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STUDY ON P -TYPE ILC FOR HILFER-TYPE

FRACTIONAL-ORDER QUATERNION-VALUED SYSTEMS WITH

INITIAL STATE DEVIATION WITH APPLICATION IN SOFT

ROBOTIC ACTUATORS

S. SUNMITHA, D. VIVEK, RABHA W. IBRAHIM

Abstract. This paper examines a P -type iterative learning control law for

linear quaternion-valued dierential equations with respected to Hilfer frac-

tional order. Convergence analysis is studied for both open-loop and closed-

loop schemes, incorporating initial state deviations and random disturbances

within the (1 − γ∗,Λ)-norm concept. This study employs the properties of

Mitta-Leer functions to derive theoretical results, which are further validated

through numerical examples that showcase the eectiveness of the proposed

approach, with application in soft robotic actuators.

1. Introduction

Quaternions generalize complex numbers to four dimensions and are widely used
for representing three-dimensional rotations and orientations. Quaternion-valued
dierential equations (QV-DEs) extend traditional dierential equations by incor-
porating quaternions, making them highly eective for modeling systems involving
both rotational and translational dynamics. These equations describe the relation-
ship between changing quantities, typically with respect to time or space, and are
particularly useful in applications such as robotics [24], aerospace engineering [32],
and physics [5, 13], where objects experience simultaneous rotations and transla-
tions. Quaternions provide a concise and sophisticated concept for representing
rotational motion and orientation changes. However, their algebraic complexity
and the interactions between their components often require specialized mathe-
matical techniques and computational tools for accurate solutions. Despite these
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challenges, QV-DEs remain indispensable for precisely simulating real-world 3D
rotational dynamics across various scientic and engineering elds.

Over the past few years, there has been notable progress in the core theory of
QV-DEs. Kou and Xia [14] studied solutions to linear QV-DEs and proposed two
novel methods for determining the fundamental matrix, along with introducing the
Wronskian and Liouville formula in the context of quaternions. Furthering this
work, Kou et al. [15] proposed a technique for determining the fundamental matrix
in linear systems characterized by multiple eigenvalues. Xia et al. [39] contributed
to the eld by deriving stability results specically for quaternion periodic systems.
They also formulated the variation of constants within the context of quaternions.
Additionally, they developed an algorithm aimed at solving linear non-homogeneous
QV-DEs. Additionally, Suo et al. [30] conducted an investigation into the solutions
of linear quaternion-valued impulsive dierential equations (QV-IDEs), addressing
scenarios in both complex and quaternion settings.

Researchers have further explored periodic solutions for both homogeneous and
non-homogeneous QV-IDEs. Chen et al. [3] applied Laplace transforms to establish
the Hyers-Ulam(H-U) stability of linear QV-DEs and developed a novel approach
to analyzing the controllability and observability of proposed linear systems. Under
the permutation matrix hypothesis, Fu et al. [8] derived solutions for homogeneous
and non-homogeneous linear QV-DEs using delayed quaternion matrix exponentials
and the method of variation of constants. Feckan et al.[7] investigated the H-U
stability of linear recurrence equations with constant coecients in the quaternion
concepts, whereas Lv et al.[23] used Fourier transforms to study the H-U stability
of linear QV-DEs. Additionally, Huang et al. [11] utilized the second Lyapunov
method to analyze the stability of QV-DEs, and Zahid et al. [43] computed the
exponential matrix of QV-DEs.

Iterative learning control, or ILC, was rst put forth by Uchiyama in 1978, with
the original work published in Japanese. ILC renes tracking performance by using
past control experiences, making it a valuable approach both theoretically and
experimentally. While signicant research has focused on P -type and D-type ILC
for integer-order ordinary dierential equations [1, 2, 4, 10, 20, 25, 31, 38, 41, 42, 44],
including the linearization theorem of Fenner and Pinto [40] and various aspects
of local integrability [28], studies on ILC for fractional-order dierential equations
(FODEs) remain relatively scarce [16, 17, 18, 19, 21]. Notably, for nonlinear FODEs
[16] and non-instantaneous impulsive FODEs [21], researchers have established the
robust convergence of tracking errors concerning initial positioning errors under
the P -type ILC scheme. Meanwhile, D-type ILC has been investigated for linear
time-delay FODEs [17]. D. Vivek et al.[34] were the rst to study ILC for Hilfer-
type QV-IDEs. Inspired by their research, we aim to examine P -type ILC while
considering the eects of initial state deviations and random perturbations in the
sense of Hilfer-type fractional-order quaternion-valued (QV) systems, formulated
as follows:


Dα,βq(t) = Aq(t) +Bu(t), t ∈ J = [0, b],
RLI1−γ∗

q(0) = q0.
(1)

To study the P -type ILC updating law, the output function considered by

r(t) = Cq(t), (2)
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where Dα,β denotes the Hilfer fractional derivative (HFD)of order α, and type β
(Ref. [35], Denition. 2.3, Remark. 2.4, Page No. 851). Here α ∈ (0, 1), β ∈ [0, 1],

γ∗ = α+ β − (αβ). A, B, C ∈ Hn×n, u(t) is a control vector. RLI1−γ∗
denotes the

Riemann-Liouville (R-L) fractional integral.
According to (Ref. [27], Theorem. 1, Page No. 50, Theorem. 7, Page No. 59)

and (Ref. [9], Lemma. 2.12, Page No. 4), the system (1) is equivalent to the
integral equation given by

q(t) = tγ
∗−1E⋆α, γ∗(Atα)q0 +

 t

0

(t− s)α−1E⋆α,α(A(t− s)α)Bu(s)ds, (3)

where E⋆
α,γ(·) denotes the Mittag-Leer function E⋆

α,β(ξ) =
∞

n=0
ξn

Γ(αξ+β) .

From the initial condition

q0 =RL I1−γ∗
q(0) =

1

γ∗(1− γ∗)

 t

0

(t− s)−γ∗
q(s)ds. (4)

Thus, we substitute this into the mild solution Eq.(3)

q(t) = tγ
∗−1E⋆α, γ∗(Atα)

 1

γ∗(1− γ∗)

 t

0

(t− s)−γ∗
q(s)ds



+

 t

0

(t− s)α−1E⋆α,α(A(t− s)α)Bu(s)ds.

To obtain a solution purely in terms of q(0), we approximate q(s) in the integral
its Taylor series expansion (Ref. [33], Section. 1, Page No. 1) around s = 0,

q(s) = q(0) +O(sα).

Substituting this into the integral

q0 ≈ q(0)

γ∗(1− γ∗)

 t

0

(t− s)−γ∗
ds.

Evaluate the Beta function integral, we get

q0 =
q(0)

γ∗(1− γ∗)
t1−γ∗

1− γ∗ .

Rearranging for q(0),

q(0) = q0
γ∗(1− γ∗)(1− γ∗)

t1−γ∗ .

Then, we have

q0 =
q(0)t1−γ∗

γ∗(2− γ∗)
.

Substituting into the mild solution Eq.(3), we get

q(t) = tγ
∗−1E⋆α, γ∗(Atα)

q(0)t1−γ∗

γ∗(2− γ∗)
+

 t

0

(t− s)α−1E⋆α,α(A(t− s)α)Bu(s)ds

This simplies

q(t) =
E⋆α, γ∗(Atα)
γ∗(2− γ∗)

q(0) +

 t

0

(t− s)α−1E⋆α,α(A(t− s)α)Bu(s)ds. (5)
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2. Fundamental concepts

We denote the quaternion q = q0+ q1i+ q2j+ q12k ∈ H, where q0, q1, q2, q12 ∈ R
and i, j, k are imaginary units satisfy the multiplication table formed by





i2 = j2 = k2 = −1

ij = −ji = k

ki = −ik = j.

If q = q0 + q1i+ q2j + q12k, then its conjugate is q = q0 − q1i− q2j − q12k and
norm q = √

q̄q =
√
qq̄ =


q20 + q21 + q22 + q23 .

For any p, h ∈ H, we have q̄h = h̄q. The norm of a quaternion is:

∥q∥ =


a2 + b2 + c2 + d2,

and a unit quaternion satises ∥q∥ = 1. [ Rotating a Vector Using a Quaternion]
Let a 3D vector v⃗ = (1, 0, 0) be rotated by θ = 90◦ around the z-axis. The axis
of rotation is u⃗ = (0, 0, 1), a unit vector. The unit quaternion representing this
rotation is:

q = cos


θ

2


+ sin


θ

2


(0i+ 0j + 1k) = cos

π
4


+ sin

π
4


k =

√
2

2
+

√
2

2
k

The vector v⃗ is treated as a pure quaternion: v = 0 + 1i + 0j + 0k = i. Compute
the rotated vector using v′ = qvq−1 The inverse of a unit quaternion q = a + v⃗ is
q−1 = a− v⃗ (conjugate). A calculation implies

q =

√
2

2
+

√
2

2
k, q−1 =

√
2

2
−

√
2

2
k, v = i

Using quaternion multiplication:

v′ = q · i · q−1 =

√
2

2
+

√
2

2
k


i

√
2

2
−

√
2

2
k



After simplication (using ki = −j, k2 = −1), we get:

v′ = j

Thus, the rotated vector is v⃗′ = (0, 1, 0), which conrms a 90-degree rotation about
the z-axis. Fig.1 illustrates the rotation of a 3D vector using quaternion algebra.
The original vector (blue) points along the x-axis. After applying a quaternion-
based rotation by 90◦ about the z-axis, the resulting vector (red) correctly aligns
with the positive y-axis. This demonstrates one of the key advantages of quater-
nions: they provide a compact and robust representation of 3D rotations without
the risk of gimbal lock, unlike Euler angles. The rotation is smooth, non-singular,
and easily interpolated for animation or control systems.

Consider a, b ∈ Hn,

a = (a1, a2, . . . , an)
T

, b = (b1, b2, . . . , bn)
T , ai, bi ∈ H,

where aT is the transpose of a. Operations are given as

a+ b = (a1 + b1, a2 + b2, . . . , an + bn)
T ,

aκ = (a1κ, a2κ, . . . , anκ)
T ̸= (κa1,κa2, . . . ,κan)

T = κa, κ ∈ H,

aµ = (a1µ, a2µ, . . . , anµ)
T ̸= (µa1, µa2, . . . , µan)

T = µa, µ ∈ R,
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B(J,H) represents the Banach space of all continuous functions (CFs) from time
interval J into R with the norm

q0k(t) = sup
t∈J

q0k(t), q1k(t) = sup
t∈J

q1k(t),

q2k(t) = sup
t∈J

q2k(t), q12k (t) = sup
t∈J

q12k (t),

where q0k(t), q
1
k(t), q

2
k(t), q

12
k (t) is the kth component of q0(t), q1(t), q2(t), q12(t) ∈ Rn

respectively.
The Banach space of all CFs from interval J into Rn with norm is indicated by

B(J,Rn) (Ref. [45], Section. 3, Page No. 599):

q0(t)JR =
 n

k=1

q0k(t)2
 1

2

, q1(t)JR =
 n

k=1

q1k(t)2
 1

2

,

q2(t)JR =
 n

k=1

q2k(t)2
 1

2

, q12(t)JR =
 n

k=1

q12k (t)2
 1

2

.

The space of all QV functions dened by B(J,Hn) is indicated by

B(J,Hn) = q(t)qk(t) = q0k(t) + q1k(t)i+ q2k(t)j + q12k (t)k :

q0k(t), q
1
k(t), q

2
k(t), q

12
k (t) ∈ B(J,R),

for k = 1, 2, . . . , n, qk(t) denotes the kth component of q(t). For more details on
QV space, (See. [29], Section. 2, Page No. 4-6).

We apply some of the weighted space concepts of the CFs from the articles for
solving our problem (Ref. [35], Section. 2, Page No. 851 ) and (Ref [6]. Section.
2, Page No.2 ).

Let B(J,Hn) denote the Banach space of vector-valued CFs from the interval
J to Hn, equipped with the ∞-norm ∥q∥∞ = supt∈J ∥q(t)∥ or the weighted norm
∥q∥Λ = supt∈J e−Λt∥q(t)∥.

We present the set

B1−γ∗(J,H) = q ∈ B(J,H) : t1−γ∗
q(t) ∈ B(J,H),

and dene (1 − γ∗,Λ)- weighted norm q1−γ∗,Λ = supt∈J t1−γ∗
e−Λtq(t), γ∗ =

α + β − αβ, α ∈ (0, 1) and β ∈ [0, 1]. Here, (B1−γ∗(J,H),  · 1−γ∗,Λ) is also being
a Banach space, one can also refer to (Ref. [9], Section. 2, Page No. 2).

Several basic ideas are used to establish our main result: the R-L fractional
integral and derivative (Ref. [26], Section. 2.3, Pge No. 62); the Caputo fractional
derivative (Ref. [26], Eq. 2.142, Page No. 80); the HFD (Ref. [35], Denition. 2.3,
Remark. 2.4, Page No. 851); the Mittag-Leer functions (Ref. [27], Denition. 6,
Lemma. 3, Page No. 48). A detailed discussion is omitted here, as it has already
been comprehensively addressed in the literature. Readers are recommended to
refer to the cited research publications for further deeper details.

Remark 1. (Ref. [36], Lemma. 2, Page No. 1862) and (Ref. [37], Lemma. 2.7,
Page No. 234) Let 0 < α < 2 and β > 0 be arbitrary. The functions E⋆α(·),
E⋆α,α(·) and E⋆α,β(·) are non-negative, and for all z < 0,

E⋆α(z) := E⋆α, 1(z) ≤ 1, E⋆α,α(z) ≤ 1

γ∗(α)
, E⋆α,β(z) ≤ 1

γ∗(β)
.
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3. Convergence of ILC

This section examines the Hilfer-type fractional-order QV system


Dα,βqn(t) = Aqn(t) +Bun(t), t ∈ J := [0, b], n = 0, 1, 2 . . . ,

rn(t) = Cqn(t),
(6)

for equation (6), the following P -type open and closed-loop ILC law is implemented:

un+1(t) = un(t) + L1en(t) + L2en+1(t), (7)

where en = rd(t) − rk(n), rd(t) are the provided functions, and L1, L2 are the
parameters that will be specied. The starting point for every iterative learning
process is

qn+1(0) = qn(0) +BL1en(t). (8)

We enumerate the following assumptions:
Assumption (I): 1− Λ−αC BL2 < 0,

Assumption (II):
I−CE⋆α,γ∗(Atα)BL1

γ∗(2−γ∗)
+Λ−α||C|| ||L1B||

1−Λ−α||C|| ||BL2|| < 1.

Assumption (III): wn1−γ∗,Λ ≤ ϵ1, vn1−γ∗,Λ ≤ ϵ2 for some positive constants
ϵ1, ϵ2.
Assumption (IV):

ρ1 =

I + CE⋆α, γ∗(Atα)BL2

γ∗(2− γ∗)


− Λ−αC BL2 > 0,

ρ2 =

I − CE⋆α, γ∗(Atα)BL1

γ∗(2− γ∗)


+ Λ−αC BL1.

Theorem 3.1. If the initial state of each iterative learning satises Eq. (8),
limn→∞ enΛ = 0, t ∈ J , then let rn(·) be the output of Eq. (6) using the open
and closed-loop P -type ILC law (6).

Proof. To keep it concise, we set Pα(t, s) := (t− s)α−1.

qn+1(t) =
E⋆α, γ∗(Atα)
γ∗(2− γ∗)

qn+1(0) +

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)Buk+1(s)ds

=
E⋆α, γ∗(Atα)
γ∗(2− γ∗)

[qn(0) +BL1en(t)]

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)B[un(s) + L1en(s) + L2en+1(s)]ds

= qn(t) +
E⋆α, γ∗(Atα)
γ∗(2− γ∗)

BL1en(t) +

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL1en(s)ds

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL2en+1(s)ds.
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Thus, the iteration error (n+ 1)th is

en+1(t) = rd(t)− Cqn+1(t)

= rd(t)− C

qn(t) +

E⋆α, γ∗(Atα)
γ∗(2− γ∗)

BL1en(t) +

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL1en(s)ds

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL2en+1(s)ds


= en(t)− C
E⋆α, γ∗(Atα)

γ∗(2− γ∗)
BL1en(t) +

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL1en(s)ds

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL2en+1(s)ds


=

I − CE⋆α, γ∗(Atα)

γ∗(2− γ∗)
BL1


en(t)− C

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL1en(s)ds

− C

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL2en+1(s)ds, (9)

take the norm of Eq.(9)

en+1(t) ≤

I − CE⋆α, γ∗(Atα)BL1

γ∗(2− γ∗)


 en(t)

+
C
γ∗(α)

 t

0

Pα(t, s)BL1 en(s)ds

+
C
γ∗(α)

 t

0

Pα(t, s)BL2 en+1(s)ds.

Then,

t1−γ∗ en+1(t) ≤ t1−γ∗

I − CE⋆α, γ∗(Atα)BL1

γ∗(2− γ∗)


 en(t)

+
t1−γ∗ C
γ∗(α)

 t

0

Pα(t, s)BL1 en(s)ds

+
t1−γ∗ C
γ∗(α)

 t

0

Pα(t, s)BL2 en+1(s)ds. (10)
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Take the (1− γ∗,Λ) norm of Eq.(10)

en+11−γ∗,Λ ≤

I − CE⋆α, γ∗(Atα)BL1

γ∗(2− γ∗)


 en1−γ∗,Λ

+ sup
t∈J

e−Λt CBL1
γ∗(α)

 t

0

Pα(t, s)s
1−γ∗ en(s)ds

+ sup
t∈J

e−Λt CBL2
γ∗(α)

 t

0

Pα(t, s)s
1−γ∗ en+1(s)ds

≤

I − CE⋆α, γ∗(Atα)BL1

γ∗(2− γ∗)


 en1−γ∗,Λ

+ sup
t∈J

e−Λt CBL1
γ∗(α)

 t

0

Pα(t, s)e
Λsds en1−γ∗,Λ

+ sup
t∈J

e−Λt CBL2
γ∗(α)

 t

0

Pα(t, s)e
Λsds en+11−γ∗,Λ. (11)

Keep in mind that the fact,
 t

0

Pα(t, s)e
Λsds =

 t

0

wα−1eΛ(1−w)dw = eΛt

 t

0

wα−1e−Λwdw

=
eΛt

Λα

 t

0

να−1e−νdν ≤ eΛt

Λα
γ∗(α),

next inequality (11), become

en+11−γ∗,Λ ≤ I − CE⋆α, γ∗(Atα)BL1

γ∗(2− γ∗)
 en1−γ∗,Λ

+
C BL1

Λα
en1−γ∗,Λ +

C BL2
Λα

en+11−γ∗,Λ,

which implies

en+11−γ∗,Λ − C BL2
Λα

en+11−γ∗,Λ ≤

I − CE⋆α, γ∗(Atα)BL1

γ∗(2− γ∗)


E⋆n1−γ∗,Λ

+
C BL1

Λα
en1−γ∗,Λ


1− Λ−αC BL2


en+11−γ∗,Λ ≤


I − CE⋆α, γ∗(Atα)BL1

γ∗(2− γ∗)




+ Λ−αC L1B

en1−γ∗,Λ.

If 1− Λ−αC BL2 > 0,

en+11−γ∗,Λ ≤

I − CE⋆α,γ∗(Atα)BL1

γ∗(2−γ∗)

+ Λ−αC L1B


1− Λ−αC BL2
en1−γ∗,Λ, (12)

let

I−CE⋆α,γ∗(Atα)BL1
γ∗(2−γ∗)

+Λ−α||C|| ||L1B||


1−Λ−α||C|| ||BL2|| < 1, inequality (12) is contraction map-

ping, and it follows from the contraction mapping that limn→∞ en1−γ∗,Λ = 0, t ∈
J . This completes the proof. □
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Next, we analyzes the P -type ILC for QV system with random disturbance via
HFD


Dα,βqn(t) = Aqn(t) +Bun(t) + wn(t), t ∈ J := [0, b], n = 0, 1, 2, . . . ,

rn(t) = Cqn(t) + vn(t),
(13)

where wn(t), vn(t) are random disturbance.
For Eq.(13), We opt for the following open and closed loop P -type ILC law:

un+1(t) = un(t) + L1en(t) + L2en+1(t) (14)

where L1, L2 are the parameters which will be derived, and en = rd(t) − rn(t), rd
are the values that are provided functions.

Assume that the starting condition for each iteration of learning is

qn+1(0) = qn(0) +BL1en(t) +BL2en+1(t), (15)

where the parameters that will be dened are L1, L2.

Theorem 3.2. Assume that (III) and (IV) are valid. Let rn(·) be the result of
Eq.(3). Assuming that ϵ1 → 0 and ϵ2 → 0, ρ1 > ρ2, the open and closed-loop
P -type ILC Eq.(14) guarantees that limn→∞ en1−γ∗,Λ = 0, t ∈ J .

Proof. According to Eq.(3) and assumptions (II), (III), we know

qn+1(t) =
E⋆α, γ∗(Atα)
γ∗(2− γ∗)

qn+1(0) +

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)(Bun+1(s) + wn+1(s))ds

=
E⋆α, γ∗(Atα)
γ∗(2− γ∗)


qn(0) +BL1en(t) +BL2en+1(t)



+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)(Bun(s) + L1en(s) + L2en+1(s))ds

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)wn+1(s)ds

= qn(t) +
E⋆α, γ∗(Atα)
γ∗(2− γ∗)

BL1en(t) +
E⋆α, γ∗(Atα)
γ∗(2− γ∗)

BL2en+1(t)

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL1en(s)ds

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL2en+1(s)ds

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)wn+1(s)ds.
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The (n+ 1)th iterative error is

en+1(t) = rd(t)− Cqn+1(t)− vn+1(t)

= rd(t)− C

qn(t) +

E⋆α, γ∗(Atα)
γ∗(2− γ∗)

BL1en(t) +
E⋆α, γ∗(Atα)
γ∗(2− γ∗)

BL2en+1(t)

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL1en(s)ds

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL2en+1(s)ds

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)wn+1(s)ds

− vn+1(t)

= en(t)− C
E⋆α, γ∗(Atα)

γ∗(2− γ∗)
BL1en(t) +

E⋆α, γ∗(Atα)
γ∗(2− γ∗)

BL2en+1(t)

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL1en(s)ds

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL2en+1(s)ds

+

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)wn+1(s)ds

− vn+1(t)

=

I − CE⋆α, γ∗(Atα)BL1

γ∗(2− γ∗)


en(t)− C

E⋆α, γ∗(Atα)
γ∗(2− γ∗)

BL1en+1(t)

− C

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL1en(s)ds

− C

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)BL2en+1(s)ds

− C

 t

0

Pα(t, s)E⋆α,α(A(t− s)α)wn+1(s)ds− vn+1(t). (16)

By taking the norm of Eq. (16), we can easily obtain


I + CE⋆α, γ∗(Atα)BL2

γ∗(2− γ∗)


en+1(t) ≤


I − CE⋆α, γ∗(Atα)BL1

γ∗(2− γ∗)


en(t)

+
C
γ∗(α)

 t

0

Pα(t, s)BL1 en(s)ds

+
C
γ∗(α)

 t

0

Pα(t, s)BL2 en+1(s)ds

+
C
γ∗(α)

 t

0

Pα(t, s)wn+1(s)ds+ vn+1(t).
(17)



JFCA-2025/16(2) STUDY ON P -TYPE ILC FOR HILFER-TYPE 11

Using the (1− γ∗,Λ)-norm, we get

I + CE⋆α, γ∗(Atα)BL2

γ∗(2− γ∗)


en+11−γ∗,Λ

≤

I − CE⋆α, γ∗(Atα)BL1

γ∗(2− γ∗)


 en1−γ∗,Λ

+ sup
t∈J

e−Λt CBL1
γ∗(α)

 t

0

Pα(t, s)e
Λsds en1−γ∗,Λ

+ sup
t∈J

e−Λt CBL2
γ∗(α)

 t

0

Pα(t, s)e
Λsds en+11−γ∗,Λ

+ sup
t∈J

e−Λt C
γ∗(α)

 t

0

Pα(t, s)e
Λsds wn+11−γ∗,Λ

+ sup
t∈J

e−Λtvn+1(t)t1−γ∗

≤

I − CE⋆α, γ∗(Atα)BL1

γ∗(2− γ∗)


 en1−γ∗,Λ

+
CBL1

Λα
en1−γ∗,Λ +

CBL2
Λα

en+11−γ∗,Λ

+
C
Λα

wn+11−γ∗,Λ + vn+11−γ∗,Λ,

This simplies

I +

CE⋆α, γ∗(Atα)BL2

γ∗(2− γ∗)
− Λ−αC BL2


en+11−γ∗,Λ

≤

I − CE⋆α, γ∗(Atα)BL1

γ∗(2− γ∗)


+ C BL1


Λ−αen1−γ∗,Λ

+ Λ−αC wn+11−γ∗,Λ + vn+11−γ∗,Λ.

According to assumptions (III) and (IV), thus ϵ = Λ−αCϵ1 + ϵ2

ρ1en+11−γ∗,Λ ≤ ρ2en1−γ∗,Λ + ϵ. (18)

This suggests that

en1−γ∗,Λ ≤ ϵ

ρ1 − ρ2
,

if ϵ1 → 0 and ϵ2 → 0, then limn→∞ en1−γ∗,Λ → 0, t ∈ J , and the proof is
concluded. □

4. Applications in Soft robotic actuators

Following the approach in (Ref.[12], Example 3.6, Page No. 1307 and Ref. [29],
Section 6, Page No. 30), we examine the same example in the sense of HFD.
Specically, we analyze the P -type ILC while incorporating the eects of initial
state error. A P-type Iterative Learning Control (ILC) law is a simple and widely
used ILC strategy that applies a proportional (P) correction to the error from
previous iterations.
Key Properties:

• Convergence: If the learning gain is properly chosen, the system will grad-
ually reduce tracking errors across iterations.



12 S. SUNMITHA, D. VIVEK, RABHA W. IBRAHIM JFCA-2025/16(2)

• Simplicity: The form of ILC is straightforward to implement.
Limitations: Convergence speed and robustness depend on the choice of

the parameters, and it may struggle with high-frequency noise or modeling
errors.

It is widely used in repetitive or batch processes where the same task is performed
multiple times. It is particularly benecial when precise trajectory tracking or er-
ror minimization is required. In contrast to conventional rigid robots, soft robotic
actuators use malleable, exible materials (such as silicone, elastomers, and pneu-
matic/hydraulic systems) to enable safe and agile object contact. However, exact
control might be dicult because of their very exible and nonlinear character.
During repeated tasks, P-type ILC helps them become more accurate in their mo-
tion.

For the system (13), we set α = 0.8, β = 0.5, and choose γ∗ = 0.9 with J := [0, 1].
Consider the following QV parameters:

A = 1 + i+ j + k, B = 2 + 2i− j + k,

C = 1, q0 = 3 + i− 2j + k.

The control output is given by u(t) = (1− i+ j + 2k)et under the P -type ILC law
with an initial state error:

un+1(t) = un(t) + L1en(t) + L2en+1(t),

qn+1(t) = qn(0) +BL1en(t),
(19)

where L1 = 1, L2 = 4.
The reference trajectory is dened as

rd(t) =


t−0.1


3+i−2j+k
γ∗(0.9) + (1+5i+j+k)t0.8

γ∗(1.7)



1
γ∗(0.8) (3− 3j − 2jk + ji+ ki− kj + 6k)t0.8et.

According to (Ref. [29], Example 6.5, Page No. 37-39), we use the fundamental
relations jk = i (see Section 2), we rewrite rd(t) as follows:

• The real part: 3t−0.1

γ∗(0.9) +
t0.7

γ∗(1.7) +
3t0.8et

γ∗(0.8) .

• The coecient of i: t−0.1

γ∗(0.9) +
5t0.7

γ∗(1.7) +
3t0.8et

γ∗(0.8) .

• The coecient of j: −2t−0.1

γ∗(0.9) + t0.7

γ∗(1.7) − 2t0.8et

γ∗(0.8) .

• The coecient of k: t−0.1

γ∗(0.9) +
t0.7

γ∗(1.7) +
5t0.8et

γ∗(0.8) .

Using Assumption (I), we compute

∥BL2∥ ≈ 12.648.

Selecting Λ = 2, we obtain Λ−α ∥c∥ ∥BL2∥ ≈ 7.263 > 1. Thus, Assumption (I)
holds.

From Assumption (II), we obtain

Λ−α ∥C∥ ∥BL2∥ = 7.263,

I − CE⋆α,γ∗(Atα)BL1

γ∗(2−γ∗) + Λ−α ∥C∥ ∥L1B∥
1− Λ−α ∥C∥ ∥BL2∥

=
−2.494

−6.263
≈ 0.398 < 1.

Thus, Assumption (II) is satised.
The simulation results, illustrated in Figures 1 to 6, show that in both open-

loop and closed-loop P -type ILC, the desired trajectory is gradually tracked as the
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number of iterations increases. We adopt the correction method from [22], which
updates control input as:

u(n) =


u(n)−me(n), if e(n) > 0,

u(n) +me(n), if e(n) < 0.

By the 50th iteration, the tracking error approaches zero, demonstrating the feasi-
bility and high eciency of the iterative learning control algorithm.

Remark 2.

• By tackling issues including nonlinearity, hysteresis, and compliance, P-
Type Iterative Learning Control (ILC) signicantly enhances the accuracy
and versatility of soft robotic actuators. ILC improves actuator control over
repetitive motions by learning from past mistakes, which results in more
robust, energy-ecient, and trajectory-tracking applications.

• For soft robotic systems, which are challenging to simulate with conven-
tional rigid-body dynamics, its model-free nature makes it especially appeal-
ing. However, issues like material variability, external disruptions, and
time delays necessitate careful adjustment of learning gains and possible
integration with AI-based adaptive control methods.

• P-type ILC, PID-type extensions, and hybrid learning techniques will con-
tinue to be useful tools for applications in grasping, exoskeletons, wearable
robots, and bio-inspired locomotion as soft robotics develops.

5. Conclusion

In this paper, we analysed a P-type ILC law for linear QV-DEs governed by
the HFD. Through rigorous mathematical analysis, we established the conver-
gence properties of the proposed ILC scheme under both open-loop and closed-loop
frameworks, considering initial state deviations and random disturbances within the
(1 − γ∗,Λ)-norm concept. Theoretical insights were derived using the properties
of the Mittag-Leer function, ensuring a comprehensive understanding of system
behavior. The numerical simulations validated the theoretical ndings, demon-
strating the eectiveness and robustness of the proposed ILC approach in handling
quaternion-valued fractional systems. The results highlight the potential of Hilfer-
type fractional-order iterative learning techniques in improving the performance of
control systems, particularly in scenarios with uncertainties and disturbances.
Future work could extend the proposed ideas to nonlinear switched quaternion-
valued systems, study adaptive learning strategies, and investigate the impact of
HFD on system performance. Additionally, incorporating real-world applications
such as robotics, signal processing, and control engineering could further validate
the practical signicance of this study.
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Figure 1. Quaternion rotation of vector v⃗ = (1, 0, 0) by 90◦ about
the z-axis. The blue arrow represents the original vector, and the
red arrow shows the rotated vector.
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Figure 2. System output and reference trajectory for m = 0.5
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Figure 3. Tracking error for m = 0.5
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Figure 4. System output and reference trajectory for m = 0.7
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Figure 5. Tracking error for m = 0.7
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Figure 6. System output and reference trajectory for m = 0.9
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Figure 7. Tracking error for m = 0.9


