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ABSTRACT

Micronutrient deficiencies, particularly of iron (Fe)
and manganese (Mn), are major constraints to crop
productivity in calcareous soils of arid and semi-arid
regions. The Farafra Oasis, Egypt, is characterized by
coarse textures, moderate CaCO; content, low organic
matter, and alkaline pH—conditions that limit Fe and Mn
solubility despite large total reserves. This study aimed to
elucidate the interactive effects of redox potential (Eh),
pH, carbonate buffering, and soil physicochemical
properties on the solubility and bioavailability of Fe and
Mn under field and laboratory conditions. Seven
representative soils, ranging from sand to clay, were
characterized using XRD, XRF, and detailed chemical
analyses. Seasonal field monitoring under sorghum
cultivation assessed Eh, pH, moisture, O,, CO,, and
DTPA-extractable Fe and Mn across irrigation cycles.
Laboratory incubations of sandy and clay soils evaluated
redox and pH buffering capacities under aerobic and
anaerobic conditions. Results revealed that total Fe
(14,800-20,200 mg kg*) and Mn (280-820 mg kg™) were
poor predictors of plant availability, as DTPA-extractable
fractions consistently remained below 0.03% of the total.
Soil 1 (sand) exhibited the lowest DTPA-Fe (4.5 mg kg?)
and Mn (3.0 mg kg?), whereas Soil 7 (clay, OM-rich)
recorded the highest (6.5 and 6.2 mg kg?, respectively).
Extractable Fe and Mn correlated negatively with pH, EC,
and CaCOg, and positively with OM, CEC, and moisture/
CO, flux (R2 =0.93 for Fe; R2=0.91 for Mn). Laboratory
incubations confirmed that redox regime exerted stronger
control on Eh than pH. These findings demonstrate that Fe
and Mn availability depends not on total content but on
dynamic interactions among alkalinity, salinity, redox
buffering, and organic matter. Integrated strategies—
organic amendments, Fe-EDDHA fertilization, foliar Mn
supplementation, and optimized irrigation—are
recommended to sustain crop productivity in reclaimed
desert soils.
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INTRODUCTION

Agricultural productivity in arid and semi-arid
regions is strongly constrained by declining soil fertility,
climate-induced  water  stress, and  pervasive
micronutrient deficiencies, most notably of iron (Fe)
and manganese (Mn). Both elements are indispensable
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for plant energy metabolism: Fe underpins chloroplast
electron-transport (e.g. PSI Fe-S clusters, cytochromes,
ferredoxin), while Mn is essential for the oxygen-
evolving complex of Photosystem Il (PSIl) and for
reactive-oxygen-species (ROS) detoxification
(Alejandro et al., 2020; Rai et al., 2021 and Smythers et
al., 2023); imbalances rapidly manifest as
photochemical impairment and chlorosis under field
conditions. These constraints are amplified in
calcareous desert soils, where alkaline pH and abundant
carbonates suppress Fe and Mn solubility despite large
total pools. In Farafra’s newly reclaimed soils—high in
CaCO; (=25-34%) and alkaline (pH ~7.8-8.5) with
very low organic matter—strong carbonate/pH
buffering favors the formation of Fe(l1l) oxyhydroxides
(e.g., goethite/hematite) and Mn(l11/IV) oxides (e.g.,
birnessite), while the scarcity of organic ligands limits
chelation/reduction; together these processes depress
DTPA-extractable Fe and Mn and predispose crops to
iron-chlorosis (Palansooriya et al., 2020; Fadl et al.,
2022 and Yassin et al., 2023). Micronutrient availability
in such soils is controlled mainly by coupled redox—pH
controls, mineralogy, and moisture dynamics. Under
oxidized, alkaline conditions, Fe3*/Mn** predominate
and are poorly soluble; wetting events can generate
transient anoxic microsites that lower Eh and mobilize
Fez*/Mn2*, but the magnitude and persistence of this
effect depend on the soil’s redox and pH buffering
capacities, texture, carbonate content, and biological
oxygen demand. Classic and contemporary work on
dissimilatory Fe (I11)/Mn (1V) reduction and on anoxic
microsites underscores these mechanisms and their
field-scale variability (Lovley, 1991; Lacroix et al.,
2023 and Sparks et al., 2023). Over longer times,
irrigation can exacerbate secondary salinization, which
depresses microbial activity and further reduces
micronutrient uptake—especially in alkaline, carbonate-
buffered matrices—tightening the biogeochemical
constraints on Fe/Mn nutrition (Abrol et al., 1988;
Grattan & Grieve, 1999 and Rietz & Haynes, 2003).
Closing the management gap requires pairing robust
diagnosis with interventions that function under high-
pH, carbonate-rich conditions. Operationally, DTPA
extraction remains the standard for estimating plant-
available Fe/Mn in near-neutral to calcareous soils,
while agronomic options include organic-matter
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additions to enhance buffering, stable Fe chelates
(notably o,0-isomer of EDDHA) for soil/fertigation
delivery at high pH, targeted foliar Mn where required,
and irrigation scheduling that mitigates salt
accumulation, while still accommodating short moisture
pulses that generate transient anoxic microsites known
to mobilize Fez*/Mn2*(L6pez-Rayo et al., 2015).
Accordingly, this study addresses that gap by
investigating the Farafra soils using an integrated field—
laboratory framework to (i) Characterize Fe- and Mn-
bearing phases by XRD/XRF and chemical analyses, (ii)
Assess the influence of redox and pH buffering
capacities on Fe/Mn solubility under field and
laboratory  conditions, (iii)  Monitor seasonal
fluctuations in extractable Fe2*and Mn2*in relation to
irrigation, moisture, and organic matter decomposition,
(iv) Evaluate correlations between total and DTPA-
extractable Fe/Mn and key soil properties (pH, OM,
CaCO3;, CEC); and (v) Propose management strategies
(organic amendments, Fe-EDDHA fertilization, foliar
Mn supplementation, irrigation optimization) for
enhancing micronutrient availability in calcareous arid
soils.

MATERIALS AND METHODS

Study Area

The research was conducted in the Farafra Oasis,
Western Desert, Egypt between 27°03'-27°30" N and
27°58'-28°30" E. The area is hyper-arid zone (<10 mm
rainfall), with hot summers (>40 °C), cool winters, low
humidity, and high evapotranspiration (EI-Sherif et al.,
2018). Topographically, the area comprises flat plains
interspersed with shallow depressions and sporadic
calcareous outcrops, at elevations ranging from 60 to
120 meters above sea level. Soils are sandy to clayey,
calcareous (up to 35% CaCOQs), alkaline (pH > 8), low
in organic matter (<0.5%), and subject to salinization
due to shallow groundwater, high evaporation rates and
inefficient irrigation practices (Ismail et al., 2016 and
El-Sherif et al., 2018).

Soil Sampling and Monitoring

Seven textural classes (sand, loamy sand, sandy
loam, sandy clay loam, loam, silty clay, clay) were
sampled (0-30 cm) in summer and winter using a
stratified random design. Physicochemical properties
measured included particle size, bulk density, porosity,
saturated hydraulic conductivity (ks, pH, EC, OM, CEC,
and CaCO;. Redox potential (Eh) was measured with
platinum electrodes corrected to the Standard Hydrogen
Electrode (Fiedler et al., 2007). Total and DTPA-
extractable Fe and Mn were analyzed by AAS (Lindsay
and Norvell, 1978). Mineralogical composition was
identified by XRD and major oxides by XRF.

Seasonal field monitoring under sorghum cultivation
assessed in situ Eh, pH, moisture (TDR), temperature,
O, (soil oxygen probe), CO, flux by portable Infrared
Gas Analyzer (IRGA), and groundwater depth.
Measurements were made at four growth stages: pre-
irrigation, 24h post-irrigation, mid-season, and post-
harvest. Composite soil samples were collected for
laboratory analysis of EC, OM, CaCO; (total and
active), and CEC. Total Fe and Mn were determined by
aqua regia digestion (HCL-HNOs, 3:1 v/v), and DTPA-
extractable Fe and Mn by AAS. Statistical analysis used
two-way ANOVA, LSD test, Pearson correlation, and
regression (Gomez and Gomez, 1984).

Laboratory Simulation of Redox—pH Effects

Two contrasting soils (sand and clay) were
incubated under aerobic and anaerobic conditions to
investigate the interactive effects of redox buffering
capacity (RBC) and pH buffering capacity (pHBC) on
the solubility and mobility of Fe and Mn. Two redox
regimes were imposed by aeration or N, flushing
(Patrick et al., 1973). Target pH levels (5.5, 6.5, 7.5,
and 8.5) were adjusted with HCI or NaOH
(Ponnamperuma, 1972). All incubations were conducted
in the dark at a constant temperature of 25 + 2 °C, Eh
was monitored with Pt electrodes corrected to SHE
(Reddy & Delaune, 2008 and Sander & Koschorreck,
2020). After 10 days, porewater was analyzed for
soluble Fe2* and Mn2* and measured by AAS (Yu et al.,
2001).

Analytical Procedures

Soil pH, EC, texture, bulk density, porosity, OM,
CEC, and CaCO; were determined following standard
methods (Klute et al., 1986). Total Fe and Mn were
measured after nitric—perchloric digestion, and DTPA-
extractable Fe/Mn following Lindsay and Norvell
(1978). Mineralogy was determined by XRD, and major
oxides by XRF (Cornell & Schwertmann, 2003 and
Violante et al., 2010) and validated using internal
quality controls included blanks, duplicates, and spike
recovery.

Statistical Analyses

Data were analyzed by one-way and two-way
ANOVA, with LSD at p < 0.05. Normality and variance
homogeneity were checked (Field, 2018 and
Montgomery, 2017). Pearson’s correlation coefficients
(r), coefficients of determination (R?), and multiple
linear regression (MLR) analyses were applied to
identify factors affecting Fe and Mn availability.
Analyses were conducted with SPSS v26.0 and
GraphPad Prism v9.0.



Sahar. M. Ismail: Interactive Redox—pH Effects on Iron and Manganese Solubility in Soils of the Farafra Oasis, Egypt 715

RESULTS AND DISCUSSION

1. Physicochemical and Mineralogical Variability
Among Farafra Soils

The seven representative soils from the Farafra
Oasis displayed marked spatial variability in their
physicochemical and mineralogical properties, directly
influencing Fe and Mn. Soil textures ranged from sandy
(Soil 1) to clayey (Soil 7), with sand content decreasing
from 90.3% to 30.0% and clay content increasing from
4.6% to 40.8% (Table 1 and Fig. 1). This gradient in
texture was associated with a decrease in bulk density
(from 1.62 to 1.40 g/cm?) and a corresponding increase
in porosity (from 38.87% to 47.17%). Finer-textured
soils also retained more water; Soil 6 exhibited the
highest field capacity (41.5%) and available water
content (18.5%), compared to sandy, Soil 1 (8.1% and
4.6%, respectively), (Table 2). However, this enhanced
water retention was accompanied by a significant
reduction in soil permeability, as saturated hydraulic
conductivity (Ks) declined markedly from 15.6 cm/hr in
Soil 1 to just 0.4 cm/hr in Soil 7 (Table 2). This pattern
is consistent with previous studies demonstrating that
clay minerals such as smectite and kaolinite increase
water-holding capacity through capillary action and

interlayer expansion, but concurrently restrict air flow
and water movement through the soil matrix (Jien &
Wang, 2019 and Klopp et al., 2020). As soils became
finer and more moisture-retentive, oxygen diffusion
declined, leading to a drop in Eh from 270 mV in Soil 1
to 225mV in Soil 7 (Table 3). These more reducing
conditions likely promoted microbial reduction of Fe3*
and Mn** into their soluble divalent forms (Fe2* and
Mn2*), thereby enhancing their bioavailability (Sharma
et al., 2017 and Totsche et al., 2018).

Soil 7, in particular, exhibited the highest DTPA-
extractable Fe (6.5mg/kg) and Mn (6.2 mgkg),
highlighting the role of reductive dissolution in
mobilizing micronutrients (Table 3). All soils were
alkaline, with pH ranging from 7.80 to 8.40 (Table 3).
Strong negative correlations were observed between pH
(r =-0.75*) and Eh (r = -0.81*) with DTPA-extractable
Fe, and between pH (r = —0.96**) and Eh (r = -0.97*%*)
with DTPA-extractable Mn (Table 4 and Figs. 4A and
B), indicating that both alkaline and more oxidizing
conditions constrain micronutrient solubility. This
occurs due to the precipitation of metal hydroxides or
carbonates and the reduced dissociation of metal—
organic complexes (Rajput et al., 2023).

Table 1. One-way ANOVA of particle size distribution, bulk density, and porosity in surface layers (0-30 cm)

of representative soils from the Farafra Oasis

Soil Type  Texture Class 8(32;1 (SO'/(I)t) C(:ol/il ;’ BUI('; /Erir;)s Ity Po(zz)s)lty
Soil 1 Sand 90.3 5.1 4.6 1.62 38.87
Soil 2 Loamy Sand 79.8 15.2 5.0 1.58 40.38
Soil 3 Sandy Loam 65.1 16.9 18.0 1.55 41,51
Soil 4 Sandy Clay 55.4 20.1 24.5 152 4264

Loam
Soil 5 Loam 45.3 40.0 14.7 1.48 44.15
Soil 6 Silty Clay 10.2 50.1 39.7 1.42 46.41
Soil 7 Clay 30.0 29.2 40.8 1.40 47.17
LSD (0.05) — 48.899 27.261 26.049 0.143 5.379

Note: Values represent means of three replicates per composite soil sample (n = 3). Statistical differences were assessed using one-way ANOVA
followed by LSD (Least Significant Difference) post-hoc tests at p < 0.05. Degrees of freedom: between groups = 6; within groups = 14.
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Table 2. One-way ANOVA of saturated hydraulic conductivity and moisture retention characteristics in
surface layers (0-30 cm) of representative soils from the Farafra Oasis

Saturated hydraulic Water content Available Initial water
Soil Type conductivity at — 1500 kPa at— 33 kPa water content at
(Ks), cm/hr (AW, %) Sampling (%6)
Soil 1 15.6 35 8.1 4.6 6.2
Soil 2 13.2 3.3 10.0 6.7 7.3
Soil 3 3.6 11.1 20.5 9.4 8.4
Soil 4 1.8 15.4 27.7 12.3 10.5
Soil 5 35 9.7 23.5 13.8 11.5
Soil 6 0.6 23.0 41.5 18.5 12.1
Soil 7 0.4 24.1 39.3 15.2 14.0
LSD (0.05) 10.881 14.785 22.770 8.570 4912

Note: Values represent means of three replicates per composite soil sample (n = 3). Statistical differences were assessed using one-way ANOVA
followed by LSD (Least Significant Difference) post-hoc tests at p < 0.05. Degrees of freedom: between groups = 6; within groups = 14.

Table 3. One-way ANOVA of chemical and micronutrient characteristics (0-30 cm depth) in representative

soils of the Farafra Oasis, with LSD post-hoc test (n = 3)

Soil pH EC (L:5) oM CacO;  CEC P';Z‘:]?al I;t;/'k;; DTPA- Fe T(‘:T:Z'/k'\:)” DIAP:'
Type  (1:2.5) (dS/m) (%) (%) (cmol/kg) (EN. mV) (mg/kg) (ma/kg)
Soil 1 8.40 1.17 0.23 5.8 1.45 270 14,800 4.5 280 3.0
Soil 2 8.20 1.34 0.41 11.7 8.10 250 15,300 4.8 300 3.8
Soil 3 8.00 1.61 0.48 9.5 8.80 250 16,100 5.3 320 44
Soil 4 7.90 2.01 0.78 155 10.25 245 16,800 5.6 340 5.0
Soil 5 7.85 2.16 1.00 13.7 13.32 240 17,200 4.9 360 5.2
Soil 6 7.82 2.45 1.10 11.3 15.53 230 17,800 5.5 390 5.8
Soil 7 7.80 2.64 1.08 9.2 19.44 225 20,200 6.5 820 6.2
LSD 0.395 0.975 0.619 5.567 10.165 25.989 3149.63 1.157 32956  1.965
(0.05)

Note: Values represent the mean of three replicates (n = 3) per composite soil sample. Statistical differences between means were assessed using
one-way ANOVA followed by the LSD (Least Significant Difference) post-hoc test at p < 0.05. Degrees of freedom (Df): between groups = 6;

within groups = 14.

For example, Soil 1—having the highest pH (8.40) and
Eh (270 mV)—recorded the lowest DTPA-Fe (4.5
mg/kg) and Mn (3.0 mg/kg), whereas Soil 7, with the
lowest pH (7.80) and Eh (225 mV), showed the highest
extractable Fe and Mn levels. Calcium carbonate
(CaCO03) contents ranged from 5.8% in Soil 1 to 15.5%
in Soil 4 and were negatively correlated with DTPA-Fe
(r =-0.16) and Mn (r = —0.42), suggesting that CaCO3-
rich soils immobilize Fe and Mn via co-precipitation
and sorptive interactions with carbonate surfaces
(Shakeria and Saffari, 2020). Notably, Soil 4, despite
having a relatively fine texture, displayed only moderate

DTPA-Fe and Mn levels—Ilikely due to its high CaCO3
content. XRD analysis confirmed that calcite and
dolomite were dominant in calcareous soils (Table 5;
Fig. 2A), while XRF spectra (Fig. 2B) indicated
elevated CaO levels. Electrical conductivity (EC) varied
from 1.17 to 2.64dS/m, with higher values typically
found in finer soils such as Soil 6. EC was negatively
correlated with DTPA-Fe (r = —0.81*) and Mn (r = —
0.99**), (Table 4), likely due to ionic competition and
osmotic effects that hinder root uptake (Sharma et al.,
2022).
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Table 4. Pearson correlation coefficients (r), coefficients of determination (R2?), and standardized
multiple regression coefficients (RC) for soil factors influencing DTPA-extractable Fe and Mn in
representative soils of the Farafra Oasis

Soil variable r (Fe) R2 (Fe) RC (Fe) r (Mn) R2 (Mn) RC (Mn)
pH -0.75* 0.555 -0.42 -0.96 ** 0.927 -0.40
E'e‘:”'ci'dglon:;juc“v'ty 0.81* 0.658 0.38 0,99 ** 0977 0.35
Organic Matter, (%) +0.69 0.470 +0.35 +0.97 ** 0.932 +0.31
Calcium carbonate (%) -0.16 0.025 -0.33 -0.42 0.177 -0.30
Cation Exchange Capacity . g, « 0.680 +0.24 +0.97 %% 0.950 +0.20
(cmol/kg)
Redox Potential (Eh, mV) -0.81~* 0.652 +0.29 -0.97 ** 0.945 +0.26
Texture -0.82* 0.668 -0.20 -0.99 ** 0.980 -0.18
Available Water (%) +0.67 0.454 +0.27 +0.95 ** 0.904 +0.25
Moisture Content at +0.82 0.678 +0.30 +0.98 ** 0.968 +0.28
Sampling (%)
Total Fe (mg/kg) +0.91 ** 0.823 +0.31 +0.93 ** 0.874 —
Total Mn (mg/kg) +0.87 ** 0.750 — +0.71 0.503 +0.28
Model R2 — 0.93 — — 0.91 —

Note: Pearson correlation coefficients (r), their corresponding coefficients of determination (R? = r?), and standardized multiple regression
coefficients (RC) for the relationships between selected soil properties and DTPA-extractable iron (Fe) and manganese (Mn) in representative soils
of the Farafra Oasis. All significance levels are based on LSD at p < 0.05. Texture was treated as an ordinal variable (1 = sand, ...... ,7 = clay).
Positive values indicate direct relationships; negative values indicate inverse relationships.

Soil Fraction
100.0 Sand (%)
4.6 H Silt (%)
5.1 mm Clay (%)
80.0
g
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Figure 1. Particle size distribution (sand, silt, and clay fractions) in seven representative surface soils (0-30 cm
depth) from the Farafra Oasis
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Figure 2A. X-ray diffraction (XRD) spectra of representative surface soils (0-30 cm) from the
Farafra Oasis
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Figure 2B. X-ray Fluorescence (XRF) Spectra Showing Elemental Composition of Representative Soils from
the Farafra Oasis
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Table 5. Dominant mineralogical phases and major oxide composition of representative Farafra Oasis soils
based on XRD and XRF analyses

. Dominant Minerals Major Oxides . . .
Soil Type (XRD) (XRF) Mineralogical Interpretation
0, i 0,
Soil 1 Quartz (?55/(%) Feldspar Si0; ((710562) Al205 Quartz-dominant, low-reactivity
(Sand) Minor Kao’linite K.O (50'@ mineralogy; minimal nutrient retention
2
Soil 2 Quartz (50%), Calcite (15%), SiO, (62%), CaO (12%), Slightly more reactive than Soil 1; onset
(Loamy Sand) Kaolinite (10%) Al;03 (10%) of carbonate buffering
Soil 3 Quartz (45%), Calcite (20%), SiO, (58%), CaO (15%), Balanced composition; moderate CEC

y 0 e o ; . .
(Sandy Loam) Smectite (10%), Kaolinite Fe,03 (6%) and improved buffering capacity

Calcite (30%), Smectite

Soil 4 (20%) Ca0 (22%), SiO, (40%), Carbonate-rich with improved redox
1 0 - - -
(Sandy Clay Quartz (25%) Fe,03 (8%) reactivity and water retention
Loam)
. 0 .
Soil 5 Calcite (zz(z)o/g/)o,)Dolomlte CaO (30%), MgO (10%), Strong carbonate buffering; potential
(Loam, high i SiO, (30%) Fe/Mn solubility constraints
Quartz (15%)
CaCO0s3)
Calcite (35%), Smectite 0 . 0 High carbonate content and clay
Soil 6 (25%), Iia% (2(?@’)8'“% (()2?4/2/)) reactivity; salinity may limit nutrient
(Silty Clay) Minor Kaolinite 203 (2070), ez 70 bioavailability
Smectite (40%), Kaolinite Fe,0s3 (12%), Al,03 High CEC and redox buffering; Fe/Mn
Soil 7 (30%), (18%), oxides and OM support micronutrient
(Clay, high OM) Minor Goethite SiO; (22%), OM present availability

Note: Dominant crystalline minerals identified via X-ray diffraction (XRD) and corresponding major elemental oxides determined by X-ray
fluorescence (XRF) are presented for seven representative surface soils (0-30 cm) from the farafra Oasis. Coarse-textured soils (Soils 1-3) are
quartz-dominated with low reactivity, while finer soils (Soils 4-7) contain increasing proportions of calcite, smectite, and kaolinite, consistent with
higher carbonate and clay content. Mineralogical interpretations are aligned with soil texture and chemical reactivity trends, particularly in relation
to redox buffering, Fe/Mn availability, and cation exchange capacity. Oxide values are semi-quantitative and intended to reflect compositional
trends rather than precise stoichiometry.

Organic matter (OM) contents, though generally low  While finer-textured soils (Soils 4-7) were enriched with

(0.23-1.10%), positively correlated with DTPA-Fe (r = reactive mineral phases such as smectite, kaolinite,
+0.69%) and Mn (r = +0.97**), supporting the role of calcite, dolomite, and goethite (Table 5). These minerals

humic = substances in micronutrient chelation and ~ aré known to enhance Fe and Mn retention, redox
stabilization (de Santiago et al., 2008). For instance, ~ buffering, and overall reactivity (Sparks, 2003 and
Soil 6, with the highest OM content (1.10%), exhibited Violante et al., 2010). Elemental transitions observed in
relatively high levels of DTPA-extractable Fe and Mn ~ XRF spectra further confirmed a shift from Si and Al
despite elevated CaCO; levels. Cation exchange  dominance in sandy soils to increased Ca, Fe, and Mn
capacity (CEC) increased markedly from 1.45 to  concentrations in clayey, calcareous soils—particularly
19.44 cmol/kg (Table 3) and showed strong positive in Soil 7.

correlations with DTPA-Fe (r = +0.82*) and Mn (r = 2. Relationship Between Total and DTPA-
+0.97**). This reflects the impact of increased surface Extractable Fe and Mn
area and negative charge in clay- and OM-rich soils. Total Fe and Mn concentrations ranged from 14,800

However, the beneficial effect of high CEC was to 20,200 mg/kg and 280 to 820 mg/kg, respectively
occasionally moderated by alkaline pH, high Eh, and  (Table 3). However, the DTPA-extractable fractions of
CaCOs; content, which limit the solubility and mobility Fe and Mn were considerably lower—accounting for
of Fe and Mn even when adsorption capacity is high |ess than 0.03% of the total content Figure (Fig. 3). This

(Najafi-Ghiri et al., 2010). Mineralogically, sandy soils  |arge difference between total and DTPA-extractable
(Soils 1-3) were dominated by quartz and feldspar,
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concentrations indicates that total Fe and Mn
measurements alone cannot reliably predict the amounts
actually available for plant uptake. In fact, total Fe and
Mn concentrations showed weak or no correlation with
key soil variables such as pH, OM, CaCOs;, and CEC
(Table 4). In contrast, DTPA-extractable Fe and Mn
were significantly influenced by chemical and physical
soil characteristics (Figs. 4A, 4B) particularly pH, Eh,
and EC (all negatively correlated), and OM and CEC
(both  positively  correlated)—demonstrating  that
alkaline, saline, and more oxidizing conditions reduce
micronutrient solubility, whereas higher organic matter
and cation exchange capacity enhance it. For example,
although Soil 6 had a relatively high total Fe
concentration (17,800 mg/kg), it also exhibited elevated
DTPA-Fe (5.5 mg/kg) due to its favorable combination
of relatively low pH, low Eh, and high OM content,
despite substantial CaCOs; levels (15.53%).

More notably, Soil 7 showed the highest total Fe
(20,200 mg/kg) and Mn (820 mg/kg) levels, along with
the highest DTPA-extractable Fe (6.5 mg/kg) and Mn
(6.2 mg/kg). These results are attributed to Soil 7’s

favorable combination of lower pH, higher OM
(1.08%), elevated CEC (19.44 cmol/kg), fine texture,
and low Eh (225 mV), which together promote the
reductive dissolution of Fe®* and Mn** oxides into
plant-available Fe?* and Mn2*. This profile is further
supported by its higher moisture retention and low
permeability, which limit oxygen diffusion and maintain
reducing conditions. These findings collectively
illustrate that micronutrient availability in arid and
semi-arid soils is affected by a complex interplay of
chemical (pH, OM, CaCOs, Eh), physical (texture,
porosity), hydraulic (moisture retention, permeability),
and mineralogical (clay content, reactive oxides)
factors. As such, total Fe and Mn concentrations are
insufficient proxies for estimating plant-available
micronutrients. These results align with previous
research in arid and semi-arid regions, which has shown
that the availability of micronutrients is controlled more
by their chemical forms, mineral binding, and
surrounding soil microenvironments than by their total
concentrations (Alloway, 2019; Yin et al., 2020 and Wu
etal., 2021).

mm Total Fe (ma/kg)

| mmm DTPA-Fe x1000 (mg/kg)
s Total Mn (mg/kg)

| === DTPA-Mn x50 (mg/kg)
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Soil Type
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Figure 3. Comparison of total and DTPA-extractable iron (Fe) and manganese (Mn) concentrations in seven
representative surface soils (0—30 cm) from the Farafra Oasis
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3. Seasonal redox—pH-moisture controls on Fe and
Mn availability in Farafra Oasis soils

Seasonal monitoring showed that irrigation cycles
induced clear shifts in soil aeration and micronutrient
solubility (Tables 6A, 6B; Figs. 5-7). After irrigation,
soil moisture and CO, flux increased while O, declined,
leading to lower Eh and temporary increases in DTPA-
Fe and Mn. For the sand (Soil 1), moisture increased
6.2—10.0 %, CO, 3.6—4.2 umol m™2 57, O, decreased
18—16 %, and DTPA-Fe and DTPA-Mn increased
4549 and 3.0-3.4 mg kg™, respectively—
illustrating significant main effects of soil and time and
their interaction (soil x time) summarized in Table (6A)
and Figs. (5-6). Mechanistically, irrigation stimulates
microbial respiration, depresses O,, and generates
suboxic/anoxic microsites favoring Fe (II[)— Fe?* and
Mn (III/IV) — Mn?* reduction. Such These effects were
most evident in finer soils (e.g., Soils 6 and 7), where
reduced aeration sustained higher extractable Fe?*and
Mn2*(Evans et al., 2021 and Hodges et al., 2023). In
coarse soils (Soil 1), oxidizing conditions re-established
quickly due to high porosity, so post-irrigation increases
in Fe and Mn were minimal and short-lived. By
contrast, finer-textured soils retained moisture longer,
generating suboxic conditions that favored reductive
dissolution of Fe/Mn oxides and improved availability
(Lakshani et al., 2023 and Valdés-Abellan et al., 2024).
Correlation and regression analyses (Table 7) confirmed
that DTPA-Fe and Mn correlated negatively with pH,
EC, CaCO;3, O,, and positively with OM, moisture, and

CO, flux. Multiple-regression models, R? values were
high (0.93 for Fe; 0.91 for Mn), indicating strong
predictability. Eh shows only a moderate positive
association with DTPA-Fe/Mn despite the clear
0,//CO,1 signature. Figs. (8A-8B and 9) summarize
these interactions, showing that carbonate buffering
maintains a low baseline of Fe/Mn solubility, while
irrigation pulses cause short-term mobilization.

In Fig. (8A), high pH promotes poorly soluble
Fe/Mn hydroxide/carbonate phases, depressing soluble
(DTPA-extractable) fractions. Shifting toward more
reducing conditions increases Fez*/Mn?*, raising
extractable Fe/Mn. The multivariate surface in Fig. (8B)
embeds moisture, O,, CO,, EC, OM, and CaCOs;,
predicting higher DTPA-Fe/Mn under wetter, low-O,,
high-CO, conditions and lower DTPA-Fe/Mn as
pH/active CaCOs. The conceptual path diagram (Fig. 9)
summarizes this framework, with arrow signs and
widths reflecting standardized regression coefficients
(Table 7). These findings highlight that in Farafra’s
calcareous soils, Fe and Mn availability is constrained
by high pH and salinity but can be transiently enhanced
by irrigation-induced reducing conditions and organic
matter inputs. However, improvements are temporary,
and management practices (e.g., Fe-EDDHA
fertilization, foliar Mn sprays, optimized irrigation)
remain essential for correcting deficiencies (Rojas et al.,
2008; Lopez-Rayo et al., 2015; Dhaliwal et al., 2023
and Zubieta et al., 2025).
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Table 6A. Two-way ANOVA of seasonal and soil type effects on some soil properties influencing DTPA-
extractable Fe and Mn in representative soils of the Farafra Oasis"'

Soil Type Sampling Time Eh bH Moisture Soil Temp., Og, CO; Flux DTPA-Fe DTPA-Mn
(mV) Content, (%0) (°C) (%) (umol/m2/s) (mg/kg) (mg/kg)
Pre-irrigation 270 8.40 6.2 28 18 3.6 45 3.0
Soil 1 24h post-irrigation 245 8.35 10.0 27 16 4.2 4.9 34
(Sand) Mid-season 260 8.38 8.5 30 17 4.0 4.7 3.2
Post-harvest 255 8.42 7.0 29 18 3.8 4.6 3.1
Pre-irrigation 250 8.20 7.3 27 19 2.8 4.8 3.8
Soil 2 24h post-irrigation 230 8.12 115 26 15 4.0 5.2 4.1
(Loamy sand) Mid-season 245 8.15 9.0 29 16 36 5.0 3.9
Post-harvest 240 8.18 8.0 28 17 3.3 4.7 3.7
Pre-irrigation 250 8.00 8.4 27 19 3.0 5.3 4.4
Soil 3 24h post-irrigation 225 7.95 13.0 26 14 4.3 5.7 4.7
(Sandy loam) Mid-season 240 7.98 10.5 29 16 3.8 5.5 4.5
Post-harvest 235 8.02 9.3 28 17 35 5.2 4.3
Pre-irrigation 245 7.90 10.5 26 18 3.2 5.6 5.0
Soil 4 24h post-irrigation 220 7.80 15.2 25 13 4.5 6.0 5.4
(Sandy clay loam) Mid-season 235 7.84 13.0 28 15 4.0 5.8 5.2
Post-harvest 230 7.87 11.2 27 16 3.7 5.5 4.9
Pre-irrigation 240 7.85 115 26 17 3.3 4.9 5.2
Soil 5 24h post-irrigation 215 7.75 17.2 25 12 4.3 5.3 5.6
(Loam, high CaCOs) Mid-season 230 7.80 14.0 28 14 4.0 5.1 5.4
Post-harvest 225 7.83 12.0 27 15 3.6 4.8 5.1
Pre-irrigation 230 7.82 12.1 25 16 35 55 5.8
Soil 6 24h post-irrigation 205 7.67 18.5 24 11 4.4 6.0 6.1
(Silty clay, high EC) Mid-season 220 7.72 15.0 27 13 4.0 5.7 5.9
Post-harvest 215 7.77 13.2 26 14 3.6 5.4 5.6
Pre-irrigation 225 7.80 14.0 25 15 3.6 6.5 6.2
Soil 7 24h post-irrigation 200 7.65 20.5 24 10 4.6 7.0 6.7
(Clay, high OM) Mid-season 215 7.70 18.0 27 12 4.4 6.8 6.5
Post-harvest 210 7.78 15.0 26 13 4.0 6.4 6.1
LSD (0.05) - 12.30 0.08 121 1.03 142 0.50 0.56 0.53
Soil type effect - faled * el * * * * *
Sampling time effect - *x * ** * * ** ** *
Interaction
(Soil type x sampling - faleled * falaled * * * * *
time)

Note: Mean values of redox potential (Eh), pH, moisture content, soil temperature, oxygen concentration, CO, flux, and DTPA-extractable iron
(Fe) and manganese (Mn) were measured across seven representative soil types during four seasonal sampling periods. Statistical differences
among mean values for each variable were evaluated using a two-way ANOVA (factors: soil type x sampling time). The least significant difference
(LSD) at the 0.05 probability level is provided for each variable. Asterisks (*, **, ***) denote statistical significance at p < 0.05, with more
asterisks indicating stronger or more consistent significance across treatments.
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Figure 5. Seasonal variation of redox potential (Eh), pH, and volumetric moisture content in five
representative soils of the Farafra Oasis
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Table 6B. Two-way ANOVA of seasonal and soil type effects on soil chemical properties related to Fe and Mn

availability in representative soils of the Farafra Oasis

. . . EC (1:5), OM CaCO; Active CaCO;, CEC Total Fe  Total Mn
Soil Type Sampling Time
dS/m (%) (%) (%) (cmol/kg) (ma/kg) (mg/kg)

Pre-Irrigation 1.17 0.23 5.8 1.40 1.45

Soil 1 24h post-irrigation 1.24 0.25 5.9 1.42 1.38
14800 280

(Sand) Mid-Season 1.35 0.21 6.0 1.45 1.42

Post-Harvest 1.29 0.22 5.7 1.40 1.38

Pre-Irrigation 1.34 0.41 11.7 3.00 8.1

Soil 2 24h post-irrigation 1.48 0.45 119 3.05 8.3
15300 300

(Loamy Sand) Mid-Season 1.62 0.38 12,0 2.98 8.5

Post-Harvest 1.55 0.40 11.6 3.01 8.0

Pre-Irrigation 1.61 0.48 9.5 2.50 8.8

Soil 3 24h post-irrigation 1.73 0.52 9.6 2.55 9.0
16100 320

(Sandy Loam) Mid-Season 1.85 0.43 9.7 2.47 9.2

Post-Harvest 1.76 0.45 9.4 251 8.7

Pre-Irrigation 2.01 0.78 15.5 3.90 10.2

Soil 4 24h post-irrigation 2.18 0.83 15.7 3.95 10.5
16800 340

(Loam) Mid-Season 2.30 0.70 15.9 3.87 10.7

Post-Harvest 212 0.74 15.4 391 10.3

Pre-Irrigation 2.16 1.00 13.7 3.60 13.3

Soil 5 24h post-irrigation 2.35 1.08 13.9 3.65 13.6
iltv CI 17200 360

(Silty Clay) Mid-Season 252 0.90 141 358 13.9

Post-Harvest 2.39 0.94 13.6 3.62 13.2

Pre-Irrigation 2.45 1.10 113 3.20 15.5

Soil 6 24h post-irrigation 2.68 1.13 115 3.25 15.8
17800 390

(Clay Loam) Mid-Season 2.84 1.00 11.6 3.18 16.1

Post-Harvest 2.70 1.05 11.2 3.22 15.4

Pre-Irrigation 2.64 1.08 9.2 2.90 19.4

Soil 7 24h post-irrigation 2.83 112 9.3 2.95 19.8
20200 820

(Clay) Mid-Season 2.92 0.96 95 2.87 201

Post-Harvest 2.79 1.00 9.1 291 19.2
LSD (0.05) - 0.174 0.089 0.178 0.122 0.207 — —
SOII type ef—fect - *kk *kk KKk KKk *kk *kk *kk
Sampling time effect - il * * * faieied ns ns

Interaction ok * ok
* * ns ns

(Soil type x sampling time)

Note: Mean values of electrical conductivity (EC), organic matter (OM), total calcium carbonate (CaCOs), active CaCOjs, cation exchange capacity
(CEC), and total concentrations of iron (Fe) and manganese (Mn) were determined across seven representative soil types during four seasonal
sampling periods. Total Fe and Mn values were considered stable and are presented as fixed values for each soil type. Statistical differences among
means were assessed using a two-way ANOVA (factors: soil type x sampling time). The least significant difference (LSD) at the 0.05 probability
level is provided for each variable. Asterisks (*, **, ***) indicate statistically significance at p < 0.05 with more asterisks denoting stronger or
more consistent effects. “ns” indicates non-significance.
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Figure 7. Seasonal dynamics of EC, OM, total CaCO3;, active CaCOs3, and CEC in five representative soils of
the Farafra Oasis

Table 7. Pearson correlation coefficients (r), coefficients of determination (R2), and standardized multiple regression
coefficients (RC) for seasonal and soil variables influencing DTPA-extractable Fe and Mn in representative soils of the
Farafra Oasis

Seasonal Variable Fe (r) R2 (Fe) RC (Fe) r (Mn) Rz (Mn) RC (Mn) Fe (RC)

Redox Potential (Eh, mV) +0.62* 0.384 +0.33 +0.58* 0.336 +0.29 +0.33
Soil pH —0.72** 0.518 -0.81 —0.69** 0.476 -0.74 -0.81
Moisture Content (%) +0.66* 0.436 +0.28 +0.63* 0.397 +0.25 +0.28
Soil Temperature (°C) +0.40 0.160 +0.12 +0.35 0.123 +0.10 +0.12
Oxygen Concentration (%) -0.60* 0.360 -0.27 -0.55* 0.303 -0.22 -0.27
CO, Flux (umol/m?/s) +0.70** 0.490 +0.36 +0.68** 0.462 +0.34 +0.36
Sampling Time (ordinal: 1-4) -0.50 0.250 -0.20 -0.48 0.230 -0.18 -0.20
Electrical Conductivity (EC), (1:5), dS/m —0.69%* 0.476 -0.30 —0.65** 0.423 -0.28 -0.30
Organic Matter, (%) +0.55* 0.303 +0.22 +0.53* 0.281 +0.20 +0.22
Calcium Carbonate (CaCOs), (%) —-0.61* 0.372 -0.25 —0.58* 0.336 -0.22 -0.25
Active calcium carbonate (A-CaCOs), % -0.59* 0.348 -0.21 -0.56* 0.314 -0.19 -0.21
Cation Exchange Capacity (CEC), cmol/kg +0.47 0.221 +0.18 +0.45 0.203 +0.16 +0.18
Total Fe, (mg/kg) +0.62* 0.384 +0.27 +0.36 0.130 - +0.27

Total Mn (mg/kg) +0.40 0.160 - +0.70** 0.490 +0.30 -

Model R2 - 0.93 — — 0.91 — -

Note: Relationships between seasonal and soil variables and DTPA-extractable iron (Fe) and manganese (Mn) were assessed across 28 seasonal observations (7 soils x
4 sampling times) from the Farafra Oasis. Pearson correlation coefficients (r) represent simple linear associations, while coefficients of determination (R?) indicate the
proportion of variance explained by each variable individually (R? = r?). Standardized multiple regression coefficients (RC) were derived from a full multiple linear
regression model including all listed predictors. Model R2 values for Fe (0.93) and Mn (0.91) represent the total variance in DTPA-extractable Fe and Mn explained by
the respective full models. Asterisks (*) denote statistical significance at p < 0.05.
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4.Redox potential (Eh) under aerobic and anaerobic
conditions at different pH levels (laboratory
incubation)

Incubation of sandy (Soil 1) and clayey (Soil 7)
calcareous soils under aerobic vs. anaerobic conditions
and four pH levels (5.5-8.5) showed that redox regime
dominated Eh more than pH. In sand, aerobic Eh
stayed high (~540-600 mV) while anaerobic Eh
dropped sharply (~27-60 mV), creating conditions

favorable for Fe3*and Mn**reduction (Table 8; Fig. 10).
In clay, Eh values were lower overall (~242-250 mV
aerobic; 186-200 mV anaerobic), reflecting slower gas
diffusion and higher OM/water retention (Table 9 and
Fig. 10). These findings align with the dataset showing
higher DTPA-Fe/Mn under anaerobiosis, stronger in
sand than clay, and agree with published Fe/Mn redox
thresholds (Lindsay & Norvell, 1978 and Palihakkara et
al., 2016).
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Table 8. Daily Changes in pH and Redox Potential (Eh) of Soil 1 (Sand) under Aerobic and Anaerobic
Conditions at Different Target pH Levels during a 10-Day Laboratory Incubation
Aerobic Anaerobic Aerobic Anaerobic Aerobic Anaerobic
pH pH pH pH pH
Day (5.5 Eh (5.5) Eh (6.5) Eh (65) Eh pH(75) Eh (7.5) Eh

1 5.52 540 5.50 30 6.50 560 6.50 40 7.50 580 7.48 50
2 5.49 535 5.48 28 6.48 555 6.46 38 7.52 575 7.50 48
3 5.50 538 5.47 27 6.50 557 6.47 37 7.49 578 7.47 46
4 5.51 540 5.49 29 6.53 559 6.48 39 7.48 579 7.49 47
5 5.53 542 5.50 31 6.51 561 6.49 40 7.51 580 7.50 48
6 5.52 541 5.49 30 6.52 560 6.50 39 7.50 579 7.48 47
7 5.50 539 5.48 28 6.50 558 6.48 37 7.52 577 7.49 46
8 5.49 538 5.47 27 6.48 557 6.46 36 7.50 575 7.47 45
9 5.51 540 5.49 29 6.51 559 6.49 39 7.48 578 7.48 47
10 5.52 541 5.50 30 6.52 560 6.50 40 7.50 580 7.50 48
'5%'2 003 5 003 3 003 5 003 3 0038 5 003 3
Aerobic Anaerobic Aerobic Anaerobic
Day pH Eh pH Eh
pH (8.5) Eh pH (8.5) Eh control control control control
1 8.48 600 8.45 60 8.10 590 8.12 55
2 8.50 595 8.47 58 8.11 585 8.11 53
3 8.49 597 8.46 57 8.12 588 8.10 54
4 8.47 598 8.45 59 8.13 589 8.12 56
5 8.46 600 8.47 60 8.12 590 8.11 57
6 8.48 599 8.46 59 8.11 589 8.12 55
7 8.50 597 8.45 58 8.10 588 8.11 54
8 8.49 596 8.46 57 8.11 587 8.12 53
9 8.47 598 8.45 59 8.12 589 8.13 55
10 8.48 599 8.46 60 8.11 590 8.12 56
LSD 0.05 0.05 5 0.05 3 0.05 5 0.05 3

Note: Values represent treatment means (n = 3) for pH and Eh measured daily over the 10-day incubation period. Target pH levels were adjusted to
5.5, 6.5, 7.5, and 8.5, with an unadjusted control. LSD,.,s denotes the least significant difference at the 5% probability level for comparisons
within each parameter, calculated from the mean square error of a two-way ANOVA.

Table 9. Daily Changes in pH and Redox Potential (Eh) of Soil 7 (Clay) under Aerobic and Anaerobic
Conditions at Different Target pH Levels during a 10-Day Incubation Period
Aerobic Anaerobic Aerobic Anaerobic Aerobic Anaerobic
pH pH pH pH pH pH
Day (5.5 Eh (5.5) Eh (6.5) Eh (6.5) Eh (7.5) Eh (7.5) Eh

1 5.52 247 5.50 200 6.51 246 6.49 196 750 244 7.48 191
2 5.49 246 5.48 198 6.49 248 6.46 194 752 247 750 190
3 5.50 249 5.47 196 6.50 250 6.47 193 749 249 747 188
4 551 248 5.49 197 6.53 251 6.48 195 748 246  7.49 189
5 5.53 250 5.50 199 6.51 249 6.49 196 751 248 750 190
6 5.52 249 5.49 198 6.52 247 6.50 195 750 245 7.48 188
7 5.50 246 5.48 197 6.50 246 6.48 193 752 244  7.49 187
8 5.49 245 5.47 196 6.48 245 6.46 192 750 243  7.47 186
9 551 247 5.49 198 6.51 247 6.49 194 748 246  7.48 188
10 5.52 248 5.50 199 6.52 248 6.50 196 750 246 750 189
LSD

0.05 0.02 2.69 0.02 2.24 0.03 3.22 0.03 243 0.02 319 0.02 2.56
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Aerobic Anaerobic Aerobic Anaerobic

Day pH Eh pH Eh
pH (8.5) Eh pH (8.5) Eh control control control control
1 8.49 242 8.46 186 7.70 248 7.46 189
2 8.50 245 8.47 187 7.69 247 7.47 188
3 8.49 247 8.46 185 7.72 249 7.45 187
4 8.47 246 8.45 186 7.71 246 7.48 188
5 8.46 248 8.47 188 7.70 247 7.46 189
6 8.48 247 8.46 187 7.69 245 7.47 187
7 8.50 245 8.45 186 7.68 244 7.46 186
8 8.49 244 8.46 187 7.69 243 7.48 186
9 8.47 246 8.45 188 7.71 246 7.47 188
10 8.48 247 8.46 189 7.70 247 7.46 189
LSD 0.05 0.02 3.00 0.01 2.04 0.02 3.09 0.02 1.98

Note: Values represent treatment means (n = 3) for pH and Eh measured daily over the 10-day incubation period. Target pH levels were adjusted to
5.5, 6.5, 7.5, and 8.5, with an unadjusted control. LSD,.os denotes the least significant difference at the 5% probability level for comparisons
within each parameter, calculated from the mean square error of a two-way ANOVA.

Redox buffer capacity (RBC) values were close to
zero in both soils, indicating Eh stabilized quickly once
O, status was imposed, with small positive/negative
drifts that were not statistically significant (Tables 10—
11; Fig. 11). In sand, small positive drifts appeared at
pH 5.5-aerobic and the anaerobic control (+0.11 mV
day™1), with slight negatives at pH 7.5-anaerobic (-0.22)
and pH 8.5-aerobic (-0.11). In clay, the range was
slightly broader RBC ranges, peaking at pH 8.5-aerobic
(+0.56) and dipping at pH 7.5-anaerobic (-0.22). All
means shared the same LSD,.q5 group, confirming no
significant treatment differences. The slightly higher
RBC range in the clay suggests greater storage of
electron acceptors (Fe/Mn oxides) and slower gas
exchange, allowing marginal upward Eh drift under
aeration, whereas small negatives under anaerobiosis
reflect gradual oxidant depletion. Similar textural
control studies on Eh behavior have been widely
reported in waterlogged soils by Ponnamperuma (1972)
and Reddy & Delaune, (2008). Similarly, pH buffer
capacity (pHBC) values were also near zero across
treatments, confirming carbonate—bicarbonate buffering
in calcareous soils (Dvorackova et al., 2022). In sand,
small positive drifts occurred at pH 7.5-anaerobic
(0.0022 pH unit day™) and pH 8.5-anaerobic (0.0011);
while in the clay, a positive shift appeared at pH 7.5-
anaerobic (0.0022) and a slight negative at pH 8.5-
aerobic (-0.0011). Again, treatments fell in the same
statistical grouping (Tables 12-13 and Fig. 12).
Collectively, the RBC and pHBC results demonstrate
strong short-term buffering in both soils: with O, held
constant, Eh rapidly stabilized at treatment-specific
steady-state levels, and pH remained essentially unchanged
over the 10-day incubation. DTPA-extractable Fe and Mn
increased significantly under anaerobiosis at all pH levels,
with maxima at pH 5.5 and minima at pH 8.5. In Soil 1, Fe

rose from 4.65—7.92 mg/kg and Mn from 2.45—4.76
mg/kg (aerobic — anaerobic at pH 5.5), whereas at pH 8.5
Fe increased from 1.56 to 2.42 and Mn from 0.90 to 1.40
mg kg™; controls followed the same direction (Fe
1.32—1.84; Mn 0.80—1.10 mg kg™) (Table 14 and Figs.
13-14). Soil 7 showed the same trends (at pH 5.5 Fe rose
8.34—12.08 and Mn 5.20—8.10 mg kg™; at pH 8.5 Fe
increased from 3.34—4.80 and Mn from 2.40—3.50 mg
kg™) (Table 15 and Figs. 15-16). Relative increases were
stronger in sand (~6x for Fe, ~5.95x for Mn) than clay
(~4.2x and 4.05x). Regression confirmed Eh explained
much of the variance in DTPA-Fe/Mn (Figs. 17-19). In
parallel, pH—availability relations are generally inverse in
these calcareous systems (Fig. 19). Near-zero RBC and
pHBC (Tables 10-13) and their rankings (Tables 17-18)
confirm day-to-day stability, reinforcing these associations.
In short, anaerobiosis mobilized Fe and Mn despite
buffering, with sand more responsive due to rapid
aeration—deoxygenation cycles, while clay soils remained
moderately reduced even under “aerobic” handling due to
textural constraints (Lindsay & Norvell, 1978; Sparks,
2003 and Reddy & Delaune, 2008).

Similarly, pH buffer capacity (pHBC) values were
also near zero across treatments, confirming carbonate—
bicarbonate buffering in calcareous soils (Dvorackova et
al., 2022). In sand, small positive drifts occurred at pH
7.5-anaerobic (0.0022 pH unit day™) and pH 8.5-
anaerobic (0.0011); while in the clay, a positive shift
appeared at pH 7.5-anaerobic (0.0022) and a slight
negative at pH 8.5-aerobic (—0.0011). Again, treatments
fell in the same statistical grouping (Tables 12-13 and
Fig. 12). Collectively, the RBC and pHBC results
demonstrate strong short-term buffering in both soils:
with O, held constant, Eh rapidly stabilized at
treatment-specific steady-state levels, and pH remained
essentially unchanged over the 10-day incubation.
DTPA-extractable Fe and Mn increased significantly
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under anaerobiosis at all pH levels, with maxima at pH
5.5 and minima at pH 8.5. In Soil 1, Fe rose from
4.65—7.92 mg/kg and Mn from 2.45—4.76 mg/kg
(aerobic — anaerobic at pH 5.5), whereas at pH 8.5 Fe
increased from 1.56 to 2.42 and Mn from 0.90 to 1.40
mg kg% controls followed the same direction (Fe
1.32—1.84; Mn 0.80—1.10 mg kg™) (Table 14 and
Figs. 13-14). Soil 7 showed the same trends (at pH 5.5
Fe rose 8.34—12.08 and Mn 5.20—8.10 mg kg™t; at pH
8.5 Fe increased from 3.34—4.80 and Mn from
2.40—3.50 mg kg™) (Table 15 and Figs. 15-16).
Relative increases were stronger in sand (~6x for Fe,
~5.95% for Mn) than clay (~4.2x and 4.05x), (Table 16).
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Regression confirmed Eh explained much of the
variance in DTPA-Fe/Mn (Figs. 17-19).In parallel, pH-
availability relations are generally inverse in these
calcareous systems (Fig. 19). Near-zero RBC and pHBC
(Tables 10-13) and their rankings (Tables 17-18)
confirm day-to-day stability, reinforcing these
associations. In short, anaerobiosis mobilized Fe and
Mn despite buffering, with sand more responsive due
to rapid aeration—deoxygenation cycles, while clay soils
remained moderately reduced even under “aerobic”
handling due to textural constraints (Reddy & Del aune,
2008; Lindsay & Norvell, 1978; and Sparks, 2023).

Eh vs. Time for Soil 1 (Sand) under Aerobic and Anaerobic Conditions
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Figure 10.Changes in redox potential (Eh) during a 10-day incubation of Soils 1 (Sand) and 7 (Clay) under

aerobic and anaerobic conditions
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Table 10. Redox Buffer Capacity (RBC) of Soil 1 (Sand) under Aerobic and Anaerobic Conditions at Different
Target pH Levels during a 10-Day Laboratory Incubation.

Treatment RBC (mV/day) LSD (0.05) Statistical Group
pH 5.5 Aerobic 0.11 0.95 a
pH 5.5 Anaerobic 0.00 0.95 a
pH 6.5 Aerobic 0.00 0.95 a
pH 6.5 Anaerobic 0.00 0.95 a
pH 7.5 Aerobic 0.00 0.95 a
pH 7.5 Anaerobic -0.22 0.95 a
pH 8.5 Aerobic -0.11 0.95 a
pH 8.5 Anaerobic 0.00 0.95 a
pH Control Aerobic 0.00 0.95 a
pH Control Anaerobic 0.11 0.95 a

Note: RBC values are expressed as the rate of change in redox potential (mV day ™) calculated over the 10-day incubation period.
LSDy.os denotes the least significant difference at the 5% probability level for comparisons within each parameter, calculated from the mean
square error of a two-way ANOVA. Means followed by the same letter are not significantly different according to the LSD test.

Table 11. Redox Buffer Capacity (RBC) of Soil 7 (Clay) under Aerobic and Anaerobic Conditions at Different
Target pH Levels during a 10-Day Laboratory Incubation.

Treatment RBC (mV/day) LSD (mV) Statistical Group
pH 5.5 Aerobic 0.11 0.51 a
pH 5.5 Anaerobic -0.11 0.51 a
pH 6.5 Aerobic 0.22 0.61 a
pH 6.5 Anaerobic 0.00 0.61 a
pH 7.5 Aerobic 0.22 0.61 a
pH 7.5 Anaerobic -0.22 0.61 a
pH 8.5 Aerobic 0.56 0.57 a
pH 8.5 Anaerobic 0.33 0.57 a
pH Control Aerobic -0.11 0.59 a
pH Control Anaerobic 0.00 0.59 a

Note: RBC values are expressed as the rate of change in redox potential (mV day ™) calculated over the 10-day incubation period.
LSDy.os denotes the least significant difference at the 5% probability level for comparisons within each parameter, calculated from the mean
square error of a two-way ANOVA. Means followed by the same letter are not significantly different according to the LSD test.
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Figure 11. Redox Buffer Capacity (RBC) of Soil 1 (Sand) and Soil 7 (Clay) under Aerobic and Anaerobic
Conditions at Different Target pH Levels during a 10-Day Laboratory Incubation
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Table 12.°pH Buffer Capacity (pHBC) of Soil 1 (Sand) under Aerobic and Anaerobic Conditions at Different
Target pH Levels during a 10-Day Laboratory Incubation

Treatment pHBC (pH unit/day) LSD (0.05) Statistical Group
pH 5.5 Aerobic 0.0000 0.003 a
pH 5.5 Anaerobic 0.0000 0.003 a
pH 6.5 Aerobic 0.0000 0.003 a
pH 6.5 Anaerobic 0.0000 0.003 a
pH 7.5 Aerobic 0.0000 0.003 a
pH 7.5 Anaerobic 0.0022 0.003 a
pH 8.5 Aerobic 0.0000 0.005 a
pH 8.5 Anaerobic 0.0011 0.005 a
pH Control Aerobic 0.0011 0.005 a
pH Control Anaerobic 0.0000 0.005 a

Note: pHBC values are expressed as pH units per day, calculated over the 10-day incubation period. LSDy.os denotes the least significant
difference at the 5% probability level for comparisons within each parameter, derived from the pH LSD values in Table 8 and scaled to a 10-day
incubation.

Table 13. pH Buffer Capacity (pHBC) of Soil 7 (Clay) under Aerobic and Anaerobic Conditions at Different
Target pH Levels during a 10-Day Laboratory Incubation

Treatment pHBC (pH unit/day) LSD (0.05) Statistical Group
pH 5.5 Aerobic 0.0000 0.002 a
pH 5.5 Anaerobic 0.0000 0.002 a
pH 6.5 Aerobic 0.0011 0.003 a
pH 6.5 Anaerobic 0.0011 0.003 a
pH 7.5 Aerobic 0.0000 0.002 a
pH 7.5 Anaerobic 0.0022 0.002 a
pH 8.5 Aerobic -0.0011 0.002 a
pH 8.5 Anaerobic 0.0000 0.001 a
pH Control Aerobic 0.0000 0.002 a
pH Control Anaerobic 0.0000 0.002 a

Note: pHBC values are expressed as pH units per day, calculated over the 10-day incubation period. LSDy.qs denotes the least significant
difference at the 5% probability level for comparisons within each parameter, derived from the pH LSD values in Table 9 and scaled to a 10-day
incubation.
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Figure 12. pH Buffer Capacity (pHBC) of Soil 1 (Sand) and Soil 7 (Clay) under Aerobic and Anaerobic
Conditions at Different Target pH Levels during a 10-Day Laboratory Incubation
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Table 14. DTPA-Extractable Iron (Fe) and Manganese (Mn) in Soil 1 (Sand) under Aerobic and Anaerobic
Conditions at Different Target pH Levels during a 10-Day Laboratory Incubation

Treatment Fe Mean = SE Mn Mean = SE Fe LSD, ., Mn LSD, .,
pH 5.5 Aerobic 4.65 +0.010 2.45+0.010 0.030 0.030
pH 5.5 Anaerobic 7.92+0.010 4.76 £ 0.010 0.030 0.030
pH 6.5 Aerobic 3.52£0.010 1.88+0.010 0.030 0.030
pH 6.5 Anaerobic 6.04 £ 0.010 3.46 £ 0.010 0.030 0.030
pH 7.5 Aerobic 2.41 £ 0.005 1.30+£0.005 0.015 0.015
pH 7.5 Anaerobic 3.85 +0.005 2.20 £ 0.005 0.015 0.015
pH 8.5 Aerobic 1.56 + 0.005 0.90 £ 0.005 0.015 0.015
pH 8.5 Anaerobic 2.42 +0.005 1.40 £ 0.005 0.015 0.015
Control Aerobic 1.32+0.005 0.80 £ 0.005 0.015 0.015
Control Anaerobic 1.84 £ 0.005 1.10 £ 0.005 0.015 0.015

Note: Values represent means + standard error (SE) of DTPA-extractable Fe and Mn concentrations (mg-kg™) measured over the 10-day
incubation period (n = 3). LSDy.¢s denotes the least significant difference at the 5% probability level for comparisons within each parameter,
calculated from the standard errors and sample size.

Fe’* (mg-kg™')

Mn?* (mg-kg~?)

Soil 1 - DTPA-Fe concentrations

Soil 1 - DTPA-Mn concentrations

Redox: F=62968.7, p<0.0001
pH: F=41272.4, p<0.0001
Interaction: F=5697.4, p<0.0001

Figure 13. DTPA-Extractable Iron (Fe) and Manganese (Mn) in Soil 1 (Sand) under Aerobic and Anaerobic
Conditions at Different Target pH Levels during a 10-Day Laboratory Incubation
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Figure 14. Three-Dimensional Visualization of DTPA-Extractable Fe and Mn Variation in Soil 1 (Sand) across
Target pH Levels under Aerobic and Anaerobic Conditions during a 10-Day Laboratory Incubation

Table 15. DTPA-Extractable Iron (Fe) and Manganese (Mn) in Soil 7 (Clay) under Aerobic and Anaerobic
Conditions at Different Target pH Levels during a 10-Day Laboratory Incubation

Treatment Fe Mean = SE Mn Mean £+ SE Fe LSDg.g5 Mn LSDy.o5
pH 5.5 Aerobic 8.34+0.02 5.20+0.00 0.060 0.020
pH 5.5 Anaerobic 12.08 + 0.02 8.10+0.00 0.060 0.020
pH 6.5 Aerobic 6.66 £ 0.01 4.10+0.00 0.030 0.015
pH 6.5 Anaerobic 9.88 +0.01 6.40 £ 0.00 0.030 0.015
pH 7.5 Aerobic 5.00 £ 0.00 3.10+0.00 0.015 0.015
pH 7.5 Anaerobic 7.26 £0.01 4,90 +0.00 0.030 0.015
pH 8.5 Aerobic 3.34+0.01 2.40+£0.00 0.030 0.015
pH 8.5 Anaerobic 4.80+0.00 3.50+0.00 0.015 0.015
Control Aerobic 2.90+0.00 2.00+0.00 0.015 0.015
Control Anaerobic 3.60 +0.00 2.80+0.00 0.015 0.015

Note: Values represent means + standard error (SE) of DTPA-extractable Fe and Mn concentrations (mg-kg™) measured over the 10-day
incubation period (n = 3). LSD,.os denotes the least significant difference at the 5% probability level for comparisons within each parameter,
calculated from the standard errors and sample size.
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Figure 15. DTPA-Extractable Iron (Fe) and Manganese (Mn) in Soil 7 (Clay) under Aerobic and Anaerobic Conditions at
Different Target pH Levels during a 10-Day Laboratory Incubation
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Figure 16. Three-Dimensional Visualization of DTPA-Extractable Fe and Mn Variation in Soil 7 (Clay) across
Target pH Levels under Aerobic and Anaerobic Conditions during a 10-Day Laboratory Incubation
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Figure 17. Coefficient of Determination (R?) between Redox Potential (Eh) and DTPA-Extractable Fe and Mn
in Soil 1 (Sand) under Aerobic and Anaerobic Conditions
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Figure 18. Coefficient of Determination (R?) between Redox Potential (Eh) and DTPA-Extractable Fe and Mn
in Soil 7 (Clay) under Aerobic and Anaerobic Conditions
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Figure 19. Coefficient of Determination (R2) between Target pH and DTPA-Extractable Fe and Mn in Soil 1

(Sand) and Soil 7 (Clay) under Aerobic and Anaerobic Conditions

Table 16. Summary of Key Results for Soil 1 (Sand) and Soil 7 (Clay) from the 10-Day Laboratory Incubation

Parameter Soil 1 (mg-kg™)

Soil 7 (mg-kg™)

_ . 7.92+0.01 (pH5.5
2

Highest Fe2* value Anaerobic)
Lowest Fe2* value

Relative Fe?* increase from control (max) ~ 6.0 times increase

4.76 £ 0.01 (pH 5.5

. "
Highest Mn?* value Anaerobic)
Lowest Mn2* value

Relative Mn2* increase from control (max) ~ 5.95 times increase

1.32 £ 0.00 (Control Aerobic)

0.80 £ 0.00 (Control Aerobic)

12.08 £ 0.02 (pH 5.5 Anaerobic)

2.90 £ 0.00 (Control Aerabic)

~ 4.2 times increase
8.10 £ 0.00 (pH 5.5 Anaerobic)

2.00 £ 0.00 (Control Aerabic)

=~ 4.05 times increase

Note: Summary of maximum and minimum values of DTPA-extractable Fe2* and Mn?*, relative increases from control treatments, and

corresponding pH and redox conditions for each soil. Values are means + standard error (SE).

Table 17. Rankings of Redox Buffer Capacity (RBC) for Soil 1 (Sand) and Soil 7 (Clay) under Different pH

and Redox Conditions during a 10-Day Laboratory Incubation

Treatment Soil 1 RBC (mV/day) Soil 7 RBC (mV/day)
Highest RBC 0.11 (pH 5.5 Aerobic, Control Anaerobic) 0.56 (pH 8.5 Aerobic)
Lowest RBC -0.22 (pH 7.5 Anaerobic) -0.22 (pH 7.5 Anaerobic)

Notable Positive RBC 0 (Several treatments)

0.22 (pH 6.5 & 7.5 Aerobic)

Note: Highest and lowest RBC values and notable positive RBC values are summarized for each soil type. RBC values are expressed as the rate of

change in redox potential (mV day™).
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Table 18. Rankings of pH Buffer Capacity (pHBC) for Soil 1 (Sand) and Soil 7 (Clay) under Different pH and
Redox Conditions during a 10-Day Laboratory Incubation

Treatment Soil 1 pHBC (pH unit/day) Soil 7 pHBC (pH unit/day)
Highest pHBC 0.0022 (pH 7.5 Anaerabic) 0.0022 (pH 7.5 Anaerobic)
Lowest pHBC 0 (Multiple treatments) -0.0011 (pH 8.5 Aerobic)

Majority Near zero Near zero

Note: Highest and lowest pHBC values and general trends are summarized for each soil type. pHBC values are expressed as pH units per day.

5. Integrated Controls of Fe and Mn Availability in
Calcareous and Reclaimed Soils

Results across field monitoring, laboratory incubations,
and multivariate models points to three primary
controls:

1. Alkalinity and salinity set a low baseline for
Fe/Mn solubility (high pH, active CaCOs, elevated
EC).

2. Soil attributes (texture, OM, CEC) affect O,
diffusion and ligand supply, thereby controlling
reductive dissolution and chelation.

3. lrrigation pulses impose brief reducing conditions
that transiently elevate DTPA-Fe and DTPA-Mn
(Table 6B; Table 7).

Conceptual model. Multivariate response surfaces and
path analysis indicate a two-tier regulation of Fe/Mn
availability. At the base tier, alkaline pH and reactive
CaCO; depress solubility, and elevated EC further
constrains uptake (Grattan & Grieve, 1999 and Sparks
et al., 2023). Superimposed on this baseline, wetting-
driven drops in O, and rises in CO,—most pronounced
in soils with higher OM and CEC—create micro-
reducing niches and increase ligand supply, transiently
elevating DTPA-Fe and DTPA-Mn. This framework
reconciles the “total vs available” contrast and seasonal
behavior: total Fe/Mn are largely soil-type constants,
whereas DTPA-extractable pools are dynamic and track
plant nutrition.

Seasonal dynamics. Correlation/regression results
(Table 7) show DTPA-Fe/Mn negatively associated
with pH, EC, and CaCOg3, and positively associated with
moisture, CO,, and OM (and inversely with O,). The
full models explain R? = 0.93 (Fe) and 0.91 (Mn),
clarifying why post-irrigation wetting shifts DTPA
values even when totals do not. Immediately after
irrigation, moisture and CO, rise while O, falls,
generating suboxic/anoxic microsites; DTPA-Fe/Mn
increase accordingly. Because O, and CO, respond on
hourly—daily scales, they delineate mobilization
windows more reliably than spot Pt—Eh readings, which
integrate multiple redox couples and can drift.

Laboratory validation. Incubations that hold pH (5.5-
8.5) constant and switch only electron-acceptor status

corroborate the causal ordering: Eh shifts under aerobic
< anaerobic far exceed those from pH adjustments
alone, and the magnitude differs with texture-controlled
gas diffusion and water retention, matching seasonal
0,/CO, patterns.

Management implications are clear:

o Apply Fe(lll)-EDDHA under fertigation or soil
application for persistent Fe deficiency, and foliar Mn
(MnSQO, or Mn-EDTA) when symptoms arise.

e Manage salinity and irrigation to keep EC low and
exploit short-term reducing pulses without prolonged
anoxia.

e Improve OM and CEC with compost/humics to
stabilize mobilized Fe?*/Mn2*.

e Time applications near post-irrigation windows
when mobilization peaks.

e Monitor O,/CO, and DTPA-Fe/Mn, which are
more reliable than isolated Pt—Eh readings.

CONCLUSION

This study demonstrated that the solubility and
bioavailability of Fe and Mn in the calcareous soils of
the Farafra Oasis are governed by the interplay of
carbonate alkalinity and redox—pH dynamics.The
solubility and availability of iron (Fe) and manganese
(Mn) in the calcareous soils of the Farafra Oasis are
primarily controlled by carbonate alkalinity and redox-
pH dynamics. Total Fe and Mn concentrations are not
good indicators of plant availability.

e Factors Increasing Availability: Finer-textured
soils rich in clay and organic matter (OM) have a
higher cation exchange capacity (CEC) and lower
redox potential, promoting the dissolution of Fe and
Mn into plant-available forms (Fe?* and Mn?*). Short-
term irrigation also temporarily boosts Fe and Mn
availability by creating reducing conditions.

e Factors Decreasing Availability: Coarse-textured,
carbonate-rich soils have high pH and redox potential
(Eh), severely limiting the availability of these
micronutrients. High pH and calcium carbonate
(CaCO03) buffering consistently suppress soluble Fe
and Mn.
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e Management Implications: To improve crop
productivity, an integrated approach is needed.

A. Additions: Use organic matter like compost to
promote chelation and create reducing conditions.

B. Fe Deficiency: Apply Fe-EDDHA, which is stable
at high pH.

C. Mn Deficiency: Use foliar sprays of MnSOs or
Mn-EDTA.

D. Irrigation: Optimize irrigation to maintain soil
moisture without causing prolonged waterlogging.

In essence, Fe and Mn nutrition in these soils is
limited by their dynamic partitioning between insoluble
and bioavailable pools, a process governed by
alkalinity, salinity, redox buffering, and organic matter.
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