𝑢0
 ,  𝜙 =

𝐶−𝐶1

𝐶0−𝐶1
 , 𝜃 =

𝑇−𝑇1

𝑇0−𝑇1
,  𝑅𝑒 =

𝜌𝑓 𝑢0𝑅

𝜇𝑓
 ,    

𝛿 =
𝛿̅

𝑅
  ,  𝜀 =

𝑅

𝐿
 , ℎ =

𝑎

𝑏
,  𝐿𝑒 =

𝜇𝑓

𝐷𝑓 𝜌𝑓
,  𝑃𝑟 =

(𝐶𝑝)𝑓 𝜇𝑓

𝐾𝑓
, 𝛽𝑠 =

𝑄0𝑅2

(𝑇0−𝑇1)𝐾𝑓
, 𝛾 =

𝐾𝑅2

𝐷𝑓 
, 

 

 

(15) 

where 𝑢0 is the averaged velocity over the section of the channel of width 𝑅 , 𝛽𝑠 is the 

nondimensional heat source parameter with respect to fluid,  𝛾  is the chemical reaction 

parameter, 𝑅𝑒 is the Reynolds number, 𝑃𝑟 is the Prandtl number, 𝐿𝑒 is the Lewis number, 𝜃 is the 

temperature, and 𝜙 is the concentration.  

Then the equations (4)-(8) can be reduced to  

𝛿 
𝜕𝑢

𝜕𝑟
+

𝜕𝑤

𝜕𝑧
+ 𝛿 

𝜕𝑢

𝜕𝑟
= 0, 

 

(16) 

𝜌𝑛𝑓

𝜌𝑓
𝑅𝑒 𝜀2  (𝛿 𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
 ) = −

𝜕𝑝

𝜕𝑟
+

𝜇𝑛𝑓

𝜇𝑓
 (1 +

1

𝛽
  ) ( 

𝜕2𝑤

𝜕𝑟2
+

1

𝑟
 
𝜕𝑤

𝜕𝑟
+ 𝜀2   

𝜕2𝑤

𝜕𝑧2
), 

 

(17) 

𝜌𝑛𝑓

𝜌𝑓
 𝑅𝑒 𝛿 𝜀3  (𝛿 𝑢

𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
 )

=  −
𝜕𝑝

𝜕𝑟
+

𝜇𝑛𝑓

𝜇𝑓
 (1 +

1

𝛽
  ) 𝛿 𝜀2 ( 

𝜕2𝑢

𝜕𝑟2
+

1

𝑟
 
𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2
+ 𝜀2   

𝜕2𝑢

𝜕𝑧2
), 

 

 

(18) 
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Pr 𝜀 (𝛿 𝑢
𝜕𝜃

𝜕𝑟
+ 𝑤

𝜕𝜃

𝜕𝑧
 ) =

(𝜌𝑐𝑝)𝑓 

(𝜌𝑐𝑝)𝑛𝑓 
 
𝑘𝑛𝑓

𝑘𝑓
 (

𝜕2𝜃

𝜕𝑟2
+

1

𝑟
 
𝜕𝜃

𝜕𝑟
+ 𝜀2   

𝜕2𝜃

𝜕𝑧2
) +  𝛽𝑠  

(𝜌𝑐𝑝)𝑓 

(𝜌𝑐𝑝)𝑛𝑓 
 𝜃, 

 

(19) 

𝑅𝑒𝐿𝑒 𝜀2 (𝛿𝑢
𝜕𝜙

𝜕𝑟
+ 𝑤

𝜕𝜙

𝜕𝑧
 ) =

𝐷𝑛𝑓

𝐷𝑓
(

𝜕2𝜙

𝜕𝑟2
+

1

𝑟
 
𝜕𝜙

𝜕𝑟
+ 𝜀2   

𝜕2𝜙

𝜕𝑧2
) − 𝛾 𝜙. 

 

(20) 

For mild stenosis we can apply the condition 𝛿 ≪ 1 and taking extra condition 𝜀~𝑂(1), then the 

equations (16)-(20) becomes   

𝜕𝑤

𝜕𝑧
= 0 → 𝑤 = 𝑤(𝑟), 

 

(21) 

−
𝜕𝑝

𝜕𝑧
+

𝜇𝑛𝑓

𝜇𝑓
(1 +

1

𝛽
) (

𝜕2𝑤

𝜕𝑟2
+

1

𝑟

𝜕𝑤

𝜕𝑟
) = 0, 

 

(22) 

𝜕𝑝

𝜕𝑟
= 0 → 𝑝 = 𝑝(𝑧), 

 

(23) 

 
𝑘𝑛𝑓

𝑘𝑓
 (

𝜕2𝜃

𝜕𝑟2
+

1

𝑟
 
𝜕𝜃

𝜕𝑟
) + 𝛽𝑠𝜃 = 0, 

 

(24) 

𝐷𝑛𝑓

𝐷𝑓
 (

𝜕2𝜙

𝜕𝑟2
+

1

𝑟
 
𝜕𝜙

𝜕𝑟
) −  𝛾𝜙 = 0. 

 

(26) 

Then there exist a unique solution of the problem satisfying the nondimensional boundary 

conditions: 

𝑤 = 𝑤0 +
𝜇𝑛𝑓

𝜇𝑓
 (1 +

1

𝛽
) (𝐴

𝜕𝑤

𝜕𝑟
+ 𝐵

𝜕2𝑤

𝜕𝑟2 ), 𝜃 = 0, 𝜙 = 0  at  𝑟 = 𝜂,  

 𝑤 = 0, 𝜃 = 1, 𝜙 = 1  at  𝑟 = 𝜖. (27) 

where 𝐴 =
𝑎

𝑅
 is the dimensionless first-order velocity slip and 𝐵 =

𝑏

𝑅2
 is the dimensionless second-

order velocity. 

As well 𝜂( 𝑧 ) 𝑎𝑛𝑑 𝜖( 𝑧 ) in the dimensionless form become 

𝜂( 𝑧 ) =  1 − 𝛿
𝑛

𝑛
𝑛−1

 𝑛−1
[( 𝑧 − ℎ ) − ( 𝑧 − ℎ ) 𝑛], ℎ ≤ 𝑧 ≤ ℎ +  1,              

           =  1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  

 

(28) 

𝜖( 𝑧 ) =  𝑐 +  𝜎𝑒 −𝜋2 (𝑧−𝑧𝑑−0.5)2
, ℎ ≤ 𝑧 ≤ ℎ +  1,                   

          =  𝑐, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

 

(29)   
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3. Exact Solution 

The axial velocity, temperature, and concentration can be computed (by using the command 

DSolve[eqn, y, x]) in the following manner by applying the appropriate boundary conditions (27) 

after the analytical solution of the axial velocity, temperature, and concentration is determined 

from equations (21)–(26): 

𝑤 =
1

4𝑎1(𝜂2 log(𝜖) − 𝜂2 log(𝜂) − 𝐵𝑎1 + 𝐴𝜂𝑎1)
(−4𝑤0𝜂2 log(𝑟) 𝑎1

+ 4𝑤0𝜂2 log(𝜖) 𝑎1 

     +
𝜕𝑝

𝜕𝑧
(−𝜖2𝜂2 log(𝑟) + 𝜂4 log(𝑟) + 𝑟2𝜂2 log(𝜖) − 𝜂4 log(𝜖) − 𝑟2𝜂2 log(𝜂)

+ 𝜖2𝜂2 log(𝜂) − 𝐵𝑟2𝑎1 + 𝐵𝜖2𝑎1 + 𝐴𝑟2𝜂𝑎1 − 𝐴𝜖2𝜂𝑎1

− 2𝐵𝜂2 log(𝑟) 𝑎1 − 2𝐴𝜂3 log(𝑟) 𝑎1 + 2𝐵𝜂2 log(𝜖) 𝑎1

+ 2𝐴𝜂3 log(𝜖) 𝑎1)), 
 

 

 

 

 

 

 

 

(30) 

𝜃 =

J0(
𝜂√𝛽𝑠

√𝑎2
)Y0(

𝑟√𝛽𝑠

√𝑎2
) − J0(

𝑟√𝛽𝑠

√𝑎2
)Y0(

𝜂√𝛽𝑠

√𝑎2
)

J0(
𝜂√𝛽𝑠

√𝑎2
)Y(

𝜖√𝛽𝑠

√𝑎2
) − J0(

𝜖√𝛽𝑠

√𝑎2
)Y0(

𝜂√𝛽𝑠

√𝑎2
)

, 

 

 

(31) 

𝜙 =

J0(
𝑖𝜂√𝛶

√𝑎3

)Y0(−
𝑖𝑟√𝛶

√𝑎3

) − J0(
𝑖𝑟√𝛶

√𝑎3

)Y0(−
𝑖𝜂√𝛶

√𝑎3

)

J0(
𝑖𝜂√𝛶

√𝑎3

)Y0(−
𝑖𝜖√𝛶

√𝑎3

) − J0(
𝑖𝜖√𝛶

√𝑎3

)Y0(−
𝑖𝜂√𝛶

√𝑎3

)

. 

 

 

(32) 

 

where 𝑎1 =
μ𝑛𝑓

μ𝑓
(1 +

1

𝛽
), 𝑎2 =

k𝑛𝑓

k𝑓
, 𝑎3 =

D𝑛𝑓

D𝑓
. 

Here J0 and Y0 are the Bessel function of the first and second kinds, respectively.  

 

4. Physical quantities 

The formula for the flow rate 𝐹(𝑧) is 

 𝐹(𝑧)  = ∫ 𝑟 𝑤 𝑑𝑟.
𝜂

𝜖

 

 

 

(33) 

Following the aforementioned integration calculation, the flow rate 𝐹(𝑧) can be expressed as 

follows: 

𝐹(𝑧) =  𝑆1

 𝑑𝑝

𝑑𝑧 
 +  𝑆2, 

 

(34) 

where 
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𝑆1 = −𝜖4𝜂2 + 2𝜖2𝜂4 − 𝜂6 + 𝜖4𝜂2 log(𝜖) − 𝜂6 log(𝜖) − 𝜖4𝜂2 log(𝜂) + 𝜂6 log(𝜂)
− 𝐵𝜖4𝑎1 + 𝐴𝜖4𝜂𝑎1 − 4𝐴𝜖2𝜂3𝑎1 + 𝐵𝜂4𝑎1 + 3𝐴𝜂5𝑎1 + 4𝐵𝜂4 log(𝜖) 𝑎1

+ 4𝐴𝜂5 log(𝜖) 𝑎1 − 4𝐵𝜂4 log(𝜂) 𝑎1 − 4𝐴𝜂5 log(𝜂) 𝑎1, 

 

 

(35) 

 
𝑆2 = −4w0𝜖2𝜂2𝑎1 + 4w0𝜂4𝑎1 + 8w0𝜂4log(𝜖)𝑎1 − 8w0𝜂4 log(𝜂) 𝑎1. 
 

 

(36) 

One can ascertain the outside wall's heat transfer coefficient by 

HTC = 𝑎2 (
𝜕𝑅

𝜕𝑧
 
𝜕𝑇

𝜕𝑟
 )|

𝑟=𝑅
                                                                                                               

           =

2𝑎2

𝜋𝜂
𝑑𝜂
𝑑𝑧

J0(
𝜂√𝛽𝑠

√𝑎2
)Y0(

𝜖√𝛽𝑠

√𝑎2
) − J0(

𝜖√𝛽𝑠

√𝑎2
)Y0(

𝜂√𝛽𝑠

√𝑎2
)

. 

 

 

 

 

 

(37) 

The following formula is used to calculate the shear stress at the stenotic wallwhere 

𝑊𝑆𝑆 = −𝑎1  (
𝜕𝑤

𝜕𝑟
)|

𝑟=𝑅
                                                                                                                     

          =
w0𝑎1𝜂

−𝐵𝑎1 + 𝐴𝑎1𝜂 + 𝜂2 log(𝜖) − 𝜂2 log(𝜂)

−
 𝑑𝑝

𝑑𝑧 

(−4𝐵𝑎1𝜂 − 𝜖2𝜂 + 𝜂3 + 2𝜂3 log(𝜖) − 2𝜂3 log(𝜂))

4(−𝐵𝑎1 + 𝐴𝑎1𝜂 + 𝜂2 log(𝜖) − 𝜂2 log(𝜂))
. 

 

 

 

5. Discussion on graphical exhibitions 

This section discusses the significant effects of various rheological and geometrical parameters on 

blood flow with gold nanoparticles using graphs of thermal transfer coefficient, wall shear stress, 

velocity, thermal, and concentration profile. 

Velocity profile 

Figs. 2(a)–(c) serve as illustrations of how velocity behaves in a radial-directed stenotic artery. 

Fig. 2(a) shows the variation in velocity profile with the variation in the flow rate F. It was observed 

that with increasing F the velocity decreases in the interval 0 to 0.2, while in the interval 0.2 to 1 

the velocity increases with increasing F.  When the flow rate F increases, more blood is moving, 

which raises blood velocity, provided the cross-sectional area stays identical. As the ratio of the 

maximum height of the stenosis to the width of the channel δ and the shape parameter stenosis n 

increased, we scrutinized the same behavior.  Fig. 2(b) exhibits the variation in velocity profile 

with the variation in the maximum depth of blood clot σ. It was observed that with increasing σ 

the velocity increasing in the interval 0 to 0.5 , while in the interval 0.5 to 1 the velocity decreasing 

with increasing σ. In terms of physical representation, it shows the extent or size of a clot inside 

the artery, which decreases the area of effective flow. By raising both the radius of catheter c and 

the nanoparticle volume fraction 𝜑, we obtained the same pattern, but 𝜑 has a small impact. In 

physics, increasing the volume fraction of nanoparticles 𝜑  typically results in an increase in 
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viscosity, which can lower blood velocity if the overall flow rate is unaltered. Fig. 2(c) illustrates 

how the velocity profile changes as the second-order slip parameter B changes. It was noted that 

the velocity decreases with enhancing 𝐵 in 0.2 ≤ 𝑟 ≤  0.7, it increases by raising 𝐵 in 0 ≤ 𝑟 ≤

 0.2 and in 0.7 ≤ 𝑟 ≤ 1. Similar behavior was observed by first-order slip parameter A and the 

slip velocity at the wall 𝑤0 enlarge. Physically, the influence of wall friction is lessened as 𝑤0 

increases, enabling a rise in blood velocity in the areas nearest the wall. 

 

(a) 

 

(b)  

 

                                             (c) 

 

Fig. 2. Effect of (a) 𝐹, (b) 𝜎, and (c) 𝐵 on velocity. 

 

Temperature profile 

The temperature pattern in a radial-directed stenotic artery is demonstrated in Figs. 3(a)–(c). It is 

evident from Fig. 3(a) that an increase in the maximum depth of blood clot σ tends to cause the 

temperature graph to emerge. The temperature profile has the same manner as the radius of catheter 

c, the ratio of the maximal height of the stenosis to the channel width δ, and the thrombus's axial 
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displacement 𝑧𝑑 rise. Fig. 3(b) reveals that the temperature profile enlarges by boosting the values 

of heat source parameter 𝛽𝑠 due to the fact that metabolic processes inside the base fluid generate 

more heat. Heat source parameter 𝛽𝑠 improves blood temperature, maintains blood viscosity, and 

facilitates blood circulation via the vessels, preventing clotting, elevating blood pressure, and other 

issues. The temperature profile for various values of the ratio of the maximum height of the 

stenosis to the channel width δ is shown in Fig. 3(c). The temperature profile has been shown to 

decrease when δ increases.  As the stenosis shape parameter n grew, same behavior was seen. 

. 

(a)  

 

(b)  

 

                                            (c)  

 

Fig. 3. . Effect of  (a) 𝜎, (b) 𝛽𝑠, and (c) 𝛿 on temperature. 

 

Concentration profile 

For the analysis of and chemical and physical systems in engineering applications, it is essential 

to comprehend how concentration varies with various parameters. A useful tool for visualizing 
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how different factors affect concentration rates and their dynamic manners is concentration 

distribution. Figs. 4(a)-(c) depict the concentration distributions of a nano-blood through the 

stenotic artery in the radial axis. In Fig. 4(a), the profile of concentration is illustrated for various 

values of the maximum depth of blood clot σ. A growth in the value of σ outcomes in an increase 

in the concentration distribution. Physically, an increased clot could potentially modify the flow 

layout and reduce resistance to the flow of blood, resulting in a lower concentration. As the radius 

of catheter c and the thrombus's axial displacement 𝑧𝑑  increased, we scrutinized the same 

behavior. Fig. 4(b) reveals that the concentration varies non-linearly with the chemical reaction 

parameter 𝛾, demonstrating both rising and falling portions that indicate complicated interactions. 

In Fig. 4(c), the concentration distribution is diagrammatically displayed for a variety of stenosis 

shape parameter n. Fig. 4(c) depicts the pattern of a decrease in the concentration of the nano-

blood as the quantity of n increases. 

(a)  

 

(b) 

 

                                            (c)  

 

Fig. 4. Effect of  (a) 𝜎, (b) 𝛾, and (c) n on concentration. 
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Heat transfer coefficient (HTC) 

The HTC measures the rate of heat transmission between two surfaces or media: more efficient 

heat transmission results from a greater temperature gradient. In essence, heat is transferred from 

the blood to the arterial wall, the larger the temperature differential between the two, boosting the 

HTC. A fluid's capacity to transfer heat is gauged by its HTC. The HTC in an atherosclerotic artery 

affects the thermal stresses and temperature distribution inside the arterial wall, which impacts the 

stability and progression of plaque. The HTC is important for comprehending and controlling 

blood flow's thermal dynamics, particularly in medical settings where proper temperature control 

at the vascular walls is essential. 

To illustrate radius of catheter c effect on the considered model, Fig. 5(a) shows the relation 

between HTC and radius of catheter c. Fig. 5(a) shows that HTC increases with c an increase in 

the region 0 ≤ 𝑧 ≤ 0.5 . By raising c, the blood's temperature upsurges and the temperature 

differential between the blood and the arterial wall widens. The converse manner occurs in the 

region 0.5 ≤ 𝑧 ≤ 1. The HTC profile has the same manner as the heat source parameter 𝛽𝑠, the 

volume fraction of nanoparticles 𝜑, and the ratio of the maximal height of the stenosis to the 

channel width δ rise. 

As the maximum depth of blood clot σ rises in Fig. 5(b), HTC falls in the region 0.5 ≤ 𝑧 ≤  1; 

otherwise, it exhibits the same pattern. Fig. 5(c) shows that in the region 0.3 ≤ 𝑧 ≤ 0.8, the HTC 

elevates with increasing values of the stenosis shape parameter n, however in the other region, it 

declines. Physically, the thin section's constriction effect intensifies with growing n, which could 

result in more variations in pressure and, in turn, the distribution of temperature. Fig. 5(d) exhibits 

that the same trend was emerged in accordance with Fig. 5(c) when the values of the thrombus's 

axial displacement 𝑧𝑑  are altered. This figure shows a shift in the temperature distribution at 

various points inside the artery because of changes in the blood flow patterns and heat distribution 

surrounding the clot as the clot displacement boosts.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

Fig. 5. Effect of  (a) c, (b) 𝜎, (c) n, and (d) 𝑧𝑑 on HTC. 

 

Wall shear stress (WSS) 

Resistance arises between the fluid and solid when the fluid enters the solid-solid interaction 

because the fluid is moving and the solid is immobile. It is crucial to assess the amount of shearing 

that occurs between the fluid and solid surfaces during fluid movement. Because of the close 

relationship between the location of arteriosclerosis and the wall of a blood vessel, WSS is 

especially important for comprehending the development of arterial disorders.  

As the second slip B parameter and the volume fraction of nanoparticles 𝜑 increase, the magnitude 

of WSS decreases, as seen in Figs. 6(a) and 6(b). Additionally, a reverse and identical response is 

seen when the slip velocity at the wall 𝑤0 and the first slip parameter A are expanded, respectively. 

Figs. 6(c) and 6(d) show the WSS distribution for various values of the maximum stenosis height 

to the flow rate F and the channel width δ. Increasing the values of F and δ is observed to increase 

the WSS's magnitude. Increased WSS magnitudes in certain regions and modifications in blood 

flow patterns are caused by enlarging δ.  

In Figs. 6(e) and 6(f), the WSS profile is shown for different values of radius of catheter c and 

stenosis shape parameter n. It is noted that the WSS curves show a significant decrease when c 

and n values rise, while the reverse impact is seen as z increases. The same c, but with a lesser 

effect, is produced by increasing the maximum depth of blood clot σ while increasing 𝑧𝑑 results 

in the opposite effect. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 6. Effect of (a) 𝐵, (b) 𝜑, (c) F, (d) 𝛿, (e) c, and (f) n on WSS. 
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6. Conclusions 

In this project, we constructed mathematical models to study the properties of blood flow through 

a constricted artery with a catheter that contains Au-nanoparticle. Differential equations governing 

the fluid's temperature, velocity, and concentration were used to express these models. The 

software Mathematica 14.1 was used to solve these problems analytically. Below is a summary of 

the key findings: 

• Velocity is affected in the same way by parameters B, A, and 𝑤0. 

• Heat source parameter 𝛽𝑠 improves blood temperature. 

• Both rising and falling segments that show complex interactions have occurred in the 

concentration, which fluctuates nonlinearly with the chemical reaction parameter 𝛾.  

• The impact of 𝛽𝑠, 𝜑, 𝛿, and c on the rise and decrease of heat transmission is equivalent. 

• The magnitude of WSS diminishes as 𝜑 and 𝐵 rise. 

The findings of this study may have significant ramifications for bettering medication delivery 

systems, treating cardiovascular disorders, and comprehending how blood flows in stenosed 

arteries. It also emphasizes how important nanotechnology is to contemporary medicine and how 

it may help patients with vascular illnesses. 
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