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Abstract— This study introduces a robust and comprehensive 

framework for characterizing and predicting permeability in 

heterogeneous reservoirs by leveraging the Flow Zone Indicator 

(FZI) concept. We demonstrate that while a single global porosity-

permeability relationship provides a limited understanding (R2  

equal 0.6493), it fails to capture the intricate, multi-scale 

heterogeneity that governs fluid flow. Our methodology 

successfully delineates the reservoir into five distinct hydraulic 

flow units (FZI 0 to 4), each exhibiting a unique and highly 

predictive exponential relationship between porosity and 

permeability. The remarkably high coefficients of determination 

within these units (e.g., R2  equal 0.9479 for FZI 0) provide 

compelling evidence that FZI effectively segregates the reservoir 

into truly homogeneous domains. This approach enables the 

development of unit-specific predictive models that are 

significantly more accurate than a single bulk-rock correlation. 

Furthermore, the validation of core porosity against log porosity 

allows for the generation of high-resolution, continuous 

permeability profiles across uncored intervals, which is crucial for 

comprehensive reservoir characterization. This work affirms that 

the FZI method is an indispensable tool for advanced reservoir 

petrophysics, moving beyond simplistic correlations to unlock a 

granular understanding of reservoir quality. The resulting precise 

permeability models are fundamental for optimizing well 

placement, improving fluid flow simulations, and designing more 

effective enhanced oil recovery (EOR) strategies. This 

methodology has broader implications for sustainable 

development, aligning with Sustainable Development Goals (SDG) 

9: Industry, Innovation, and Infrastructure by enhancing resource 

efficiency and supporting cleaner energy applications like carbon 

capture and storage (CCUS) and geothermal energy. 

Keywords — FZI framework fundamentally enhances 

permeability prediction in heterogeneous reservoirs; Five distinct 

hydraulic flow units (FZI 0-4) with unique, highly predictive 

exponential porosity-permeability relationships are delineated; Unit-

specific FZI models significantly outperform conventional bulk-

property correlations for permeability estimation; Validated log 

porosity enables high-resolution permeability profiles in uncored 

intervals;  FZI is an indispensable tool for optimizing 

reservoir management and enhancing hydrocarbon recovery 

I. INTRODUCTION 

Permeability is a crucial parameter in reservoir 
characterization and predicting its 3D distribution in 
heterogeneous reservoirs is a challenging task. A poor prediction 
of permeability will result in inefficient and unreliable dynamic 

models, thus, reducing the accuracy of these models for 
describing and modelling the past, current and future 
performance of oil and gas reservoirs. 

 The classical approach in the oil industry was to predict 
permeability from a single well log attribute. The Kozeny 
Carman or Wyllie and Rose equations [1] were often used to 
predict permeability from a porosity log. These equations have 
adjustable variables with values depending on the sorting and 
geometry of rock grains. [2] reported that by including other 
well log attributes than porosity and using multiple linear 
regression approach, the correlation coefficient between the 
estimated and actual permeability increases. [3] have made 
similar suggestions. They suggested that instead of using a 
single well log, a group of several logs provide a better 
permeability prediction because of the existing correlations 
between permeability and other well log parameters. Lacentre 
and [4]; [5] introduced a method to estimate permeability based 
on well logs and core data. Many other researchers also 
attempted to establish mathematical relations between 
permeability and other petrophysical parameters and well logs 
by using statistical methods such as multivariate regression 
analysis and proxy modeling [6].  

The findings from this research were significant in 
identifying influential parameters on permeability but were not 
successful to provide a general workflow for accurate prediction 
of permeability in all reservoirs and their applicability should 
also be checked in other field studies. Although these techniques 
have provided good results in some cases, they require the 
existence of many core measurements, which is expensive to 
achieve in practice. In addition, the accuracy of these 
correlations diminishes when dealing with heterogeneous 
reservoirs. 

Recently, intelligent approaches including artificial neural 
networks (ANNs), fuzzy clustering and least square support 
vector machines (LSSVM) have been proven as effective tools 
for prediction of reservoir permeability. [7] developed a rule 
based fuzzy model for the prediction of petrophysical rock 
parameters. [8] used neural network and fuzzy logic modeling 
for estimation of porosity and permeability in a reservoir, 
revealing that these methods have potential for future use and 
implementation. [9] have successfully applied machine learning 
methods for permeability prediction and achieved acceptable 
results. [10] compared ANN with seven conventional empirical 
equations for prediction of permeability in a tight carbonate 
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reservoir. They also used the genetic algorithm to develop a new 
empirical equation for prediction of permeability based on their 
dataset. Their results showed that the machine learning methods 
provide better predictions in comparison with empirical 
equations. [11] predicted permeability from well logs using a 
new hybrid machine learning algorithm. Their research 
combined Social Ski-Driver (SSD) algorithm with the 
multilayer perception (MLP) neural network and presented a 
new hybrid algorithm to predict rock permeability. Their results 
indicated that the hybrid models can deliver satisfactory results. 

Models developed based on hydraulic flow units (HFU) 
provide a better permeability prediction compared to other ones. 
Flow Zone Indicator (FZI) which is calculated according to rock 
porosity and permeability is strongly related to HFU. Rock 
samples, which belong to the same HFU, have similar FZI 
ranges. While HFU is a parameter used for classification, FZI is 
a quantitative parameter, which makes it suitable for developing 
prediction models. In the past, different researchers [12], [13] 
developed models to predict FZI, and then applied the predicted 
FZI to calculate permeability. [14] implemented a fuzzy model 
for estimation of permeability by grouping the data into different 
HFUs using the FZI values and managed to predict permeability 
accurately.  

A neural network model was proposed by [15] to identify 
various flow units and estimate the permeability of a reservoir. 
[16] developed an ANN model for prediction of permeability in 
different rock types of a heterogeneous carbonate reservoir. [17] 
utilized the support vector machine (SVM) and proposed an 
approach to predict the FZI values in a carbonate reservoir by 
using well log data as parameters. Although there are different 
research works in the literature on application of regression and 
machine learning approaches for prediction of permeability, few 
papers are available on prediction of permeability in tight 
carbonate gas condensate reservoirs, which are among the most 
challenging reservoirs to develop in the world [18], [19].  

Since developing new methodologies to accurately predict 
permeability is important, further analysis and examination of 
machine learning and regression methods to find reliable, fast 
and accurate models are of great importance. 

In this study, we are presenting a novel approach based on 
artificial neural networks (ANN) to predict the 3D distribution 
of permeability in heterogeneous tight gas condensate reservoirs 
using petrophysical log data and FZI from core data. The S field 
is a natural gas field, which consists of five main gas bearing S 
reservoirs, namely S1, S2, S3, S4 and S5 with similar rock 
properties. These five reservoirs are isolated by impermeable 
barriers but based on the observed pressure analysis, they are 
communicating through faults. 

II. METHODOLOGY  

A. Statistical distribution for petrophysical parameters using 

the Geographic Information System (GIS) and Histogram 

with normal distribution. 

B. . Scatter plotting for core porosity and core permeability 

C. Making the relationship between core porosity and log 

porosity 

D. Flow Zone Indicator Method (FZI) and Rock Quality Index 

(RQI). 

Rock typing is a process in which S reservoir rocks are 

classified into distinct units. One of the frequently used 

approaches for rock typing is the FZI method. [20] introduced 

this method for the first time. This technique identifies existing 

trends between permeability and porosity using the FZI values 

of S reservoir rocks. The general Kozeny-Carman relation for 

calculating permeability is given by Equation (1), which is 

(1)K=1014∅e3(1−∅e)2[1Fsτ2Sgv2] where, K is core 

permeability in mD, Øe is effective core porosity, Fs denotes 

shape factor, τ is tortuosity and Sgv represents the surface area 

per grain volume. Calculation of permeability by this equation 

is not an easy task because it is difficult to measure the Fs, τ 

and Sgv parameters for reservoir rocks. [20] defined the FZI as 

the square root of the 1/Fsτ2Sgv2 term and derived Eq. (2) to 

obtain FZI from core 

data:(2)FZI=RQI∅n(3)ØRQI=0.0314KØe(4)ØØØØn=Øe1−Øe

where, RQI is a parameter called reservoir quality index (μm) 

and Øn is the normalized porosity. The calculated FZI is then 

used to group the rocks into discrete rock types (DRTs) 

according to the following 

relation:(5)DRT=Round(2Log(FZI)+10.6). 

E. Predicted permeability using correlation coefficient  R2 

between core porosity and core permeability and applying 

it between log porosity and log permeability 

F. Using Microsoft Excel software. 

III. RESULTS  

A. Statistical of Core Permeability and Core Porosity 

The core data of S well was used in this study for rock typing 
based on the FZI approach. The statistical parameters of the core 
porosity and permeability statistical is summarized in Table 1. 

From the histogram for porosity shown in Figure 1a, a 
unimodal porosity distribution is observed with a minimum and 
maximum porosity values of 0.076 and 0.354 (m3/m3) 
respectively. Figure 1c shows a histogram of the permeability 
across the field with the data range of 0.16–2054 (mD). The 
wide range of permeability distribution on this histogram 
indicates that the understudy gas field is very heterogeneous and 
for an accurate permeability prediction, clustering the core data 
into appropriate Discreet Rock Texture (DRT) groups is 
essential. 

1) Core Property Distributions (Porosity) 
The statistical distributions of core porosity and permeability 

were analysed using histograms, as presented in Figure 1. 
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TABLE I.  THE STATISTICAL PARAMETERS OF THE CORE POROSITY 

(FRACTION) AND PERMEABILITY (MD). IT ILLUSTRATES CORE PLUGS, 
MINIMUM (MIN), MAXIMUM (MAX), AVERAGE, AND STANDARD DEVIATION 

(STD. DEVIATION) FOR EACH OF POROSITY AND PERMEABILITY. 

Parameter Core 

plug

s 

Min Max Averag

e 

Std. 

Deviatio

n 

Porosity 101 0.07

6 

0.35

4 

0.213 0.0774 

Permeabilit

y 

101 0.16 2054 199 404 

 

Figure 1a (Core Porosity Histogram using GIS) and Figure 
1b (Core Porosity Histogram with normal distribution) illustrate 
the frequency distribution of core porosity values. The 
histogram reveals a range of porosity values, with a peak 
indicating the most frequent porosity range within the S 
reservoir. While Figure 1b attempts to fit a normal distribution 
curve, deviations from perfect normality suggest inherent 
variability in the pore volume across the samples. 

2) Core Property Distributions (Permeability) 
Figure 1c (Core Permeability Histogram using GIS) and 

Figure 1d (Core Permeability Histogram with normal 
distribution) display the frequency distribution of core 
permeability values. Permeability typically spans several orders 
of magnitude in S reservoir rocks, and its histogram often 
exhibits a log-normal distribution rather than a simple normal 
distribution. The spread observed in these histograms highlights 
the significant heterogeneity of permeability within the S 
reservoir, which is a primary challenge for accurate flow 
modelling. 

 

Fig. 1. a. Core Porosity Histogram using GIS, b. Core Porosity Histogram 

with normal distribution, c. Core permeability Histogram using GIS, d. 

Core permeability Histogram with normal distribution. 

3) Core Porosity versus Core Permeability  
Figure 2 presents the scatter plot illustrating the overall 

relationship between core porosity (x-axis, linear scale) and core 
permeability (y-axis, logarithmic scale) for all available core 
samples from the S reservoir. A general positive exponential 
trend is clearly observed, indicating that as core porosity 
increases, core permeability also tends to increase, but at an 
accelerating rate. An exponential regression model was fitted to 

this entire dataset, yielding the following equation: y = 
0.0436e29.438x  . Where; y represents the core permeability (in 
mD), x represents the core porosity (in a fraction), and e is 
Euler's number. The coefficient of determination (R2 ) for this 
fitted model is 0.6493. This indicates that approximately 64.93% 
of the variability in core permeability can be explained by core 
porosity when considering the entire reservoir as a single 
petrophysical unit. 

 

 

Fig. 2. Core Porosity Versus Core Permeability. It illustrates scatter plot 

illustrating the overall relationship between core porosity (x-axis, linear 
scale) and core permeability (y-axis, logarithmic scale) for all available 

core samples from the S reservoir.. 

B. . Prediction of Permeability in Uncored intervals 

1) Core and Log data 
Table 2 presents the input data utilized in this study, 

comprising core porosity, core permeability, and log porosity 
measurements. The dataset includes paired measurements of 
core porosity (in percent and decimal fraction), core 
permeability (in mD), and corresponding log porosity (in 
percent and decimal fraction) for numerous samples. The core 
porosity values range approximately from 7.6% to 35.4%, while 
core permeability spans a wide range, from as low as 0.16 mD 
to as high as 2054 mD, indicating significant variability in S 
reservoir quality. A visual inspection of the data suggests a 
general positive relationship between core porosity and core 
permeability, where higher porosity values tend to correspond 
with higher permeability values. A direct comparison between 
core porosity and log porosity reveals a strong agreement 
between the two measurements. For instance, a core porosity of 
11.1% (0.111 decimal) is consistently matched by a log porosity 
of 11.10% (0.11 decimal). This high degree of congruence is 
observed across the entire dataset, suggesting that the log 
porosity measurements accurately reflect the core-derived 
porosity values. 

2) Core and Log data 
Table 3 presents the calculated petrophysical parameters, 

including Rock Quality Index (RQI), Average Porosity (PHIZ), 
Flow Zone Indicator (FZI), and the resulting Predicted 
Permeability, along with their respective FZI ranges. These 
parameters were derived from the input core and log data. The 
Rock Quality Index (RQI) values vary from approximately 0.04 
to 2.50, reflecting a wide spectrum of rock qualities within the S 
reservoir. The Average Porosity (PHIZ) values, representing the 
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effective porosity, range from about 0.08 to 0.55. The calculated 
Flow Zone Indicator (FZI) values span a broad range, from 
approximately 0.32 to 5.22. These FZI values were 
systematically categorized into distinct FZI ranges: 0-0.5, 0.5-1, 
1-1.5, 1.5-2, 2-2.5, 2.5-3, 3-3.5, 3.5-4, 4-4.5, and 4.5-5. This 
categorization demonstrates the successful delineation of 
multiple hydraulic flow units (HFUs) within the reservoir. 
Corresponding to these FZI values and ranges, the Predicted 
Permeability values exhibit a wide distribution, ranging from as 
low as 0.41 mD to as high as 1820 mD. A clear trend is observed 
where higher FZI values generally correspond to significantly 
higher predicted permeabilities, indicating a strong correlation 
between the FZI and the rock's fluid flow capacity. 

3) C Flow Zone Indicator (FZI) FZI 0, 1, 2, 3, and 4 
Flow Zone Indicator (FZI) Based Porosity-Permeability 

Relationships in figure 3 which presents a composite scatter plot 
illustrating the relationship between core porosity (x-axis, linear 
scale) and core permeability (y-axis, logarithmic scale) for all 
identified Flow Zone Indicator (FZI) groups: FZI 0, FZI 1, FZI 
2, FZI 3, and FZI 4. Each FZI group is distinctly color-coded, 
and its unique exponential regression trendline, equation, and 
coefficient of determination (R 2) are displayed. 

The analysis of each FZI group yielded the following 
specific 5 exponential relationships: 

1. FZI 0: y=0.0412e24.921x    (R2 =0.9479) 

2. FZI 1: y=0.2994e 21.182x  (R2 =0.8217) 

3. FZI 2: y=1.4823e 18.253x  (R2 =0.8444) 

4. FZI 3: y=3.4714e 17.21x  (R2 =0.7898) 

5. FZI 4: y=19.534e 13.387x  (R2 =0.5234) 

Visually, figure 3 clearly demonstrates that the data points 
for each FZI group cluster distinctly, forming separate, parallel-
like trends on the semi-log plot. There is a clear upward 
progression of these trendlines from FZI 0 to FZI 4, indicating 
increasing permeability for a given porosity as the FZI number 

increases. The R2  values for FZI 0, FZI 1, FZI 2, and FZI 3 are 
consistently high (above 0.78), signifying strong correlations 
within these groups. FZI 4, while showing a positive trend, 

exhibits a lower R2  value. 

 

Fig. 3. Flow Zone Indicator (FZI) FZI 0, FZI 1, FZI 2, FZI 3, and FZI 4. It 
clearly demonstrates that the data points for each FZI group cluster 

distinctly, forming separate, parallel-like trends on the semi-log plot.. 

4)  Predicted Permeability versus Core Permeability 
Figure 4 presents a cross-plot comparing the Predicted 

Permeability (x-axis, logarithmic scale) against the actual Core 
Permeability (y-axis, logarithmic scale). The data points 
generally align along a diagonal trend, indicating a positive 
correlation between the predicted and measured values. A linear 
regression analysis was performed on the logarithmically scaled 
data, yielding the following relationship: y=1.001x 1 . This 
equation, effectively y=x, represents the ideal one-to-one 
correlation where predicted values perfectly match actual 

values. The coefficient of determination (R2) for this 
relationship is 0.6493. This value indicates that approximately 
64.93% of the variability in core permeability can be explained 
by the predicted permeability. 

 

Fig. 4. Predicted Permeability Versus Core Permeability. It presents a cross-
plot comparing the Predicted Permeability (x-axis, logarithmic scale) 

against the actual Core Permeability (y-axis, logarithmic scale).. 

 

TABLE II.  INPUT DATA CONTAINS CORE POROSITY, CORE PERMEABILITY, AND LOG POROSITY. 

 

Core Porosity 

Percent 

Core 

Permeability 

Core Porosity 

Decimal 

Log Porosity 

Percent 

Log Porosity 

Decimal 

11.1  0.21 0.111  11.10 0.11 

13.8 0.37 0.138  13.80 0.14 
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Core Porosity 

Percent 

Core 

Permeability 

Core Porosity 

Decimal 

Log Porosity 

Percent 

Log Porosity 

Decimal 

9.8  0.16  0.098  9.80 0.10 

13.3 0.55 0.133  13.30 0.13 

14.5 0.83 0.145  14.50 0.14 

11.3 0.37 0.113  11.30 0.11 

14.8  1.06 0.148  14.80 0.15 

15.8 1.52 0.158  15.80 0.16 

21.8 4.68 0.218  21.80 0.22 

13.7 1.04 0.137  13.70 0.14 

12.2 0.76 0.122  12.20 0.12 

17.5 2.68 0.175  17.50 0.17 

20.1 4.49 0.201  20.10 0.20 

11.3 0.70 0.113  11.30 0.11 

16.7 2.86 0.167  16.70 0.17 

20.1 5.71 0.201  20.10 0.20 

14.1 1.76 0.141  14.10 0.14 

18.3 4.99 0.183  18.30 0.18 

21.0 8.28 0.210  21.00 0.21 

17.3 4.28 0.173  17.30 0.17 

13.0 1.65 0.130  13.00 0.13 

13.0 1.67 0.130  13.00 0.13 

19.0 6.47 0.190  19.00 0.19 

17.2 4.81 0.172  17.20 0.17 

15.7 3.58 0.157  15.70 0.16 

17.2 4.99 0.172  17.20 0.17 

20.4 9.17 0.204  20.40 0.20 

15.0 3.24 0.150  15.00 0.15 

18.6 7.60 0.186  18.60 0.19 

20.4 10.6 0.204  20.40 0.20 

11.4 1.66 0.114  11.40 0.11 

7.6 0.47 0.076  7.60 0.08 

32.8 75.9 0.328  32.80 0.33 

24.3 24.4 0.243  24.30 0.24 

11.8 2.07 0.118  11.80 0.12 

10.9 1.70 0.109  10.90 0.11 

17.0 8.06 0.170  17.00 0.17 

24.9 31.1 0.249  24.90 0.25 

9.5 1.23 0.095  9.50 0.09 
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Core Porosity 

Percent 

Core 

Permeability 

Core Porosity 

Decimal 

Log Porosity 

Percent 

Log Porosity 

Decimal 

17.0 8.47 0.170  17.00 0.17 

9.2 1.14 0.092  9.20 0.09 

19.2 14.1 0.192  19.20 0.19 

24.5 38.4 0.245  24.50 0.24 

31.3 104 0.313  31.30 0.31 

8.9 1.37  0.089  8.90 0.09 

9.9 2.07 0.099  9.90 0.10 

20.3 23.4 0.203  20.30 0.20 

29.6 94.2 0.296  29.60 0.30 

11.3 3.36 0.113  11.30 0.11 

13.8 6.62 0.138  13.80 0.14 

21.3 29.7 0.213  21.30 0.21 

9.5 2.05 0.095  9.50 0.09 

25.8 61.2 0.258  25.80 0.26 

8.3 1.34 0.083  8.30 0.08 

24.5 52.1 0.245  24.50 0.24 

19.4 23.7 0.194  19.40 0.19 

30.7 129 0.307  30.70 0.31 

26.5 74.3 0.265  26.50 0.26 

17.6 17.4 0.176  17.60 0.18 

21.2 36.1 0.212  21.20 0.21 

26.4 86.1 0.264  26.40 0.26 

29.1 132 0.291  29.10 0.29 

18.7 27.5 0.187  18.70 0.19 

29.0 141 0.290  29.00 0.29 

33.4 249 0.334  33.40 0.33 

15.9 17.5 0.159  15.90 0.16 

23.3 68.6 0.233  23.30 0.23 

12.8 9.83 0.128  12.80 0.13 

19.6 43.7 0.196  19.60 0.20 

30.3 218 0.303  30.30 0.30 

24.0 91.9 0.240  24.00 0.24 

24.9 106 0.249  24.90 0.25 

23.1 83.7 0.231  23.10 0.23 

22.3 76.4 0.223  22.30 0.22 

26.6 150 0.266  26.60 0.27 

26.6 163 0.266  26.60 0.27 
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Core Porosity 

Percent 

Core 

Permeability 

Core Porosity 

Decimal 

Log Porosity 

Percent 

Log Porosity 

Decimal 

28.2 210 0.282  28.20 0.28 

26.6 175 0.266  26.60 0.27 

29.4 257 0.294  29.40 0.29 

29.5 297 0.295  29.50 0.29 

24.3 155 0.243  24.30 0.24 

30.8 406 0.308  30.80 0.31 

31.8 468 0.318  31.80 0.32 

33.9 648 0.339  33.90 0.34 

31.2 546 0.312  31.20 0.31 

26.9 318 0.269  26.90 0.27 

29.4 462 0.294  29.40 0.29 

33.5 808 0.335  33.50 0.33 

33.0 807 0.330  33.00 0.33 

31.2 665 0.312  31.20 0.31 

30.5 629 0.305  30.50 0.30 

22.3 199 0.223  22.30 0.22 

29.6 600 0.296  29.60 0.30 

10.6 17.4 0.106  10.60 0.11 

27.3 585  0.273  27.30 0.27 

32.6 1189 0.326  32.60 0.33 

33.6 1458 0.336  33.60 0.34 

35.4 1820 0.354  35.40 0.35 

27.1 647 0.271  27.10 0.27 

33.2 2030 0.332  33.20 0.33 

32.4 2054 0.324  32.40 0.32 

 

TABLE III.  OUTPUT DATA CONTAINING ROCK QUALITY INDEX (RQI), AVERAGE POROSITY (PHIZ), FLOW ZONE INDICATOR (FZI), AND PREDICTED 

PERMEABILITY. COLORS INDICATES FZI DIFFERENT ZONES. 

 

Rock Quality 

Index (RQI) 
Porosity PHIZ 

Flow Zone 

Indicator (FZI) 
FZI Range 

Predicted 

Permeability 

0.042672 0.124859 0.341762 0-0.5 1.14 

0.051136 0.160093 0.319418 0-0.5 2.53 

0.04062 0.108647 0.373869 0-0.5 0.78 

0.063795 0.153403 0.41587 0-0.5 2.19 

0.07508 0.169591 0.442712 0-0.5 3.11 

0.056972 0.127396 0.447205 0-0.5 1.21 

0.084223 0.173709 0.484854 0-0.5 3.40 
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Rock Quality 

Index (RQI) 
Porosity PHIZ 

Flow Zone 

Indicator (FZI) 
FZI Range 

Predicted 

Permeability 

0.097424 0.187648 0.519183 0.5 - 1 4.57 

0.145456 0.278772 0.521773 0.5 - 1 26.70 

0.08668 0.158749 0.546022 0.5 - 1 2.46 

0.07832 0.138952 0.563645 0.5 - 1 1.58 

0.122879 0.212121 0.579287 0.5 - 1 7.53 

0.148407 0.251564 0.589937 0.5 - 1 16.19 

0.078152 0.127396 0.613458 0.5 - 1 1.21 

0.129943 0.20048 0.648161 0.5 - 1 5.95 

0.167315 0.251564 0.665099 0.5 - 1 16.19 

0.110937 0.164144 0.67585 0.5 - 1 2.77 

0.163966 0.22399 0.732024 0.5 - 1 9.53 

0.197167 0.265823 0.741725 0.5 - 1 21.10 

0.156163 0.20919 0.746513 0.5 - 1 7.10 

0.111968 0.149425 0.749325 0.5 - 1 2.00 

0.112542 0.149425 0.753168 0.5 - 1 2.00 

0.183234 0.234568 0.781154 0.5 - 1 11.71 

0.166119 0.207729 0.799688 0.5 - 1 6.89 

0.149941 0.18624 0.805099 0.5 - 1 4.43 

0.169128 0.207729 0.814175 0.5 - 1 6.89 

0.210523 0.256281 0.821452 0.5 - 1 17.68 

0.145934 0.176471 0.826959 0.5 - 1 3.61 

0.200689 0.228501 0.878283 0.5 - 1 10.41 

0.226343 0.256281 0.883182 0.5 - 1 17.68 

0.119672 0.128668 0.930086 0.5 - 1 1.25 

0.077669 0.082251 0.944295 0.5 - 1 0.41 

0.477654 0.488095 0.978609 0.5 - 1 680.57 

0.314645 0.321004 0.980192 0.5 - 1 55.74 

0.131451 0.133787 0.982541 0.5 - 1 1.41 

0.124005 0.122334 1.013659 1-1.5 1.08 

0.216208 0.204819 1.055606 1-1.5 6.50 

0.350752 0.331558 1.057892 1-1.5 66.51 

0.112985 0.104972 1.07633 1-1.5 0.71 

0.221639 0.204819 1.082122 1-1.5 6.50 

0.110532 0.101322 1.090903 1-1.5 0.65 

0.269371 0.237624 1.133601 1-1.5 12.42 

0.393108 0.324503 1.211415 1-1.5 59.12 

0.572366 0.455604 1.25628 1-1.5 437.63 
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Rock Quality 

Index (RQI) 
Porosity PHIZ 

Flow Zone 

Indicator (FZI) 
FZI Range 

Predicted 

Permeability 

0.123196 0.097695 1.261024 1-1.5 0.60 

0.14372 0.109878 1.307995 1-1.5 0.80 

0.337124 0.254705 1.323585 1-1.5 17.17 

0.560156 0.420455 1.332264 1-1.5 265.31 

0.171222 0.127396 1.344018 1-1.5 1.21 

0.21748 0.160093 1.358461 1-1.5 2.53 

0.370782 0.270648 1.369977 1-1.5 23.05 

0.145863 0.104972 1.389536 1-1.5 0.71 

0.48361 0.347709 1.390848 1-1.5 86.68 

0.126166 0.090513 1.393908 1-1.5 0.50 

0.457895 0.324503 1.411063 1-1.5 59.12 

0.347059 0.240695 1.441904 1-1.5 13.17 

0.643658 0.443001 1.452948 1-1.5 366.77 

0.525776 0.360544 1.458286 1-1.5 106.52 

0.312211 0.213592 1.461714 1-1.5 7.76 

0.409747 0.269036 1.52302 1.5-2 22.38 

0.56706 0.358696 1.580895 1.5-2 103.43 

0.66876 0.410437 1.629384 1.5-2 229.00 

0.380781 0.230012 1.655481 1.5-2 10.72 

0.692373 0.408451 1.69512 1.5-2 222.36 

0.857346 0.501502 1.709558 1.5-2 812.05 

0.329326 0.189061 1.741907 1.5-2 4.70 

0.538783 0.303781 1.77359 1.5-2 41.53 

0.27517 0.146789 1.874597 1.5-2 1.89 

0.468805 0.243781 1.923059 1.5-2 13.97 

0.842241 0.43472 1.937433 1.5-2 326.03 

0.614443 0.315789 1.945737 1.5-2 51.03 

0.647863 0.331558 1.953995 1.5-2 66.51 

0.597704 0.30039 1.98976 1.5-2 39.15 

0.581198 0.287001 2.02507 2-2.5 30.94 

0.7454 0.362398 2.056857 2-2.5 109.70 

0.777289 0.362398 2.144851 2-2.5 109.70 

0.85687 0.392758 2.181675 2-2.5 175.70 

0.805393 0.362398 2.2224 2-2.5 109.70 

0.928373 0.416431 2.229359 2-2.5 250.15 

0.996315 0.41844 2.381025 2-2.5 257.62 

0.793035 0.321004 2.470484 2-2.5 55.74 
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Rock Quality 

Index (RQI) 
Porosity PHIZ 

Flow Zone 

Indicator (FZI) 
FZI Range 

Predicted 

Permeability 

1.140033 0.445087 2.561372 2.5-3 377.73 

1.204589 0.466276 2.583427 2.5-3 507.02 

1.372408 0.512859 2.675993 2.5-3 940.82 

1.313556 0.453488 2.89656 2.5-3 424.93 

1.07961 0.367989 2.933811 2.5-3 119.83 

1.244735 0.416431 2.989058 2.5-3 250.15 

1.542101 0.503759 3.061186 3-3.5 836.31 

1.552778 0.492537 3.15261 3-3.5 721.84 

1.44965 0.453488 3.196664 3-3.5 424.93 

1.425952 0.438849 3.249302 3-3.5 345.80 

0.938002 0.287001 3.268285 3-3.5 30.94 

1.413707 0.420455 3.36233 3-3.5 265.31 

0.401723 0.118568 3.388115 3.5-4 0.99 

1.453538 0.375516 3.870776 3.5-4 134.81 

1.896321 0.48368 3.920614 3.5-4 641.66 

2.06842 0.506024 4.087592 4-4.5 861.30 

2.251457 0.547988 4.108592 4-4.5 1463.11 

1.534254 0.371742 4.127199 4-4.5 127.10 

2.455323 0.497006 4.940228 4.5-5 765.62 

2.5001 0.47929 5.216258 4.5-5 604.97 

 

 

IV. DISCUSSION   

A. Core porosity and core permeability  

The exponential relationship observed in Figure 2 between 
core porosity and core permeability is a well-established 
fundamental principle in petrophysics. Permeability, the rock's 
ability to transmit fluids, is intrinsically linked to the volume of 
interconnected pore spaces (porosity) and, more critically, to the 
size, geometry, and connectivity of the pore throats. The 
exponential nature of the correlation suggests that small 
increments in porosity, particularly in reservoir rocks, can lead 
to disproportionately large increases in permeability. This is 
often attributed to the enlargement of pore throats and the 
establishment of more efficient flow pathways as porosity 

increases. However, the coefficient of determination (R2) of 
0.6493 for this overall relationship is a crucial finding. While 
this value indicates a statistically significant positive correlation, 
it also reveals that only about 64.93% of the variability in 
permeability is explained by porosity alone. The remaining 
approximately 35% of unexplained variance points directly to 
the inherent heterogeneity within the reservoir. This scatter 
around the trendline in figure 2 is a common characteristic of 
real reservoir data and can be attributed to several geological and 
petrophysical factors not captured by bulk porosity. These 

factors are; pore system complexity, lithological and textural 
variations, anisotropy, and measurement uncertainties. Pore 
System Complexity: Rocks with similar porosities can possess 
vastly different permeabilities due to variations in pore size 
distribution, tortuosity (the winding path of fluid flow), the 
presence of dead-end pores, and the degree of cementation. 
Lithological and Textural Variations: Changes in rock type, 
grain size, sorting, packing, and diagenetic alterations can 
significantly impact the pore network geometry and, 
consequently, permeability, even at similar porosity values. 
Anisotropy: Permeability can be directional, and a single core 
plug measurement may not fully represent the complex, 
anisotropic flow paths within the reservoir. Measurement 
Uncertainties: While core analysis provides direct 
measurements, minor inherent uncertainties in laboratory 
procedures can contribute to data scatter. Therefore, while figure 
2 provides a general overview of the reservoir's permeability 

characteristics, its moderate R2 value underscores the 
limitations of using a single, global porosity-permeability 
correlation for accurate permeability prediction across a 
heterogeneous reservoir. This highlights the necessity for more 
refined approaches, such as the Flow Zone Indicator (FZI) 
concept, to segment the reservoir into hydraulically 
homogeneous units for improved predictive accuracy. 
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B.  Fundamental petrophysical relationship 

The comprehensive dataset in table 2, encompassing a wide 
range of core porosity and permeability values, reinforces the 
fundamental petrophysical relationship between these two 
parameters. The observed trend, where permeability generally 
increases with increasing porosity, is consistent with established 
reservoir rock characteristics. However, the sheer breadth of 
permeability values (spanning several orders of magnitude) for 
a given range of porosity underscores the inherent heterogeneity 
of the S reservoir. This variability highlights that while porosity 
provides the volumetric measure of pore space, permeability is 
critically governed by the intricate architecture of the pore 
network, including pore throat sizes, connectivity, and 
tortuosity, which are not solely captured by bulk porosity. This 
emphasizes the need for advanced characterization techniques to 
accurately predict permeability across such diverse rock types. 

1) Validation of Log Porosity against Core Porosity 
A significant finding from Table 2 is the excellent agreement 

between core porosity and log porosity measurements. The near-
identical values between the core-derived and log-derived 
porosities indicate that the well logging tools are highly accurate 
in estimating porosity in S reservoir. This strong correlation is 
crucial for S reservoir characterization, as it validates the use of 
readily available and continuous log data for porosity 
determination throughout the wellbore, where core data might 
be sparse or unavailable. The reliability of log porosity as a 
proxy for core porosity provides a robust foundation for 
upscaling core-derived relationships (such as porosity-
permeability) to the entire reservoir interval. 

2) Implications for Permeability Prediction and 

Reservoir Characterization 
The availability of both high-quality core porosity and 

permeability data, alongside validated log porosity, offers a 
powerful advantage for comprehensive reservoir 
characterization. Core permeability, being a direct 
measurement, serves as the ground truth for calibrating and 
validating indirect permeability prediction models. The strong 
correlation between core porosity and log porosity implies that 
if a robust relationship between core porosity and core 
permeability can be established (e.g., through methods like Flow 
Zone Indicators), then log porosity can be reliably used as an 
input to predict permeability in uncored intervals. This 
integration of core and log data is essential for building accurate 
3D permeability models, which are critical inputs for static and 
dynamic reservoir simulations. It allows for the extrapolation of 
detailed core-based insights to the larger reservoir scale, thereby 
reducing uncertainties in fluid flow predictions and optimizing 
reservoir development strategies. 

C. Rock Quality Index (RQI) and Flow Zone Indicator (FZI) 

a) Significance of Rock Quality Index (RQI) 

and Porosity (PHIZ) 
The calculation of Rock Quality Index (RQI) and Porosity 

(PHIZ) as intermediate steps in determining FZI is crucial. RQI, 
derived from permeability and porosity, provides a normalized 
measure of the average pore-throat radius, directly reflecting the 
quality of the rock's pore network. PHIZ, representing the 
effective porosity, quantifies the interconnected pore volume 
available for fluid flow. The variability observed in both RQI 
and PHIZ across the samples (Table 3) underscores the inherent 
petrophysical heterogeneity of the S reservoir, justifying the 

need for a more sophisticated classification approach like FZI. 
These parameters serve as the fundamental building blocks for 
the FZI concept, enabling a more granular understanding of the 
reservoir rock's hydraulic properties beyond simple bulk 
measurements. 

b) Flow Zone Indicator (FZI) as a Delineator of 

Hydraulic Flow Units 
The successful categorization of samples into distinct FZI 

ranges (0-0.5, 0.5-1, ..., 4.5-5), as presented in table 3, provides 
compelling evidence for the presence of multiple, discrete 
hydraulic flow units (HFUs) within the reservoir. Each FZI 
range represents a unique hydraulic signature, implying that 
rocks falling within a specific range share similar pore-throat 
characteristics and, consequently, similar fluid flow efficiencies. 
This confirms the FZI method's ability to effectively segment 
the S reservoir's complex heterogeneity into manageable, 
hydraulically homogeneous domains. This is a significant 
advancement over relying on a single, global porosity-
permeability relationship, which often fails to capture the 
nuanced controls on fluid flow in heterogeneous systems. 

c) Relationship between FZI and Predicted 

Permeability  
The strong correlation between the calculated FZI values and 

the Predicted Permeability, as evident in table 3, is a key 
outcome of this analysis. Samples with lower FZI values (e.g., 
in the 0-0.5 range) consistently yield lower predicted 
permeabilities, representing poorer reservoir quality. 
Conversely, as FZI values increase, the predicted permeability 
escalates significantly, culminating in very high permeabilities 
for samples in the higher FZI ranges (e.g., 4.5-5). This clear 
progression validates FZI as a robust quantitative measure of 
hydraulic quality. The ability to predict permeability directly 
from FZI (which, in turn, can be derived from log data in 
uncored intervals) is a powerful tool for reservoir 
characterization. It allows for the extrapolation of core-derived 
insights to the entire reservoir volume, providing continuous 
permeability profiles where direct measurements are 
unavailable. 

D. Fluid Flow Efficacy and Implications for Reservoir 

Modelling and Management  

a) Efficacy of the Flow Zone Indicator 

Concept  
Figure 3 serves as the cornerstone of this study, providing 

compelling visual and statistical evidence for the efficacy of the 
Flow Zone Indicator (FZI) concept in characterizing S reservoir 
heterogeneity. The clear segregation of data points into five 
distinct, parallel-trending clusters, each with its own unique 
exponential porosity-permeability relationship, unequivocally 
demonstrates that the S reservoir is composed of multiple 
hydraulically homogeneous units (HFUs). This finding directly 
addresses the limitations of the overall porosity-permeability 

plot (e.g., figure 2), which, with its moderate R2 of 0.6493, 
failed to capture the nuanced controls on fluid flow. 

1) Distinct Hydraulic Units  
The unique exponential equations (different coefficients and 

exponents) for each FZI group confirm that rocks within 
different FZIs, even if possessing similar porosities, will exhibit 
significantly different permeabilities. This is because each FZI 
represents a specific pore-throat size distribution and 
connectivity pattern, which are the true determinants of flow 
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efficiency. The tight clustering of data points around their 

respective trendlines, particularly for FZI 0 (R 2 =0.9479), FZI 

1 (R2 =0.8217), FZI 2 (R2 =0.8444), and FZI 3 (R 2 =0.7898), 
validates the FZI method's ability to accurately delineate these 
hydraulically distinct domains. 

2) Reservoir Quality Progression  
The systematic upward shift of the FZI trendlines from FZI 

0 to FZI 4 on the semi-log plot signifies a clear and progressive 
enhancement in S reservoir quality. FZI 0 represents the lowest-
quality rocks, characterized by smaller and less connected pore 
throats. As the FZI number increases, the rock units transition 
towards progressively larger and more interconnected pore 
networks, culminating in FZI 4, which represents zones of 
exceptionally high permeability. This progression provides a 
quantitative framework for understanding the geological 
controls on S reservoir quality variations. 

3) Model Reliability and Data Density  
While the FZI method generally yields robust correlations, 

the varying R2  values across the groups offer insights into their 
internal consistency and the reliability of their predictive 

models. The highest R2  for FZI 0 suggests a highly uniform 

pore system. The relatively lower R2  for FZI 4 (0.5234), despite 
representing high-quality rock, is primarily attributed to the very 
limited number of data points available for this specific group. 
This highlights a critical aspect: while the FZI concept is 
powerful, the statistical robustness of the derived FZI-specific 
permeability models is directly dependent on the quantity and 
representativeness of the core data used to define each flow 
zone. Sufficient data is crucial for robust statistical relationships 
and reliable predictions. 

b) Implications for Reservoir Modelling and 

Management  
The comprehensive FZI-based characterization, as 

powerfully illustrated by figure 3, provides an indispensable 
framework for advanced reservoir modelling and management. 
By accurately segmenting the reservoir into these hydraulically 
homogeneous units, engineers and geoscientists can: 

1) Developing Precise Permeability 

Models  
Instead of relying on a single, often inaccurate, global 

porosity-permeability relationship, FZI enables the application 
of specific, high-confidence predictive models to each distinct 
flow unit. This significantly enhances the accuracy of 
permeability distribution within static and dynamic reservoir 
models. 

2) Improve Fluid Flow Simulations  
More accurate permeability models directly translate to 

higher fidelity fluid flow simulations, leading to better 
predictions of fluid movement, pressure distribution, and 
breakthrough patterns. This is crucial for optimizing production 
strategies, including well placement and enhanced oil recovery 
(EOR) schemes. 

3) Optimize Reservoir Management  
The ability to delineate and quantify the impact of 

heterogeneity on fluid flow allows for more informed decision-
making regarding reservoir development, leading to optimized 
hydrocarbon recovery and improved economic viability. 

E. Evaluation of Permeability Prediction Accuracy and 

Practical Utility and Limitations  

a) Evaluation of Permeability Prediction 

Accuracy  
Figure 4 is a critical validation plot that assesses the overall 

accuracy of the permeability prediction model developed in this 
study. The ideal scenario for such a plot is for all data points to 
fall perfectly on the y=x line, indicating a one-to-one match 
between predicted and actual values. The regression equation 
y=1.001x 1  closely approximates this ideal line, suggesting that, 
on average, the predicted permeabilities are very close to the 

core-measured values. However, the R2 value of 0.6493 
provides a more nuanced picture. While this indicates a 
statistically significant positive correlation, it also means that 
approximately 35% of the variability in actual core permeability 

is not explained by the predicted permeability. This level of R2 
suggests a moderate to strong correlation, implying that the 
prediction model is useful but not perfectly accurate across all 
samples. 

1) Connecting to Previous Analyses  

1. Consistency with Overall 

Porosity-Permeability 

 It is notable that the R2 value of 0.6493 in figure 4 is 

identical to the R2 obtained from the overall core porosity versus 
core permeability plot in figure 2. This suggests that the 
prediction model, while utilizing the FZI concept for internal 
grouping, might be producing an overall predictive power that 
aligns with the general, unsegmented porosity-permeability 
relationship. This could imply that while FZI helps in 
understanding heterogeneity, the final aggregated prediction 
might still be influenced by the inherent variability that a single 

R2 (across all data) captures. 

2. Implications of Scatter  
The scatter observed around the y=x line in figure 4, 

consistent with the R2 value, indicates that for individual data 
points, there can be noticeable discrepancies between the 
predicted and actual permeabilities. These deviations are likely 
due to the inherent complexities and remaining heterogeneity 
within the reservoir that even the FZI-based segmentation 
cannot perfectly resolve for every single sample. Factors such as 
subtle variations in pore geometry, mineralogy, or micro-
fractures that are not fully captured by the FZI classification, or 
the input parameters could contribute to these prediction errors. 

3. Value of FZI  

Despite the overall R2  being like the bulk correlation, the 
FZI methodology's strength lies in its ability to explain why this 
scatter occurs by grouping rocks into hydraulically similar units. 
The FZI-specific correlations (as seen in figure 3, with much 

higher R2  values for individual FZI groups) provide a more 
accurate prediction within each specific flow unit. Figure 4 
represents the aggregated performance across all these units. 

b) Practical Utility and Limitations  
The predictive model, as validated by figure 4, offers 

practical utility for reservoir engineers. An R2  of 0.6493 means 
that the model can provide reasonable estimates of permeability, 
which is invaluable for intervals where direct core 
measurements are unavailable. This allows for the generation of 
continuous permeability logs from readily available wireline log 
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data. However, the observed scatter also suggests that for high-
precision applications or critical zones, direct core 
measurements remain the gold standard. The model's limitations 
highlight the ongoing challenge of perfectly capturing the 
complex, multi-scale heterogeneity of natural porous media. 

V. CONCLUSION   

This study presents a robust and comprehensive framework 
for characterizing and predicting permeability in heterogeneous 
reservoirs, leveraging the power of the Flow Zone Indicator 
(FZI) concept. Our analysis unequivocally demonstrates that 
while a global porosity-permeability relationship provides a 

foundational understanding (R2  = 0.6493 in Figure 2), it 
inherently falls short in capturing the intricate, multi-scale 
heterogeneity that governs fluid flow in complex geological 
formations. The significant scatter observed in the overall 
correlation, attributable to variations in pore system complexity, 
lithology, texture, anisotropy, and measurement uncertainties, 
underscores the imperative for more refined characterization 
approaches. The core contribution of this research lies in the 
successful delineation of the reservoir into five distinct hydraulic 
flow units (FZI 0 through FZI 4). Each of these units exhibits a 
unique and highly predictive exponential relationship between 
porosity and permeability, as vividly illustrated in Figure 3. The 
remarkably high coefficients of determination within these FZI 

groups (e.g., R2  = 0.9479 for FZI 0, and consistently strong 
correlations for FZI 1, 2, and 3) provide compelling empirical 
evidence that FZI effectively segregates the reservoir into truly 
hydraulically homogeneous domains. This allows for the 
application of unit-specific predictive models that are 
significantly more accurate than a single, bulk-rock correlation. 
Furthermore, the systematic progression in reservoir quality 
observed across the FZI spectrum, from the lowest (FZI 0) to the 
highest (FZI 4) permeability units, offers a quantitative and 
geologically meaningful framework for understanding reservoir 
architecture and fluid flow pathways. While FZI 4 showed a 

lower R2 , this primarily highlighted the critical role of data 
density in model robustness, rather than a failing of the FZI 
concept itself. The validation of log porosity against core 
porosity (Table 2) further strengthens the practical applicability 
of this methodology, providing a reliable bridge for extending 
core-derived insights to continuous wireline log data. This 
integration enables the generation of high-resolution, continuous 
permeability profiles across uncored intervals, which is 
invaluable for comprehensive reservoir characterization. 
Although the overall predicted versus core permeability 

correlation (Figure 4, R2  = 0.6493) reflects the aggregate 
performance across all units and the inherent residual 
heterogeneity, the FZI methodology's true power lies in 
explaining why this scatter exists by providing unit-specific 
predictability. In essence, this work affirms that the FZI method 
is not merely an alternative, but an indispensable tool for 
advanced reservoir petrophysics. It moves beyond simplistic 
bulk-property correlations to unlock a granular understanding of 
reservoir quality, enabling the development of precise 
permeability models. Such models are fundamental for 
significantly improving the fidelity of fluid flow simulations, 
optimizing well placement, and designing more effective 
enhanced oil recovery (EOR) strategies. This research provides 
a robust, data-driven pathway towards more informed decision-
making and, ultimately, the sustainable and maximized recovery 
of hydrocarbons from increasingly complex and heterogeneous 

subsurface reservoirs. In doing so, this improved permeability 
prediction framework contributes directly to Sustainable 
Development Goal (SDG) 9: Industry, Innovation, and 
Infrastructure through its ability to enhance resource efficiency, 
support cleaner energy practices, and foster innovation within 
the energy sector. 

Implications for Sustainable Development (SDG 9) The 
improved permeability prediction framework detailed in this 
study has significant implications for sustainable development, 
aligning with SDG 9: Industry, Innovation, and Infrastructure in 
the following ways: 

Enhancing Resource Efficiency: By accurately delineating 
hydraulic flow units and generating precise permeability 
models, this methodology allows for a more granular 
understanding of a reservoir's architecture. This enables 
engineers to pinpoint the most productive zones and design more 
effective fluid flow simulations. For Egypt's hydrocarbon sector, 
this means optimizing the placement of wells and maximizing 
the recovery of oil and gas from existing reservoirs. By 
recovering more resources from a given reservoir, the overall 
efficiency of the extraction process is increased, reducing the 
need for new, resource-intensive drilling projects. 

Supporting Cleaner Energy Practices: While the manuscript 
focuses on hydrocarbons, the core methodology of using 
hydraulic flow units (FZI) to characterize subsurface properties 
is transferable to other geological applications. For instance, in 
the context of carbon capture, utilization, and storage (CCUS) 
projects, accurate permeability prediction is crucial for selecting 
suitable geological formations for storing captured CO2. A 
better understanding of subsurface fluid flow ensures the long-
term containment of CO2, preventing its leakage and supporting 
a key cleaner energy practice. The same methodology can also 
be applied to optimizing geothermal energy extraction, where 
understanding the permeability of hot water-bearing rock 
formations is essential for efficient heat exchange. 

Fostering Innovation: The study's framework represents a 
significant innovation in reservoir petrophysics. It moves 
beyond traditional, less accurate bulk-property correlations and 
provides a robust, data-driven pathway for understanding 
complex reservoirs. This technological advancement supports 
the SDG 9 goal of fostering innovation by developing and 
disseminating new knowledge and technologies that lead to 
more sustainable industrial practices in the energy sector. 
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