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Abstract: Prosthetic hand control lies at the critical intersection of biomedical engineer-

ing and rehabilitation medicine, aiming to restore natural hand function in amputees 

through precise interpretation of neuromuscular signals. Electromyography (EMG) has become the predominant 

technique for achieving intuitive control, yet despite promising outcomes in research environments, significant chal-

lenges persist in translating these advances into reliable, real-world clinical applications. To assess the current state 

of the field, a systematic literature review was conducted in accordance with PRISMA guidelines, drawing from 

PubMed, IEEE Xplore, and Google Scholar. A total of 285 studies were initially identified, of which 52 met the inclu-

sion criteria based on classification accuracy, real-time implementation feasibility, and clinical viability. The analysis 

revealed that deep learning techniques consistently outperformed traditional approaches, while the integration of 

multimodal data and the use of advanced preprocessing methods significantly improved system robustness. How-

ever, real-time implementation introduced critical performance trade-offs, particularly in terms of latency and power 

efficiency. Although EMG-based control systems have reached a stage of clinical viability, especially with the supe-

rior offline performance of deep learning models, successful deployment still requires hybrid strategies that can 

balance high accuracy (>90%), low power consumption (<2W), and rapid response times (<300ms). Persistent barriers, 

such as electrode stability degradation resulting in an 18–25% drop in accuracy, and inter-session variability, under-

score the necessity for adaptive calibration mechanisms to ensure consistent, long-term performance and enable 

widespread. 

Keywords: electromyography; prosthetic hand control; signal processing; machine learning; 

deep learning; gesture recognition; clinical implementation 

 

1. Introduction 

Upper limb amputation significantly impairs an individual’s ability to carry out daily tasks, with approximately 

185,000 people affected in the United States alone [1]. Restoring hand function through prosthetic devices remains 

one of the most complex challenges in rehabilitation engineering, requiring intelligent control systems capable of 

accurately interpreting user intent and converting it into natural, intuitive movement. Surface electromyography 

(sEMG) has emerged as the leading biosignal for myoelectric prosthesis control due to its non-invasive nature and 
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its direct correlation with muscle activation patterns [2]. However, despite substantial progress in laboratory set-

tings, translating these systems into clinically viable solutions still faces major technical and practical challenges. 

The development of EMG-based prosthetic control has evolved from simple on–off mechanisms to advanced 

pattern recognition systems capable of controlling multiple degrees of freedom [1]. Early amplitude-based ap-

proaches, which mapped EMG signal magnitude to the speed or force of prosthetic movement [3], offered basic 

functionality but were limited to single-DoF control and imposed high cognitive loads on users [4]. The emergence 

of pattern recognition techniques marked a significant shift, enabling the classification of various hand gestures us-

ing multichannel EMG signals [5]. 

Contemporary research in EMG-based prosthetic control has been substantially influenced by advances in ma-

chine learning and signal processing methodologies. Traditional machine learning approaches, including Support 

Vector Machines, Linear Discriminant Analysis, and Random Forest classifiers, have demonstrated promising results 

in laboratory settings, with classification accuracies often exceeding 90% for basic gesture recognition tasks [1]. How-

ever, these methods typically require extensive feature engineering and are sensitive to variations in electrode place-

ment, muscle fatigue, and inter-session variability [6]. The emergence of deep learning architectures, particularly 

Convolutional Neural Networks, has offered new possibilities for automated feature extraction and improved gen-

eralization across users and sessions [5]. 

Despite significant technological advances, several fundamental challenges continue to limit the widespread 

clinical adoption of advanced EMG-based prosthetic systems. Signal variability due to electrode shift, muscle fatigue, 

and changes in skin impedance can significantly degrade system performance over time [6]. Additionally, the com-

putational requirements of sophisticated classification algorithms often conflict with the power consumption con-

straints of wearable prosthetic devices [7]. User training requirements and the learning curve associated with myo-

electric control present additional barriers to successful clinical implementation [8]. 

The integration of multiple signal processing domains, including time-domain, frequency-domain, and time-

frequency analysis, has shown promise for improving classification robustness and accuracy [9]. Recent investiga-

tions have explored the combination of traditional handcrafted features with automatically learned representations 

from deep neural networks, suggesting that hybrid approaches may offer optimal performance for real-world appli-

cations [5]. Furthermore, the development of adaptive algorithms that can accommodate changes in signal charac-

teristics over time represents a critical area of ongoing research [8]. 

Nevertheless, a clear research gap persists in unifying and benchmarking the multitude of EMG processing and 

classification strategies under clinically realistic conditions. Previous studies have often relied on controlled labora-

tory settings, healthy participants, and offline datasets, without adequately addressing real-world deployment issues 

such as session-to-session variability, long-term signal stability, user-specific adaptation, and low-power implemen-

tation constraints. Additionally, few reviews have provided a comparative, performance-driven synthesis across 

traditional and deep learning methods with clinical viability in mind. This review aims to bridge that gap by offering 

a comprehensive, performance-focused evaluation of EMG-based control systems and highlighting pathways to-

ward robust, real-time prosthetic solutions. 

This review critically examines current EMG signal processing and classification techniques for prosthetic hand 

control, comparing traditional machine learning approaches with modern deep learning architectures, and high-

lighting their respective strengths, limitations, and clinical viability. It further identifies the most promising solutions 

for real-world implementation while outlining the persistent challenges that must be addressed to achieve practical, 

scalable clinical adoption. 

2. Methodology 

2.1 Research Objectives and Questions 

This systematic review was conducted to evaluate recent advancements in the use of electromyography (EMG) 

signals for controlling upper-limb prosthetic hands. The main aim was to explore how EMG signal processing and 

classification techniques have evolved, with particular attention to the integration of machine learning and deep 

learning methods. Additionally, the review sought to identify persistent challenges in implementing accurate and 

real-time myoelectric control systems. 

To guide the review process, three primary research questions were formulated: 

What are the most recent techniques used for EMG signal acquisition, preprocessing, and classification in up-

per-limb prosthetic control? 
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How have machine learning and deep learning methods improved the performance and accuracy of EMG-

based control systems? 

What limitations and challenges remain in achieving reliable and real-time classification of EMG signals for 

prosthetic applications? 

2.2 Search Strategy and Databases 

A comprehensive literature search was conducted across three electronic databases: PubMed, IEEE Xplore, and 

Google Scholar. These databases were chosen to cover a wide range of disciplines, including biomedical engineering, 

neuroscience, rehabilitation, and computer science. The search was limited to studies published between January 

2015 and May 2025 to reflect the most current developments in the field. 

2.3 Detailed Inclusion and Exclusion Criteria 

To ensure methodological rigor and thematic relevance, specific inclusion and exclusion criteria were estab-

lished: 

2.3.1 Inclusion Criteria: 

Studies published in the English language 

Original experimental research presenting quantitative data 

Studies involving the use of EMG signals for upper-limb or prosthetic hand control 

Research presenting quantitative results related to classification accuracy or control performance 

Studies with sufficient methodological detail to support cross-study comparison 

2.3.2 Exclusion Criteria: 

Studies focusing on lower-limb prosthetics or non-EMG-based control systems 

Review articles, editorials, or opinion pieces 

Studies published in languages other than English 

Research lacking classification or performance evaluation data 

2.4 Study Selection Process 

Following PRISMA 2020 guidelines, Figure 1  [10] The search identified a total of 285 studies: 125 from Google 

Scholar, 98 from PubMed, and 62 from IEEE Xplore. After removing 87 duplicates, 198 unique records remained for 

title and abstract screening. 

During the abstract screening stage, 89 studies were excluded after careful evaluation of their titles and abstracts, 

as their content did not align with the primary focus of this review. Subsequently, 109 full-text articles were re-

trieved and assessed for eligibility, and during this phase, 57 studies were excluded—35 for not focusing on upper-

limb prosthetic control, and 22 were review articles or editorials. 

The application of all inclusion criteria resulted in the selection of 52 studies for the final systematic review. 

2.5 Data Extraction and Analysis 

The review followed the PRISMA 2020 guidelines, shown in Figure 1, to ensure a transparent and systematic 

selection process  [11]. For each included study, data were extracted regarding participant demographics, EMG ac-

quisition setup, electrode configurations, preprocessing methods, feature extraction techniques, classification algo-

rithms, and performance metrics. This data formed the basis for a thematic synthesis, allowing for comparative anal-

ysis across studies and the identification of key trends and research gaps. 
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Figure 1 : PRISMA 2020 flowchart of study selection (2015–2025): 285 records identified, 87 duplicates removed, 198 screened, 

109 full-text articles assessed, 57 excluded, and 52 included in the final review. 

3. Results 

The sEMG signal processing framework illustrated in Figure 2 represents the fundamental approach employed 

across most studies reviewed in this systematic analysis. This comprehensive workflow demonstrates the sequen-

tial stages required to transform raw electromyographic signals captured from residual muscles into reliable con-

trol commands for prosthetic hand devices. The process begins with signal acquisition from surface electrodes 

placed on the residual limb, followed by analog-to-digital conversion to enable digital signal processing. The sub-

sequent preprocessing stages include filtering to remove noise and artifacts, rectification to obtain signal magni-

tude information, and smoothing to reduce signal variability and enhance stability. 
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Figure 2  :sEMG signal processing framework for prosthetic hand control: acquisition, ADC conversion, filtering/rectifica-

tion/smoothing, normalization, feature extraction/classification, and execution through the user interface (adapted from [101] ( 

3.1 Study Selection and Characteristics 

A total of 285 articles were initially identified through systematic searches across three major databases: Google 

Scholar (125 articles), PubMed (98 articles), and IEEE Xplore (62 articles). After removing 87 duplicates and applying 

inclusion/exclusion criteria through title, abstract, and full-text screening, 52 studies were included in the final sys-

tematic review. 

The selected studies encompassed diverse experimental designs, with participant counts ranging from single-

subject demonstrations to large-scale studies involving up to 40 participants. Most studies employed healthy volun-

teers, though several included amputee participants, providing valuable insights into real-world clinical applica-

tions. Window sizes varied considerably across studies, ranging from 100ms for real-time applications to 2.2 seconds 

for offline analysis. 

Detailed methodological characteristics and outcomes of all included studies are summarized in Table 1, with 

further analysis presented in the following sections of this review. 

Table 1 Comprehensive Overview of the 52 EMG-Based Prosthetic-Control Studies 

Study Subjects Classes Window Size 

[12] 1 18 100 ms 

[13] 12 )10+2 amputees) 2 (open/close, force) 250 ms, 90% overlap 

[14] 10 6 256 ms, 128 ms overlap 

[15] 10 6 256 ms, 128 ms overlap 

[16] 1 5 250 ms, 50 ms overlap 
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[17] 10 6 512 samples 

[18] 6 Regression (11 joints) N/A 

[19] 1 (amputee) 2 (open/close) 5 s calibration 

[20] N/A N/A N/A 

[21] 9 3 DoF (27) 25 ms, up to 1.675 s seq. 

[22] 8 15 100 ms (200 samples @2kHz) 

[23] 18 10 200 ms 

[24] 10 10 200 ms 

[25] Myo:19; DB5:10 Myo:7; DB5:12/17/23 N/A 

[26] 5 Regression 200 ms 

[27] 8 (clinical) 1 (grasp) N/A 

[28] 37 Regression N/A 

[29] 1 (demo) 1 (open/close) N/A 

[30] 1 5 (force levels) N/A 

[31] N/A 5 (individual fingers) N/A 

[32] N/A 5 128 samples @ 2kHz 

[33] 10 (4 online) 10 500 ms (MSFS), 1000 ms 

[34] 2 amputees 3-DoF (18), 4-DoF (32) 200 ms, update 50 ms 

[35] 5 amputees, 5 able-bodied 5 hand motions ~15 fps ultrasound 

[36] 8 10 finger/combined moves 100 ms, 50 ms overlap 

[37] 3 (SNR), 6 (control) 6 DOF 300 ms (smoothed MAV) 

[38] 8 able-bodied, 4 amputees 5 grasp types N/A (phases of reach) 

[39] 14 male volunteers 
Individual finger, thumb, wrist 

movements 
50-1050 ms 

[40] 2 subjects Open/close, supinate/pronate DSP @10 kHz, T=51.1 ms 
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[41] Not specified Wrist and finger movements Real-time, EMD 30-100 ms 

[42] 8 able-bodied 6 hand postures, digit force 50 ms non-overlapping 

[43] 1 bilateral amputee 3 (wrist flexion, fist, extension) 
2s classification, 500ms sub-win-

dows 

[44] 1 amputee Multiple gestures/grades Real-time KMG processing 

[45] Multiple datasets Hand gestures (varies) Windowing/overlapping 

[46] 10 7 gestures 1-second pause, 20-30 reps 

[47] 14 male subjects Multiple DoF movements RMS: 250ms window 

[48] NinaPro DB1:27, DB2:40 DB1:53, DB2:41 150ms, 10ms increment 

[49] Multiple NinaPro DBs Various (6-53 classes) 100-300 samples, shifts 

[50] 10 healthy adults 12 hand postures, 7 groups 250ms, 10ms shift 

[51] 
Not specified (Myo arm-

band) 
7 hand gestures 150 samples @200Hz (~0.75s) 

[52] 
NinaPro DB2:40, DB3:10, 

Ameri:17 
NinaPro:40, Ameri:10 

400ms/100ms overlap (NinaPro), 

160ms/40ms (Ameri) 

[53] 10 healthy males 
10 gestures (7 individual fin-

gers) 
250ms, 25ms shift (90% overlap) 

[54] 1 male 4 physical actions 1000 samples, 25% overlap 

[55] NinaPro DB2:40, DB3:11 DB2:49, DB3:50 200ms, 100ms increment 

[56] 7 able-bodied, 1 amputee 9 gestures 
2.2s (4500 samples), RMS 150-

sample windows 

[57] DB2:40, DB4:10 DB2:49, DB4:52 200ms, 50ms step 

[58] 13 healthy subjects 21 hand gestures 200ms (40 steps @200Hz) 

[59] Multiple datasets Up to 53 gestures 50-300ms, STFT spectrograms 

[60] Not specified Grasp open/close Real-time 

[61] 
CapgMyo dataset, 8 hand 

gestures 
8 gestures N/A 

[62] Simulated sEMG data 10 MVC levels N/A 

[63] 
Multiple studies (review 

paper) 
8-10 movements N/A 
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Figure 3:   Distribution of participant numbers across included studies (n=52), ranging from single-subject case studies to >30 

participants. 

 

Figure 3 illustrates the distribution of subjects across the reviewed studies. The number of participants varied 

substantially, ranging from single-subject case studies (e.g., [16], [19], [29], [44]) to larger experimental datasets with 

over 30 participants (e.g., [28], [38]). This variation highlights both the diversity of experimental designs and the 

challenges of generalizing results across different populations. 

 

Figure 4:  Number of gesture classes studied: from binary tasks (open/close) to more than 50 complex gestures. 
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Figure 4 depicts the relationship between individual studies and the number of classes employed in their ex-

perimental protocols. The distribution reveals considerable variation: while some works adopted binary classifica-

tion schemes (e.g., open vs. close hand actions in [13], [19], [29]), others explored more complex paradigms with 

multiple gesture classes, such as 10 to 21 movements ([23], [36], [58]) or even large-scale datasets exceeding 50 classes 

([49], [59]). This spread reflects both methodological diversity and the progressive shift in the field toward tackling 

higher-dimensional myoelectric control tasks. 

 

Figure 5:   Distribution of segmentation window sizes (ms) across studies: balancing responsiveness (25–100 ms) versus stabil-

ity (up to 1000 ms). 

 

Figure 5 shows the relationship between the reviewed studies and the window sizes applied for signal segmen-

tation. The choice of window length varied considerably from short durations of 25–100 ms ([21], [22], [42]) to me-

dium windows of 200–300 ms ([23], [36], [43]) and longer segments up to 1000 ms ([33], [54]). Short windows are 

generally preferred for real-time control due to lower latency, while longer windows provide more stable feature 

extraction at the cost of increased delay. This variability reflects the trade-off between accuracy and responsiveness 

in myoelectric control research. 

Window_Size_ms

[12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25]

[26] [27] [28] [29] [30] [31] [32] [33] [33] [34] [35] [36] [37] [38]

[39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52]

[52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63]



Industrial Technology Journal, 2025, Vol 3, Issue 1. 10 of 30 
 

 

 

Figure 6:   Comparison of feature extraction techniques used in the literature (time-domain, frequency-domain, time–fre-

quency, spatial, hybrid). 

 

Figure 7:   Frequency of feature families reported across studies (e.g., MAV, RMS, WL, ZC, SSC, STFT, CWT). 
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fication accuracy in myoelectric control. 
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Figure 8:  Distribution of machine learning versus deep learning approaches in EMG-based control studies. 

 

Figure 9:  Distribution of classification algorithms used (LDA, SVM, kNN, ANN, CNN, LSTM, hybrid approaches). 
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Figures 8 and 9 present the relationship between the reviewed studies and the machine learning or deep learn-

ing methods applied. The distribution shows a clear evolution over time: early works relied heavily on classical 

machine learning approaches such as LDA, kNN, and SVM ([12], [14], [15], [16], [42]) due to their simplicity and 

efficiency. More recent studies have increasingly adopted deep learning architectures, including CNNs, RNNs, 

LSTMs, and hybrid models ([22], [23], [25], [46], [58]), which have demonstrated superior performance in handling 

raw EMG and high-dimensional data. Regression-based methods such as Gaussian Processes, VARMAX, and 

XGBoost were also used in continuous control tasks ([18], [28], [34]). This methodological diversity reflects the on-

going shift from handcrafted feature-based classifiers toward end-to-end deep learning solutions for robust myoe-

lectric control. 

 

Figure 10: Evaluation of Machine Learning and Deep Learning Methods Across Multiple Performance Metrics 

 

Figure 10 summarizes the relationship between the reviewed studies and their reported performance metrics. 

The results demonstrate a wide variation in accuracy and evaluation outcomes, depending on task complexity, fea-

tures, and models used. Simpler binary classification tasks achieved relatively high success rates, often exceeding 

90% ([12], [13], [19]). Multi-class gesture recognition reported accuracies in the range of 90–98% with optimized fea-

ture sets and classifiers ([15], [23], [25], [46], [52]). In contrast, studies focusing on regression-based continuous con-

trol (e.g., force or joint prediction) typically reported performance in terms of correlation coefficients and RMSE, with 

values indicating high but variable accuracy ([18], [26], [28], [37]). These findings highlight both the progress in reli-

able classification and the challenges that remain for achieving robust continuous control in practical applications. 
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[53] ANN [53] SVM [53] Real-time [54] 1-NN [54] SVM

[55] Intact CNN [55] Amputees CNN [56] Able-bodied [56] Amputee [57] DB2

[57] DB4 [58] RNN GRU [59] Average [60] Grasping time [61] MoEMba

[62] CNN [63] PCS-EMGNet
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3.2 Signal Preprocessing Techniques 

Surface electromyography (sEMG) signal processing has emerged as a critical field in biomedical engineering, 

enabling non-invasive assessment of muscle function for applications ranging from rehabilitation medicine to hu-

man-machine interfaces. Effective preprocessing can improve classification accuracy by up to 15% in motion predic-

tion tasks, while proper normalization techniques substantially reduce inter-subject variability [64].  

The preprocessing phase addresses inherent challenges, including noise contamination, amplitude variability, 

and signal segmentation requirements. Modern sEMG systems face significant obstacles, such as susceptibility to 

external noise coupling, necessitating sophisticated preprocessing approaches  [33]. Contemporary research has 

highlighted the critical importance of addressing electrocardiogram (ECG) interference, with advanced techniques 

like the Score-based Diffusion Model for Surface Electromyographic Signal Denoising (SDEMG) leveraging genera-

tive models to restore clean signals  [65]. Digital signal processing combined with machine learning approaches 

shows high potential for identifying disorders according to muscular patterns [66]. The integration of multiple pre-

processing stages requires careful consideration of computational efficiency, particularly in real-time applications 

where processing delays can significantly impact system performance. 

3.3 Normalization of sEMG Signals 

Surface electromyography normalization addresses inherent variability in signal amplitudes across different 

subjects, sessions, and recording conditions. Traditional techniques primarily rely on maximum voluntary contrac-

tion (MVC) values as reference points [67]. However, reliability varies significantly depending on specific applica-

tions, with comparative studies involving twenty-five male cyclists demonstrating varying degrees of reliability for 

specific movement patterns [67]. For populations with limitations such as knee osteoarthritis patients, standardized 

isometric contraction (SIC) protocols have demonstrated higher reliability with between-day ICC values ranging 

from 0.75 to 0.86 and within-day ICC values from 0.84 to 0.95 [68]. Dynamic MVC measurement procedures repre-

sent a significant advancement, with studies showing substantially different normalized amplitude values compared 

to conventional static approaches (Wilcoxon signed-rank test, p < 0.05) [69].  

3.4 Advanced Normalization Techniques 

Sliding-window normalization (SWN) combines sliding-window analysis with z-score normalization, achiev-

ing a mean accuracy of 64.6% - a 15.0% improvement over non-normalization cases (49.8%) [70]. In cross-subject 

scenarios, this method achieved 56.5% accuracy, representing an 11.1% improvement over non-normalization 

(44.1%) [70]. 

Internal reference normalization effectively reduces between-subject variability with minimal impact on within-

subject variability when conducted with appropriate reference measurements [71]. This approach shows particular 

promise for neuropsychiatric disorder research using Motor Evoked Potentials (MEPs) as diagnostic indicators. 

3.5 Segmentation of sEMG Signals 

3.5.1 Window-Based Parameters 

Signal segmentation directly impacts feature extraction quality and classification performance. Window lengths 

of 100-300 milliseconds provide optimal performance for gesture recognition applications, with overlapping incre-

ments of 25-100 milliseconds showing favorable results [72]. Research has established that window lengths typically 

ranging from 100 to 300 milliseconds provide optimal performance for most gesture recognition applications, with 

overlapping increments of 25 to 100 milliseconds showing favorable results for classification tasks. 

Comprehensive investigations into segmentation parameter effects have revealed that window length (number 

of sEMG data points in a segment) and overlapping rate (rate of overlap between segments) are essential for guar-

anteeing adequate data for feature extraction and classification processes [72]. Signal truncation parameters, analyz-

ing maximum segments of 2.5 versus 5 seconds after threshold identification, can substantially influence classifica-

tion outcomes. 

Advanced approaches incorporate Equal Division and Overlap Division methodologies with division numbers 

ranging from 2-4 segments per window [70]. Different feature extraction methods (MAV, MWL, DRMS, STFT, and 

SWT) respond differently to segmentation parameters, with some requiring minimum window lengths exceeding 

100 milliseconds. 
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3.5.2 Advanced Segmentation Methodologies 

Shannon Entropy demonstrates superior performance compared to traditional amplitude-based techniques 

such as RMS, Moving Average, Mean Frequency, Skewness, Kurtosis, and Integration [73].  

Wavelet-based segmentation approaches simultaneously analyze signals in time and frequency domains, ad-

dressing nonlinear sEMG characteristics [74]. The wavelet-based correlation dimension method combines nonlinear 

time series analysis with time-frequency domain methodologies for Gustafson-Kessel clustering. 

Threshold-based algorithms have evolved to incorporate dynamic adaptation mechanisms. Modern approaches 

calculate adaptive thresholds by reading initial signal samples (typically 500 samples) representing basal noise lev-

els, with threshold calculation involving T = μ × β, where the beta factor is optimized through iterative processes 

[73].  

3.6 Feature Extraction Methods  

Surface electromyography (sEMG) feature extraction represents a critical component in developing effective 

human-computer interfaces and prosthetic control systems. The field has evolved significantly over the past decade, 

with researchers developing increasingly sophisticated methods to extract meaningful information from the complex 

bioelectrical signals generated by muscle contractions. This part of the review examines the diverse landscape of 

feature extraction techniques employed in sEMG-based hand motion recognition, prosthetic hand control, and ges-

ture recognition systems, highlighting both traditional signal processing approaches and emerging deep learning 

methodologies. 

3.6.1 Time Domain Features 

Time domain feature extraction remains one of the most fundamental and widely utilized approaches in sEMG 

signal processing due to its computational efficiency and interpretability. Root Mean Square (RMS) stands as one of 

the most prominent time domain features, providing a measure of signal power that correlates well with muscle 

force and activation levels [75]. RMS provides muscle activation intensity estimates, achieving 84–89% accuracy in 

basic gesture classification tasks [76,77]. The Weight Peaks (WP) method represents another significant time domain 

approach, focusing on identifying and quantifying the prominent peaks within the signal that correspond to motor 

unit activations [75]. These methods are particularly valuable in real-time applications where computational re-

sources are limited, and rapid processing is essential for responsive prosthetic control. Waveform Length (WL), de-

fined as cumulative signal variation, demonstrates particular effectiveness in detecting transient muscle contractions, 

reducing false positives by 22% compared to threshold-based methods [76]. 

The integration of more sophisticated time domain features has expanded beyond simple statistical measures 

to include advanced signal characteristics. Short-time energy calculations provide insights into the temporal dynam-

ics of muscle activation patterns, while zero-crossing rate analysis offers information about signal frequency content 

without requiring frequency domain transformation [77]. Linear predictive coefficients (LPC) with multiple levels, 

specifically implemented with 12 levels in recent studies, have demonstrated effectiveness in capturing the auto-

regressive characteristics of sEMG signals, enabling more nuanced pattern recognition capabilities[2]. These features 

collectively provide a comprehensive temporal characterization of muscle activation patterns essential for accurate 

gesture classification. 

3.6.2 Frequency Domain Features  

Frequency domain analysis has proven invaluable for extracting spectral characteristics that reflect the under-

lying physiological properties of muscle contractions. Mean and median frequency calculations—commonly known 

as Mean Frequency (MNF) and Median Frequency (MDF)—serve as fundamental frequency domain features. These 

parameters provide essential insights into muscle fatigue states and muscle fiber composition, with MDF and MNF 

shifts shown to improve accuracy in prolonged gesture recognition tasks by approximately 12–15% [78]. These fea-

tures have been particularly useful in tracking muscle force levels and fatigue during sustained contractions [79]. 

Power spectrum analysis, which examines dominant frequencies typically in the 20–500 Hz range, plays a crit-

ical role in identifying muscle activation patterns and filtering motion artifacts. Within this range, frequency bands 

between 60–80 Hz have been found optimal for applications such as robotic hand control. Furthermore, power spec-

tral features reduce inter-subject variability by 18–22% when compared to conventional time-domain features, con-

tributing to more reliable and generalizable classification models [78,80]. 
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To capture the temporal evolution of frequency content in sEMG signals, the Short-Time Fourier Transform 

(STFT) is often employed. By applying frequency analysis over short time windows ranging from 100 to 500 ms, 

STFT provides localized frequency information. This approach has demonstrated high utility in real-time applica-

tions, achieving classification accuracies of up to 91.55% with latencies below 300 ms—well within the responsive-

ness required for prosthetic control systems [80]. Frequency-domain features enable stiffness modulation in variable 

impedance prostheses, enhancing grip stability by 30% during object manipulation [81]. 

In addition to traditional Fourier-based methods, advanced frequency domain approaches have incorporated 

wavelet analysis to perform multi-resolution spectral decomposition of the sEMG signal. Wavelet-based feature ex-

traction enables simultaneous time and frequency localization, making it particularly effective for non-stationary 

biomedical signals. Studies have reported classification accuracies as high as 95.5% when applying wavelet decom-

position with specific feature extraction functions at each level, even for signal segments as short as 800 milliseconds 

[79,82]. This ability to extract both high-frequency components related to motor unit recruitment and low-frequency 

components associated with overall muscle activation enhances the robustness of EMG pattern classification sys-

tems, paving the way for reliable real-time prosthetic control. 

3.6.3 Time-Frequency Domain Feature Integration 

The limitation of analyzing sEMG signals exclusively in either the time or frequency domains has led to the 

development of sophisticated time-frequency analysis methods that capture the dynamic spectral characteristics of 

muscle contractions. The Stockwell Transform has emerged as a particularly effective time-frequency analysis 

method, offering superior performance compared to traditional approaches by providing simultaneously high tem-

poral and frequency resolution [83]. This technique enables the extraction of features that capture both the instanta-

neous frequency content and its temporal evolution, which is crucial for recognizing complex hand gestures that 

involve sequential muscle activations. 

Recent developments have introduced the multiscale time-frequency information fusion representation method 

(MTFIFR), which aims to obtain comprehensive time-frequency features from multichannel sEMG signals [84]. This 

approach addresses the challenge of information loss that commonly occurs during traditional feature extraction 

processes, particularly when dealing with multiple upper-limb rehabilitation movements. The MTFIFR method has 

demonstrated effectiveness in recognizing 12 different types of upper-limb rehabilitation actions, showcasing its 

potential for comprehensive gesture recognition systems that can support diverse therapeutic and assistive applica-

tions. 

3.7 Advanced Feature Extraction Methodologies 

3.7.1 Nonlinear and Complexity-Based Feature Extraction 

The recognition that sEMG signals exhibit nonlinear characteristics has prompted the development of special-

ized feature extraction methods that can capture the complex dynamics inherent in muscle activation patterns. The 

wavelet-based correlation dimension method represents a significant advancement in this area, combining nonlinear 

time series analysis with time-frequency domain techniques to extract effective features from sEMG signals [85]. This 

approach first applies the wavelet transform to the signals and then calculates correlation dimensions to obtain fea-

tures that reflect the underlying nonlinear dynamics of the neuromuscular system. 

Detrended Fluctuation Analysis (DFA) has emerged as another important nonlinear feature extraction method, 

particularly valuable for analyzing the scaling properties and long-range correlations present in sEMG signals [75]. 

Fractal analysis features have proven especially effective for weak and single-channel upper-limb EMG signals, 

providing robust characterization even when signal quality is compromised [79]. These complexity-based ap-

proaches offer unique insights into the physiological processes underlying muscle contractions and have shown 

particular promise for applications requiring high discrimination between subtle gesture variations. 

3.7.2 Morphological and Spatial Feature Extraction 

Contemporary research has expanded beyond traditional temporal and spectral features to incorporate mor-

phological characteristics that describe the shape and structure of sEMG signals. Studies have explored 23 distinct 

morphological, time domain, and frequency domain feature extraction techniques, recognizing that comprehensive 

feature sets can significantly improve classification performance [86]. However, the substantial size of these feature 
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sets can introduce computational complexity issues that may hinder machine learning algorithm performance, ne-

cessitating the development of efficient feature selection approaches to optimize the feature space. 

The concept of spatial feature extraction has gained prominence with the development of multichannel sEMG 

systems that can capture muscle activation patterns across multiple electrode sites. Research has demonstrated that 

optimal electrode placement and the consideration of spatial relationships between channels can significantly en-

hance gesture recognition accuracy [87]. Studies utilizing armband sensors with multiple electrodes have incorpo-

rated electrode shift considerations into their feature extraction algorithms, acknowledging that practical deploy-

ment scenarios often involve non-ideal sensor placement that can affect signal quality and feature consistency. 

Table 2 catalogues how each of the 52 primary studies grouped their electromyography (EMG) features into 

five broad families—time-domain, frequency-domain, time-frequency, nonlinear/complexity, and morphological-

spatial—and lists the reference numbers of the papers that adopted them. By showing the count of studies, typical 

feature descriptors, accuracy ranges, and key advantages or limitations side-by-side, the table helps readers quickly 

identify which feature families are most prevalent and under what experimental conditions they tend to excel. This 

overview also clarifies research gaps; for example, nonlinear features appear far less explored than traditional time-

domain metrics despite evidence of their robustness to low-signal scenarios. 

Table 2 Distribution of Feature-Extraction Families Across the Reviewed Studies 

Feature Family Typical Features 
Stud-

ies (n) 

Accuracy 

Range 

Notable Advantages / 

Limits 
Study Ref. 

Time-domain 
MAV, RMS, WL, 

ZC, SSC, VAR 
21 80 – 97 % 

Fast and low power; ac-

curacy degrades under 

electrode shift 

[12], [13], [14], 

[15], [16], [17], 

[19], [21], [24], 

[26], [32], [37], 

[39], [42], [43], 

[44], [45], [46], 

[49], [54], [58] 

Frequency-do-

main 

FFT bins, MNF, 

MDF, DFS 
3 76 – 96 % 

Captures fatigue; needs 

longer windows (~45 

ms) 

[17], [32], [53] 

Time-Frequency 

STFT, CWT, 

Wavelet coeffs, 

Spectrograms 

6 88 – 98 % 

Best for non-stationary 

bursts; moderate com-

pute load 

[25], [36], [43], 

[53], [57], [59] 

Morphological / 

Spatial 

2-D HD-sEMG 

images, Electrode 

maps 

3 57 – 94 % 

Handles electrode shift; 

requires multi-channel 

arrays 

[43], [54], [55] 
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Figure 11: Comparison of Feature Families by Number of Studies in EMG Research 

 

Figure 12:  Accuracy ranges reported for each feature family across studies. 

 

Figures 11 and 12 provide a comparative overview of feature families used in EMG-based pattern recognition. 

Time-domain features (e.g., MAV, RMS, WL, ZC, SSC) were the most frequently applied across 21 studies, achieving 

accuracies between 80–97%, and remain attractive due to their computational efficiency, although performance can 

degrade under electrode shifts ([12–58]). Frequency-domain features, such as FFT bins and median frequency, were 

less common but useful for detecting muscle fatigue, albeit requiring longer analysis windows ([17], [32], [53]). Time–

frequency methods, including STFT, CWT, and spectrograms, demonstrated high accuracies up to 98% and provided 

strong robustness for non-stationary signals, though at moderate computational cost ([25], [36], [43], [53], [57], [59]). 

Finally, morphological and spatial representations from high-density EMG images achieved accuracies ranging from 

57–94%, showing resilience to electrode displacement but requiring multi-channel sensor arrays ([43], [54], [55]). 
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Together, these results underscore the trade-offs between accuracy, robustness, and computational complexity when 

selecting feature families for myoelectric control. 

3.8 Convolutional Neural Network-Based Feature Learning 

The advent of deep learning has revolutionized sEMG feature extraction by enabling automated discovery of 

discriminative features without requiring extensive manual feature engineering. Multi-stream convolutional neural 

network algorithms have been developed specifically for sEMG-based gesture recognition, leveraging the success of 

deep learning in image classification while adapting to the unique characteristics of bioelectrical signals [88]. These 

systems have achieved impressive performance metrics, with some configurations reaching 93.18% accuracy using 

pervasive electrode combinations, demonstrating the potential for practical deployment in real-world applications. 

The integration of Temporal Convolutional Network (TCN) modules with traditional CNN architectures has 

emerged as a particularly effective approach for capturing time-varying features in sEMG signals [89]. Multi-stream 

deep learning architectures that strategically combine TCN-based time-varying features with CNN-based frame-

wise features have shown superior performance in addressing the challenges of ineffective feature enhancement that 

plague traditional systems. These hybrid approaches leverage the temporal modeling capabilities of TCNs while 

maintaining the spatial feature extraction strengths of CNNs, resulting in more robust and stable prediction systems. 

3.8.1 Unsupervised and Self-Supervised Learning Approaches 

The limitation imposed by supervised learning's reliance on expensive labeled data has motivated the develop-

ment of unsupervised feature extraction methods for sEMG analysis. The Layer-wise Feature Extraction Algorithm 

(LFEA) represents a significant advancement in this area, utilizing information-based methods to learn disentangled 

feature representations of sEMG signals without requiring manual annotations [90]. This approach has demonstrated 

superior performance in disentanglement metrics, achieving TC scores that are 6.2 points lower and MIG metrics 

that are 0.11 points higher than competing methods, indicating more effective separation of underlying signal com-

ponents. 

Auto-encoder architectures have been successfully employed to disentangle pattern-specific components from 

subject-specific characteristics in sEMG signals, enabling the development of more generalizable gesture recognition 

models for cross-subject scenarios [91]. This approach addresses one of the fundamental challenges in sEMG-based 

systems: the significant inter-subject variability that can compromise recognition accuracy when models trained on 

one individual are applied to another. The ability to separate pattern-specific information from individual physio-

logical differences represents a crucial step toward developing truly universal sEMG-based control systems. 

3.8.2 Traditional Machine Learning Approaches 

Traditional machine learning methods form the foundational backbone of surface electromyography (sEMG) 

classification systems. These approaches rely on handcrafted feature extraction followed by classifier training, offer-

ing computational efficiency and interpretability—making them especially valuable for real-time applications with 

limited processing power. 

Classic machine learning methods for sEMG classification typically begin with the extraction of well-established 

features from the time, frequency, or statistical domains [24] 

Linear Discriminant Analysis (LDA) is one of the most commonly adopted classifiers in this domain due to its 

speed and simplicity, achieving 80.2% accuracy on the NinaPro DB2 dataset with only 0.3 ms latency per classifica-

tion on a Cortex-M4 processor [48]. Support Vector Machines (SVMs) with radial basis function kernels have demon-

strated superior performance in nonlinear classification tasks, reaching 89.45% accuracy for 49-class upper limb mo-

tion recognition [49]. K-Nearest Neighbors (KNN) and Artificial Neural Networks (ANNs) are also frequently em-

ployed, with ANNs offering the ability to model complex, nonlinear relationships between input features and hand 

gestures [50]. 

Traditional classifiers such as Random Forest have shown competitive performance, with reported precision 

and F1-scores of 92.1% and 91.7%, respectively, in 10-gesture recognition using Myo armband data [51]. Ensemble 

techniques like eXtreme Gradient Boosting (XGBoost), when combined with kernel density estimation-based fea-

tures, have achieved 88.4% accuracy for simultaneous hand and wrist movement recognition—surpassing single 

classifiers by 8.2% [52]. In force control tasks, XGBoost has also proven effective; incorporating anthropometric data 

into regression models improved grip force prediction (r² = 0.93) using normalized EMG features [28]. 



Industrial Technology Journal, 2025, Vol 3, Issue 1. 19 of 30 
 

 

Despite their efficiency, traditional models are highly sensitive to feature selection and signal variability. Studies 

show that the ReliefF algorithm can optimize feature subsets by reducing dimensionality up to 60% while preserving 

classification accuracy around 91.2% [52]. Feature engineering remains critical, with higher-order statistics (e.g., 

skewness, kurtosis) improving cross-subject generalization by 12% in amputee populations [92]. 

A major challenge in traditional machine learning pipelines is inter-subject and inter-session variability. For 

instance, time-domain features typically yield 84–89% accuracy but are prone to degradation across sessions [53]. 

Frequency-domain features, such as Mean and Median Frequency (MNF/MDF), while useful for fatigue detection, 

require longer processing windows (~45 ms) and careful tuning. Spatial features derived from 12-channel sEMG 

arrays have shown resilience to electrode displacement, maintaining 78% accuracy even under 5 mm shifts [54]. 

Beyond conventional classification, some researchers have integrated physiological modeling to improve inter-

pretability and robustness. Muscle synergy-based models, such as those developed by [26]They used Independent 

Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) to extract underlying muscle activation 

patterns. Their musculoskeletal model achieved an average correlation coefficient of 92% and a normalized root 

mean square error (NRMSE) of 10.7% for joint angle estimation, outperforming traditional regression models. 

For resource-limited environments, simplified systems offer promising alternatives. [29] developed a low-cost 

Arduino-based prosthetic hand prototype using basic rectification and thresholding methods. Despite its simplicity, 

the system achieved reliable open/close actuation with a 150 ms response time and only 5% false positive rate—

demonstrating the potential of traditional machine learning in embedded, low-power prosthetic control solutions. 

3.8.3 Deep Learning and Convolutional Neural Networks 

The advent of deep learning has fundamentally transformed sEMG classification methodologies, with Convo-

lutional Neural Networks (CNNs) emerging as particularly effective architectures for gesture recognition tasks. 

CNNs automate feature learning directly from raw or minimally processed sEMG signals, eliminating the need for 

handcrafted features and improving generalization across users and sessions. These networks excel at processing 

sEMG spectrograms, using short-latency, dimension-reduced inputs to maintain real-time performance   [55]. 

Triwiyanto et al. demonstrated that a 1D CNN can classify ten hand motions from raw EMG signals (two chan-

nels) with accuracies ranging from 77% to 93%, outperforming traditional classifiers such as SVM, LDA, and KNN 

[24]. Similarly, Asif et al. reported CNNs consistently surpass traditional models, achieving over 95% accuracy in 

recognizing specific gestures across different subjects [23]. Chen et al. introduced EMGNet, a lightweight CNN ar-

chitecture using continuous wavelet transform (CWT) spectrograms, which achieved 98.81% accuracy with reduced 

computational burden on the Myo dataset [25]. 

Advanced CNN architectures have incorporated mechanisms such as spatial-temporal attention and multi-

stream inputs. A Multi-Stream CNN processing electrode topography and time dynamics reached 96.4% accuracy 

on 50-gesture NinaPro DB2, reducing inter-subject variability by 31% [49]. The Attention-Deep Fast CNN achieved 

92.7% accuracy under electrode shift conditions, highlighting its robustness in HD-sEMG recognition [56]. Novel 

designs like MSFF-Net fused morphology, spatial electrode data, and feature maps to yield 89.1% accuracy on 

NinaPro DB4 through early-late fusion networks [57]. 

Hybrid and sequential models further advanced the classification performance by integrating temporal context. 

Joshi et al. presented Temporal Convolutional Networks (TCNs), which significantly outperformed non-sequential 

models and LSTM-based approaches, particularly in reducing transient misclassifications during gesture transitions 

[21]. TCNs achieved 89.7% accuracy with only 120 ms latency, suitable for real-time control tasks [58]. 

Recurrent neural networks (RNNs) and hybrid architectures also demonstrated strong performance. Bidirec-

tional LSTMs (BiLSTMs) paired with MobileNetV2 encoders and optimized via Bayesian techniques yielded 90.23% 

average accuracy across six datasets, with reduced variance compared to conventional models [59]. U-Net, adapted 

for sEMG spectrograms and tuned using metaheuristic strategies, achieved 88.71% on Mendeley Data [59]. 

Deep learning models also address session variability and user adaptation. Self-recalibrating CNNs dynami-

cally adjust parameters, improving accuracy by 10.18% across five sessions [93]. Transfer learning strategies, such as 

those using triplet margin loss, have reduced data requirements for new users by 70% [60]. Furthermore, low-power 

architectures like Spiking Neural Networks have shown promise for implantable systems, with power consumption 

as low as 85 μW per classification [59]. 

Table 3 aggregates the classification approaches reported in the selected studies into four major families: tradi-

tional machine learning, deep learning, ensemble/hybrid models, and real-time heuristic controllers—while map-

ping each family to its corresponding reference numbers, accuracy span, and latency or power considerations. 
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Presenting the data in this way reveals that deep learning consistently achieves the highest offline accuracy yet de-

mands greater computational power, whereas lightweight linear methods still dominate ultra-low-power, embed-

ded implementations. The table therefore provides a concise evidence base for choosing an algorithm that balances 

accuracy with real-time constraints in wearable prostheses. 

Table 3 Performance Spectrum of Classification Algorithms Used for EMG-Based Prosthetic Control 

Algorithm 

Family 

Representative Mod-

els 

Studies 

(n) 

Accuracy 

Range 

Latency / Power 

Notes 

Study Ref. 

Traditional 

ML 

LDA, SVM, kNN, 

Random Forest, SLR 

21  80 – 93 %  Sub-ms on MCUs; 

< 0.3 W budget  

[12], [14], [15], [16], [21], [23], 

[24], [25], [32], [33], [38], [42], 

[43], [46], [47], [49], [50], [51], 

[52], [53], [61]  

Deep Learn-

ing 

1-D/2-D CNN, TCN, 

LSTM, GRU, U-Net 

18  88 – 99 %  Offline > 95 % but 

1.2-2.5 W runtime 

cost  

[21], [22], [23], [24], [25], [33], 

[44], [43], [44], [46], [47], [53], 

[54], [55], [56], [57], [60], [61]  

Ensemble / 

Hybrid 

XGBoost, CNN-

LSTM, MSFF-Net 

6  88 – 99 %  Balances accuracy 

vs. compute; tuna-

ble  

[25], [28], 43, 50, [55], [57]  

Real-time 

Heuristics 

Thresholding, Finite-

State, Kalman 

8  Simple tasks 

90 – 100 %  

< 150 ms response 

on USD 50 hard-

ware  

[13], [19], [29], [31], [35], [37], 

[39], [58]  

 

Figure 13: Comparison of Classifier Families by Number of Studies in EMG Research 
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Figure 14: Study Distribution Among Different EMG Classifier Families 

 

Figures 13 and 14 compare algorithm families applied in EMG-based pattern recognition and control. Tradi-

tional machine learning methods (e.g., LDA, SVM, kNN, Random Forest) were the most widely adopted, reported 

in 21 studies with accuracies between 80–93%, and demonstrated excellent suitability for embedded systems with 

sub-millisecond latency and power budgets below 0.3 W ([12–61]). Deep learning architectures, including CNNs, 

TCN, LSTM, and GRU, achieved higher accuracies (88–99%) across 18 studies, but incurred higher runtime costs 

(1.2–2.5 W) ([21–61]). Ensemble and hybrid models (e.g., XGBoost, CNN-LSTM, MSFF-Net) offered accuracies up to 

99% while providing a balance between computational load and robustness ([25], [28], [43], [50], [55], [57]). Finally, 

real-time heuristic approaches such as thresholding, finite-state machines, and Kalman filters achieved near-perfect 

performance (90–100%) in simple tasks with response times under 150 ms, often on low-cost hardware ([13], [19], 

[29], [31], [35], [37], [39], [58]). These comparisons highlight the trade-off between computational complexity and 

control accuracy, guiding algorithm selection for different application contexts. 

4. Discussion 

The comprehensive analysis of 52 studies reveals significant insights into the current landscape of EMG-based 

prosthetic hand control, highlighting both remarkable technological advances and persistent challenges that con-

tinue to limit widespread clinical adoption[94]. The diversity of methodological approaches across the reviewed 

studies provides valuable insights into the relative merits of different signal processing and classification strategies, 

while also revealing critical gaps between laboratory achievements and practical implementation requirements. 

Table 4 synthesizes the most frequently reported obstacles in EMG-controlled prosthetic systems—such as elec-

trode shift, inter-session variability, high power consumption, control latency, and motion artefacts—along with the 

studies that addressed them, and the quantitative gains achieved after mitigation[95]. By coupling each challenge to 

concrete improvement figures (e.g., a 10 % accuracy recovery after self-recalibration) and to the papers that demon-

strated them, the table offers practitioners a ready reference for proven solutions and highlights where further inno-

vation is still required. This structured snapshot turns a scattered body of findings into actionable design guidance 

for future prosthetic controllers[96]. 
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Table 4 Recurring Technical Challenges and Documented Mitigation Strategies 

Challenge 
Impact on 

Control 

Typical Degra-

dation 

Proposed Solution(s) Demonstrated 

Gain 

Study Refs 

Electrode shift & 

skin impedance 

variation 

Classifier drift  18 – 25 % accu-

racy loss  

Self-recalibrating 

CNN; sliding-win-

dow z-score norm.  

+10 % across 

sessions  

[53]  

Inter-session / user 

variability 

Poor generali-

zation  

Need daily re-

training  

Transfer-learning 

with triplet loss; 

auto-encoder disen-

tanglement  

Data need ↓ 70 

%  

[53]  

Power budget of 

wearable hardware 

Battery life  DL models 

draw > 2 W  

Pruned lightweight 

CNN (EMGNet); 

neuromorphic SNN  

Consumption ↓ 

85 %  

[12], [20], 

[37], [40], 

[44], [48], 

[53], [56], 

[61]  

Latency in real-

time prostheses 

User frustra-

tion  

> 300 ms unus-

able  

Temporal CNN (120 

ms); FPGA/DSP 

pipelines 

Response < 120 

ms  

[26], [27], 

[29], [33], 

[36], [37], 

[39], [41], 

[56], [58]  

Signal noise & mo-

tion artefacts 

False triggers  Up to 15 % er-

ror spikes  

Diffusion-model de-

noising; adaptive 

thresholds  

Error ↓ 12 %  – 

4.1 Interpretation of Classification Performance Results 

Comprehensive analysis reveals significant disparities in classification performance across different methodo-

logical approaches, with deep learning techniques consistently outperforming traditional machine learning methods. 

The superior performance of Convolutional Neural Networks, achieving accuracies exceeding 94% in multiple stud-

ies [23], [25], [46], compared to traditional classifiers averaging 87-92% [15], [32], [50], can be attributed to their in-

herent ability to automatically extract hierarchical features from raw EMG signals without requiring manual feature 

engineering. 

The exceptional performance of EMGNet, reaching 98.81% accuracy on the Myo dataset [25], demonstrates the 

effectiveness of compact CNN architectures specifically designed for EMG signal processing. This performance ad-

vantage stems from the network's capacity to capture both spatial relationships between electrode channels and 

temporal dynamics within the signal, which traditional feature-based approaches cannot adequately represent. The 

automatic feature learning capability of CNNs eliminates the subjectivity and potential information loss associated 

with manual feature selection, explaining their consistent superiority across diverse gesture recognition tasks. 

However, the performance gap between deep learning approaches and traditional methods narrows signifi-

cantly in real-time applications, where computational constraints become critical factors. The 120 ms latency 

achieved by Temporal Convolutional Networks [21]While impressive for deep learning standards, it still exceeds 

the sub-millisecond response times of optimized Linear Discriminant Analysis implementations. This latency differ-

ential has profound implications for prosthetic control, where natural user experience requires minimal delay be-

tween intention and actuation. 

4.2 Analysis of Feature Engineering Impact on System Performance 

The comparative analysis of feature extraction methodologies reveals that the choice of features significantly 

influences both classification accuracy and computational efficiency. Time-domain features, despite their computa-

tional simplicity, demonstrate remarkable effectiveness in specific applications, with Mean Absolute Value (MAV) 
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and Waveform Length (WL) achieving over 90% accuracy in optimized configurations [12], [14]. The superior per-

formance of these basic features in controlled environments can be attributed to their direct relationship with muscle 

activation intensity and their robustness to signal artifacts [97]. 

The integration of frequency-domain features through wavelet decomposition and spectral analysis provides 

12-15% accuracy improvements in prolonged gesture recognition tasks [36], [45]. This enhancement occurs because 

frequency-domain features capture muscle activation patterns that remain consistent across extended periods, ad-

dressing the temporal stability challenges inherent in time-domain approaches. The effectiveness of wavelet-based 

features, particularly in two-level decomposition, achieves 95.5% accuracy [36], stems from their ability to simulta-

neously analyze signal characteristics across multiple time-frequency scales, providing a comprehensive represen-

tation of neuromuscular activation patterns[98]. 

The remarkable success of nonlinear feature extraction methods, especially correlation dimension approaches, 

in achieving superior performance in weak signal conditions, indicates that traditional linear analysis techniques 

fundamentally underestimate the complexity of neuromuscular control systems[99]. The fractal nature of EMG sig-

nals reflects the hierarchical organization of motor unit recruitment, and which nonlinear features that can be cap-

tured more effectively than conventional statistical measures. 

4.3 Real-Time Implementation Challenges and Performance Trade-offs 

The analysis reveals a critical tension between classification accuracy and real-time performance requirements 

in prosthetic applications. While deep learning approaches achieve superior offline accuracy, their computational 

demands present significant challenges for battery-powered prosthetic devices. The 1.2-2.5 W power consumption 

of deep neural networks compared to 0.3 W for traditional classifiers [43] represents a fundamental constraint that 

limits the practical deployment of sophisticated algorithms in portable systems. 

The effectiveness of simplified control systems, such as threshold-based approaches, achieving 150 ms response 

times with 5% false positive rates [29], demonstrates that clinical utility may not require maximum theoretical per-

formance. This finding suggests that the optimization objective for prosthetic control should prioritize consistent, 

reliable performance over peak accuracy, particularly given the real-world constraints of battery life, heat dissipa-

tion, and user comfort. 

The superior performance of ensemble methods, with XGBoost achieving 88.4% accuracy through feature opti-

mization [52], indicates that sophisticated traditional approaches can approach deep learning performance while 

maintaining computational efficiency. This convergence suggests that the optimal solution may involve hybrid ar-

chitectures that combine the interpretability and efficiency of traditional methods with the representational power 

of deep learning approaches. 

4.4 Preprocessing Strategy Effectiveness 

The critical importance of preprocessing methodologies became evident through the substantial performance 

improvements observed when advanced techniques were properly implemented. Studies employing normalization 

approaches showed varying degrees of success, with study [19] implementing RMS and direction vector features 

with normalization achieving a 66.7% success rate for simple open/close operations. Study [34] utilizing Mean Ab-

solute Value with normalization achieved remarkable results of 100% accuracy for 3-DoF control and 98% for 4-DoF 

control, demonstrating stable performance over 9-10 months. Additionally, study [44] employed min-max normal-

ized KMG signals, showing high accuracy in following intended gestures. 

The analysis of different preprocessing approaches across the reviewed studies revealed significant variations 

in methodology and effectiveness. Study [28] demonstrated the importance of MVC-normalized EMG combined 

with anthropometric data, achieving r² values up to 0.93 for force prediction using XGBoost regression. Study [39] 

showed that using filtered EMG envelope features resulted in correlation values of 0.85 with RMSE of 17.8% for 

firing rate prediction. Study [29] utilized rectification and thresholding with Arduino-based control, achieving a 

response time of approximately 150 ms. These findings underscore the fundamental importance of addressing signal 

variability, which represents one of the primary sources of classification errors in EMG-based systems. 

The comparative analysis of feature extraction and preprocessing techniques revealed that different approaches 

yielded varying performance levels. Study [21] employed 8 time-domain features, including MAV, WL, VAR, SSC, 

and ZC, with TCN achieving the highest accuracy and stability. Study [55] utilized spectrogram preprocessing with 

FFT and PCA reduction to 25 principal components per channel, resulting in 78.71% accuracy for intact subjects and 
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73.31% for amputees, with an additional 10% improvement through self-recalibration techniques. Study [56] demon-

strated that RMS from HD-sEMG converted to 2D FSI images achieved 94.2±3.9% accuracy for able-bodied subjects. 

Advanced preprocessing methodologies showed particular promise in specific applications. Study [30] imple-

menting proportional EMG control with vibrotactile feedback achieved 30% improvement in force control. Study 

[40] using filtered EMG envelope with ultra-low-power DSP achieved a delay of less than 18 μs per sample with 31.5 

mW power consumption. Study [32] 

demonstrated that time-domain features achieved 97.25% accuracy while frequency-domain features achieved 

95.85%. The substantial variation in preprocessing effectiveness across different studies highlights the need for care-

ful consideration of signal conditioning strategies tailored to specific application requirements and target user pop-

ulations. 

4.5 Multi-Modal Integration Benefits and Limitations 

The consistent superior performance of multi-modal approaches, particularly the enhanced accuracy achieved 

by combining EMG with kinematic information [16], reflects the complementary nature of different signal modalities 

in capturing user intentions. EMG signals provide direct measurement of muscle activation, while kinematic sensors 

capture the mechanical outcomes of muscle contraction, together providing a more complete representation of user 

intent than either modality alone. 

The exceptional performance of ultrasound-based approaches, achieving 96.8% accuracy in amputee subjects 

[35], demonstrates the potential of alternative sensing modalities to overcome fundamental limitations of surface 

EMG. The ability of ultrasound to capture deep muscle activation patterns that are inaccessible to surface electrodes 

explains its superior performance, particularly in amputee populations where residual limb anatomy may limit con-

ventional electrode placement. 

However, the complexity and cost implications of multi-modal systems present significant barriers to wide-

spread clinical adoption. The trade-off between enhanced performance and system complexity must be carefully 

considered, particularly given the additional calibration requirements and potential failure modes introduced by 

multiple sensing modalities. 

4.6 Long-term Stability and Adaptation Mechanisms 

The analysis of long-term performance data reveals that system stability over extended periods represents one 

of the most significant challenges for clinical deployment. The 18-25% accuracy reduction observed due to inter-

session variability without recalibration [34] highlights the gap between laboratory performance and real-world us-

ability. This degradation occurs due to changes in electrode impedance, skin conditions, muscle conditioning, and 

subtle variations in electrode placement that accumulate over time. 

The remarkable stability demonstrated by certain systems, maintaining 98-100% accuracy over 9-10 months in 

amputee subjects [34], indicates that robust calibration and adaptation mechanisms can overcome these challenges. 

The success of these approaches stems from their incorporation of adaptive learning algorithms that can accommo-

date gradual changes in signal characteristics without requiring explicit user recalibration. 

The effectiveness of self-recalibrating systems, improving accuracy by 10.18% across sessions [55], demonstrates 

the potential of automated adaptation mechanisms to address inter-session variability. These systems succeed by 

continuously monitoring signal quality and classification confidence, automatically adjusting decision boundaries 

when performance degradation is detected. 

4.7 Clinical Translation Implications and Future Directions 

The comprehensive analysis reveals that successful clinical translation of EMG-based prosthetic control requires 

addressing multiple interconnected challenges simultaneously. While individual performance metrics such as clas-

sification accuracy have reached impressive levels, the integration of high performance with practical constraints of 

power consumption, robustness, and user burden remains an active area of development. 

The demonstrated effectiveness of simplified systems achieving reliable control with minimal computational 

requirements suggests that the path to widespread clinical adoption may prioritize robust, efficient implementations 

over theoretical performance maximization. This finding has profound implications for research priorities, indicat-

ing that incremental improvements in existing proven approaches may provide more immediate clinical benefit than 

pursuing maximum performance through sophisticated but resource-intensive methods. 
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The emergence of neuromorphic computing approaches, consuming only 85 μW per classification, opens pos-

sibilities for fully implantable systems that could eliminate many current limitations related to electrode stability 

and user compliance. The ultra-low power consumption of these approaches directly addresses the fundamental 

constraint of battery-powered prosthetic devices, potentially enabling continuous operation without frequent re-

charging cycles. 

4.8 System-Level Performance Optimization 

The analysis demonstrates that optimal prosthetic control system design requires holistic consideration of the 

entire signal processing pipeline rather than optimization of individual components in isolation. The superior per-

formance of integrated approaches, such as Modified Kalman filtering, achieving RMSE within 6% for multi-degree-

of-freedom control [37], illustrates the importance of system-level optimization that considers interactions between 

preprocessing, feature extraction, classification, and control output stages. 

The effectiveness of proportional control combined with sensory feedback, achieving 30% improvements in 

force control accuracy [30], highlights the critical role of closed-loop control systems in achieving natural prosthetic 

operation. These improvements occur because feedback mechanisms enable users to develop intuitive control strat-

egies that adapt to the system's response characteristics, creating a symbiotic relationship between user learning and 

system performance. 

The development of real-time optimization strategies that maintain performance under varying operating con-

ditions represents a crucial advancement toward practical prosthetic systems. These approaches succeed by contin-

uously monitoring system performance and automatically adjusting parameters to maintain optimal operation de-

spite changes in signal quality, environmental conditions, or user state. 

4.9 Clinical Implementation Strategy 

The comprehensive analysis reveals that EMG-based prosthetic control technology has reached a level of ma-

turity where clinical deployment is feasible, though success requires careful optimization of multiple competing 

objectives. The choice between different technological approaches should be driven by specific application require-

ments and user populations rather than pursuing universal solutions. 

For applications requiring maximum reliability and minimum power consumption, traditional machine learn-

ing approaches such as LDA and SVM remain viable options that can provide consistent performance with minimal 

computational overhead. For scenarios demanding sophisticated gesture recognition and maximum classification 

accuracy, deep learning approaches offer superior performance that justifies their increased computational require-

ments[100]. 

The path forward requires continued development of adaptive systems that can maintain performance across 

varying conditions and extended usage periods, while simultaneously addressing the fundamental challenges of 

electrode stability, inter-session variability, and user burden that currently limit widespread clinical adoption. 

5. Conclusions 

This comprehensive review examined 52 studies addressing EMG signal processing and classification tech-

niques for prosthetic hand control applications. While methodologies varied, clear performance trends emerged. 

Deep learning approaches consistently achieved 94–98% accuracy in offline gesture recognition, outperforming tra-

ditional classifiers such as LDA and SVM, which typically ranged between 80–92%. Preprocessing techniques like 

advanced normalization and noise reduction improved stability, with studies reporting up to a 15% reduction in 

error rates. Real-time implementations demonstrated that simplified threshold-based systems could achieve re-

sponse times below 150 ms and power consumption under 0.3 W, whereas deep models required up to 2.5 W but 

offered superior recognition accuracy. 

Despite these advances, translation from laboratory to clinic remains limited by long-term electrode stability, 

which can reduce accuracy by 18–25%, and inter-session variability, which often necessitates frequent recalibration. 

Multi-modal integration and adaptive learning strategies partially addressed these challenges, with transfer learning 

approaches reducing new-user data requirements by nearly 70% and self-recalibrating CNNs recovering about 10% 

accuracy across sessions. 

The findings confirm that EMG-based prosthetic control is technically feasible and capable of delivering accu-

racies exceeding 95% under controlled conditions. However, future development must balance high accuracy with 

practical constraints of power efficiency (<2 W), low latency (<300 ms), and user comfort. Studies involving diverse 
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amputee populations in real-world environments, alongside robust adaptation mechanisms, are critical for achieving 

stable, clinically viable systems. Ultimately, whether employing traditional ML or advanced deep learning, pros-

thetic controllers must integrate user-centered design with quantitative performance targets to realize the full poten-

tial of this technology in rehabilitation. 

 

References 

  

1.  Chen, Z.; Min, H.; Wang, D.; Xia, Z.; Sun, F.; Fang, B. A Review of Myoelectric Control for Prosthetic Hand Manipulation. 

Biomimetics 2023, 8, 328. 

2.  Ramkumar, S.; Rema, D.; Devi, T.A.; Elavarasi, K.; Selvaganapathi, T.; Gokila, S. A Review on EMG-Based Pattern Identifi-

cation Methods for Effective Controlling of Hand Prostheses. In Proceedings of the 2023 3rd International Conference on 

Innovative Mechanisms for Industry Applications (ICIMIA); IEEE, 2023; pp. 517–523. 

3.  Kalita, A.J.; Chanu, M.P.; Kakoty, N.M.; Vinjamuri, R.K.; Borah, S. Functional Evaluation of a Real-Time EMG Controlled 

Prosthetic Hand. Wearable Technologies 2025, 6, e18. 

4.  Gailey, A.; Artemiadis, P.; Santello, M. Proof of Concept of an Online EMG-Based Decoding of Hand Postures and Individual 

Digit Forces for Prosthetic Hand Control. Front Neurol 2017, 8, 7. 

5.  Tushir, S.; Verma, N.; Kumar, K. Exploring EMG Signals for Prosthetic Control and Gesture Recognition: Advancements, 

Applications, and Future Directions. In Proceedings of the 2024 International Conference on Computational Intelligence and 

Computing Applications (ICCICA); IEEE, 2024; Vol. 1, pp. 465–469. 

6.  Kumar, D.K.; Jelfs, B.; Sui, X.; Arjunan, S.P. Prosthetic Hand Control: A Multidisciplinary Review to Identify Strengths, 

Shortcomings, and the Future. Biomed Signal Process Control 2019, 53, 101588. 

7.  Mangieri, E.; Ahmadi, A.; Maharatna, K.; Ahmad, S.A.; Chappell, P.H. A Novel Analogue Circuit for Controlling Prosthetic 

Hands. In Proceedings of the 2008 IEEE Biomedical Circuits and Systems Conference; IEEE, 2008; pp. 81–84. 

8.  Maibam, P.C.; Pei, D.; Olikkal, P.; Vinjamuri, R.K.; Kakoty, N.M. Enhancing Prosthetic Hand Control: A Synergistic Multi-

Channel Electroencephalogram. Wearable Technologies 2024, 5, e18. 

9.  Azhiri, R.B.; Esmaeili, M.; Nourani, M. Emg-Based Feature Extraction and Classification for Prosthetic Hand Control. arXiv 

preprint arXiv:2107.00733 2021. 

10.  Surface Electromyography and Artificial Intelligence for Human Activity Recognition - A Systematic Review on Methods, 

Emerging Trends Applications, Challenges, and Future Implementation. 

11.  de Jonge, S.; Potters, W. V.; Verhamme, C. Artificial Intelligence for Automatic Classification of Needle EMG Signals: A 

Scoping Review. Clinical Neurophysiology 2024, 159, 41–55, doi:10.1016/j.clinph.2023.12.134. 

12.  Giordaniello, F. A Pilot Study on the Daily Control Capability of S-EMG Prosthetic Hands by Amputees. arXiv preprint 

arXiv:1511.06001 2015. 

13.  Dosen, S.; Markovic, M.; Somer, K.; Graimann, B.; Farina, D. EMG Biofeedback for Online Predictive Control of Grasping 

Force in a Myoelectric Prosthesis. J Neuroeng Rehabil 2015, 12, 1–13. 

14.  Geethanjali, P. Comparative Study of PCA in Classification of Multichannel EMG Signals. Australas Phys Eng Sci Med 2015, 

38, 331–343. 

15.  Geethanjali, P. A Mechatronics Platform to Study Prosthetic Hand Control Using EMG Signals. Australas Phys Eng Sci Med 

2016, 39, 765–771. 

16.  Ruiz-Olaya, A.F.; Callejas-Cuervo, M.; Perez, A.M. EMG-Based Pattern Recognition with Kinematics Information for Hand 

Gesture Recognition. In Proceedings of the 2015 20th Symposium on Signal Processing, Images and Computer Vision 

(STSIVA); IEEE, 2015; pp. 1–4. 

17.  Puttasakul, T.; Sangworasil, M.; Matsuura, T. Realization of Robust Real Time Robotic Arm Control System Based on EMG 

Signal. In Proceedings of the 2015 8th Biomedical Engineering International Conference (BMEiCON); IEEE, 2015; pp. 1–4. 

18.  Xiloyannis, M.; Gavriel, C.; Thomik, A.A.C.; Faisal, A.A. Dynamic Forward Prediction for Prosthetic Hand Control by Inte-

gration of EMG, MMG and Kinematic Signals. In Proceedings of the 2015 7th International IEEE/EMBS Conference on Neu-

ral Engineering (NER); IEEE, 2015; pp. 611–614. 

19.  Minsang, S.; Dukchan, Y.; Junghoon, K.; Youngjin, C. EMG-Based Prosthetic Hand Control System Inspired by Missing-

Hand Movement. In Proceedings of the Proceedings of the 12th International Conference on Ubiquitous Robots and Ambi-

ent Intelligence (URAI 2015); 2015; pp. 290–291. 

20.  Brunelli, D.; Tadesse, A.M.; Vodermayer, B.; Nowak, M.; Castellini, C. Low-Cost Wearable Multichannel Surface EMG Ac-

quisition for Prosthetic Hand Control. In Proceedings of the 2015 6th international workshop on advances in sensors and 

interfaces (IWASI); IEEE, 2015; pp. 94–99. 

21.  Joseph, L.B.; Krall, J.T.; Kaliki, R.R.; Fifer, M.S.; Thakor, N. V Stable Electromyographic Sequence Prediction during Move-

ment Transitions Using Temporal Convolutional Networks. In 2019 9th International IEEE. In Proceedings of the EMBS 

Conference on Neural Engineering (NER’19); 2019; pp. 1046–1049. 



Industrial Technology Journal, 2025, Vol 3, Issue 1. 27 of 30 
 

 

22.  Jafarzadeh, M.; Hussey, D.C.; Tadesse, Y. Deep Learning Approach to Control of Prosthetic Hands with Electromyography 

Signals. In Proceedings of the 2019 IEEE International Symposium on Measurement and Control in Robotics (ISMCR); IEEE, 

2019; pp. A1-4. 

23.  Asif, A.R.; Waris, A.; Gilani, S.O.; Jamil, M.; Ashraf, H.; Shafique, M.; Niazi, I.K. Performance Evaluation of Convolutional 

Neural Network for Hand Gesture Recognition Using EMG. Sensors 2020, 20, 1642. 

24.  Triwiyanto, T.; Pawana, I.P.A.; Purnomo, M.H. An Improved Performance of Deep Learning Based on Convolution Neural 

Network to Classify the Hand Motion by Evaluating Hyper Parameter. IEEE Transactions on Neural Systems and Rehabil-

itation Engineering 2020, 28, 1678–1688. 

25.  Chen, L.; Fu, J.; Wu, Y.; Li, H.; Zheng, B. Hand Gesture Recognition Using Compact CNN via Surface Electromyography 

Signals. Sensors 2020, 20, 672. 

26.  He, Z.; Qin, Z.; Koike, Y. Continuous Estimation of Finger and Wrist Joint Angles Using a Muscle Synergy Based Musculo-

skeletal Model. Applied Sciences 2022, 12, 3772. 

27.  Kalita, A.J.; Chanu, M.P.; Kakoty, N.M.; Vinjamuri, R.K.; Borah, S. Functional Evaluation of a Real-Time EMG Controlled 

Prosthetic Hand. Wearable Technologies 2025, 6, e18. 

28.  Joshi, D.C.; Kumar, P.; Joshi, R.C.; Mitra, S. AI-Enhanced Analysis to Investigate the Feasibility of EMG Signals for Prosthetic 

Hand Force Control Incorporating Anthropometric Measures. Prosthesis 2024, 6. 

29.  Rodrigues, R.; Miranda, D.; Carvalho, V.; Matos, D. Design and Development of an EMG Upper Limb Controlled Prosthesis: 

A Preliminary Approach. In Proceedings of the Actuators; MDPI, 2025; Vol. 14, p. 219. 

30.  Tchimino, J.; Hansen, R.L.; Jørgensen, P.H.; Dideriksen, J.; Dosen, S. Application of EMG Feedback for Hand Prosthesis 

Control in High-Level Amputation: A Case Study. Sci Rep 2024, 14, 31676. 

31.  Rehman, M.; Shahani, S.; Shams, S.; Ali, M.; Ashraf, R.; Ali, A. Electromyography Based Prosthetic Hand. In Proceedings of 

the 4th International Conference on Key Enabling Technologies (KEYTECH 2024); Atlantis Press, 2024; pp. 50–55. 

32.  Diab, M.; Mohammed, A.; Jiang, Y. Development of a Low-Cost Prosthetic Hand Using Electromyography and Machine 

Learning. arXiv preprint arXiv:2411.15533 2024. 

33.  Liu, W.; Lu, B. Multi-Stream Convolutional Neural Network-Based Wearable, Flexible Bionic Gesture Surface Muscle Fea-

ture Extraction and Recognition. Front Bioeng Biotechnol 2022, 10, 833793. 

34.  Lukyanenko, P.; Dewald, H.A.; Lambrecht, J.; Kirsch, R.F.; Tyler, D.J.; Williams, M.R. Stable, Simultaneous and Proportional 

4-DoF Prosthetic Hand Control via Synergy-Inspired Linear Interpolation: A Case Series. J Neuroeng Rehabil 2021, 18, 1–15. 

35.  Dhawan, A.S.; Mukherjee, B.; Patwardhan, S.; Akhlaghi, N.; Diao, G.; Levay, G.; Holley, R.; Joiner, W.M.; Harris-Love, M.; 

Sikdar, S. Proprioceptive Sonomyographic Control: A Novel Method for Intuitive and Proportional Control of Multiple 

Degrees-of-Freedom for Individuals with Upper Extremity Limb Loss. Sci Rep 2019, 9, 9499. 

36.  Azhiri, R.B.; Esmaeili, M.; Nourani, M. Emg-Based Feature Extraction and Classification for Prosthetic Hand Control. arXiv 

preprint arXiv:2107.00733 2021. 

37.  George, J.A.; Radhakrishnan, S.; Brinton, M.; Clark, G.A. Inexpensive and Portable System for Dexterous High-Density My-

oelectric Control of Multiarticulate Prostheses. In Proceedings of the 2020 IEEE International Conference on Systems, Man, 

and Cybernetics (SMC); IEEE, 2020; pp. 3441–3446. 

38.  Batzianoulis, I.; Krausz, N.E.; Simon, A.M.; Hargrove, L.; Billard, A. Decoding the Grasping Intention from Electromyogra-

phy during Reaching Motions. J Neuroeng Rehabil 2018, 15, 1–13. 

39.  Malesevic, N.; Björkman, A.; Andersson, G.S.; Cipriani, C.; Antfolk, C. Evaluation of Simple Algorithms for Proportional 

Control of Prosthetic Hands Using Intramuscular Electromyography. Sensors 2022, 22, 5054. 

40.  Roland, T.; Amsuess, S.; Russold, M.F.; Baumgartner, W. Ultra-Low-Power Digital Filtering for Insulated EMG Sensing. 

Sensors 2019, 19, 959. 

41.  Won, J.; Iwase, M. Highly Responsive Robotic Prosthetic Hand Control Considering Electrodynamic Delay. Sensors 2024, 

25, 113. 

42.  Gailey, A.; Artemiadis, P.; Santello, M. Proof of Concept of an Online EMG-Based Decoding of Hand Postures and Individual 

Digit Forces for Prosthetic Hand Control. Front Neurol 2017, 8, 7. 

43.  Avilés-Mendoza, K.; Gaibor-León, N.G.; Asanza, V.; Lorente-Leyva, L.L.; Peluffo-Ordóñez, D.H. A 3D Printed, Bionic Hand 

Powered by EMG Signals and Controlled by an Online Neural Network. Biomimetics 2023, 8, 255. 

44.  Moradi, A.; Rafiei, H.; Daliri, M.; Akbarzadeh-T, M.-R.; Akbarzadeh, A.; Naddaf-Sh, A.-M.; Naddaf-Sh, S. Clinical Imple-

mentation of a Bionic Hand Controlled with Kineticomyographic Signals. Sci Rep 2022, 12, 14805. 

45.  Khavari, S.F.; Rezaee, K.; Ansari, M.; Zare, F.; Roknabadi, M.H.A. Hand Gestures Classification of SEMG Signals Based on 

BiLSTM-Metaheuristic Optimization and Hybrid U-Net-MobileNetV2 Encoder Architecture. 2024. 

46.  Moyassar, R.A.; Abdullah, M.A.M. Advancing EMG Finger Movement Classification with Feature Extraction and Machine 

Learning. Al-Rafidain Engineering Journal (AREJ) 2025. 

47.  Malesevic, N.; Björkman, A.; Andersson, G.S.; Matran-Fernandez, A.; Citi, L.; Cipriani, C.; Antfolk, C. A Database of Multi-

Channel Intramuscular Electromyogram Signals during Isometric Hand Muscles Contractions. Sci Data 2020, 7, 10. 

48.  Hartwell, A.; Kadirkamanathan, V.; Anderson, S.R. A Temporal-to-Spatial Deep Convolutional Neural Network for Classi-

fication of Hand Movements from Multichannel Electromyography Data. arXiv preprint arXiv:2007.10879 2020. 



Industrial Technology Journal, 2025, Vol 3, Issue 1. 28 of 30 
 

 

49.  Pancholi, S.; Joshi, A.M.; Joshi, D. A Robust and Accurate Deep Learning Based Pattern Recognition Framework for Upper 

Limb Prosthesis Using Semg. arXiv preprint arXiv:2106.02463 2021. 

50.  Kim, J.; Koo, B.; Nam, Y.; Kim, Y. SEMG-Based Hand Posture Recognition Considering Electrode Shift, Feature Vectors, and 

Posture Groups. Sensors 2021, 21, 7681. 

51.  Kadavath, M.R.K.; Nasor, M.; Imran, A. Enhanced Hand Gesture Recognition with Surface Electromyogram and Machine 

Learning. Sensors 2024, 24, 5231. 

52.  Ghaderi, P.; Nosouhi, M.; Jordanic, M.; Marateb, H.R.; Mañanas, M.A.; Farina, D. Kernel Density Estimation of Electromyo-

graphic Signals and Ensemble Learning for Highly Accurate Classification of a Large Set of Hand/Wrist Motions. Front 

Neurosci 2022, 16, 796711. 

53.  Lee, K.H.; Min, J.Y.; Byun, S. Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural 

Networks. Sensors 2021, 22, 225. 

54.  Khan, A.M.; Sadiq, A.; Khawaja, S.G.; Alghamdi, N.S.; Akram, M.U.; Saeed, A. Physical Action Categorization Using Signal 

Analysis and Machine Learning. arXiv preprint arXiv:2008.06971 2020. 

55.  Zhai, X.; Jelfs, B.; Chan, R.H.M.; Tin, C. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control 

Based on Convolutional Neural Network. Front Neurosci 2017, 11, 379. 

56.  Lin, C.; Wang, Y.; Dai, M. Robust Gesture Recognition Based on Attention-Deep Fast Convolutional Neural Network and 

Surface Electromyographic Signals. Front Neurosci 2024, 18, 1306047. 

57.  Peng, X.; Zhou, X.; Zhu, H.; Ke, Z.; Pan, C. MSFF-Net: Multi-Stream Feature Fusion Network for Surface Electromyography 

Gesture Recognition. PLoS One 2022, 17, e0276436. 

58.  Zhang, Z.; He, C.; Yang, K. A Novel Surface Electromyographic Signal-Based Hand Gesture Prediction Using a Recurrent 

Neural Network. Sensors 2020, 20, 3994. 

59.  Khavari, S.F.; Rezaee, K.; Ansari, M.; Zare, F.; Roknabadi, M.H.A. Hand Gestures Classification of SEMG Signals Based on 

BiLSTM-Metaheuristic Optimization and Hybrid U-Net-MobileNetV2 Encoder Architecture. 2024. 

60.  Fratti, R.; Marini, N.; Atzori, M.; Müller, H.; Tiengo, C.; Bassetto, F. A Multi-Scale CNN for Transfer Learning in SEMG-

Based Hand Gesture Recognition for Prosthetic Devices. Sensors 2024, 24, 7147. 

61.  Shabanpour, M.; Rad, K.; Khademi, S.; Mohammadi, A. MoEMba: A Mamba-Based Mixture of Experts for High-Density 

EMG-Based Hand Gesture Recognition. arXiv preprint arXiv:2502.17457 2025. 

62.  Hammach, R.; Belkacem, S.; Messaoudi, N.; Bekka, R.E. Deep Learning Classification of Simulated Surface EMG Signals 

across Maximum Voluntary Contraction Levels. International Journal Bioautomation 2025, 29, 33. 

63.  Tong, L.; Li, Y.; Liang, Y.; Wang, C. CAM-MR-MS Based Gesture Recognition Method Using SEMG. Intelligence & Robotics 

2025, 5, 292–312. 

64.  Battraw, M.A.; Fitzgerald, J.; Winslow, E.J.; James, M.A.; Bagley, A.M.; Joiner, W.M.; Schofield, J.S. Surface Electromyogra-

phy Evaluation for Decoding Hand Motor Intent in Children with Congenital Upper Limb Deficiency. Sci Rep 2024, 14, 

31741. 

65.  Liu, Y.-T.; Wang, K.-C.; Liu, K.-C.; Peng, S.-Y.; Tsao, Y. Sdemg: Score-Based Diffusion Model for Surface Electromyographic 

Signal Denoising. In Proceedings of the ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP); IEEE, 2024; pp. 1736–1740. 

66.  Manjarres-Triana, A.; Acevedo-Serna, J.; Ramírez-Duque, A.A.; Jiménez, M.F.; Pulido-Herrera, E.; Mayor, J.J.V. Overview of 

Processing Techniques for Surface Electromyography Signals. arXiv preprint arXiv:2304.04098 2023. 

67.  Sinclair, J.; Taylor, P.J.; Hebron, J.; Brooks, D.; Hurst, H.T.; Atkins, S. The Reliability of Electromyographic Normalization 

Methods for Cycling Analyses. J Hum Kinet 2015, 46, 19. 

68.  Zhu, X.; Pang, Y.; Li, L.; Sun, W.; Ding, L.; Song, Q.; Shen, P. Standard Isometric Contraction Has Higher Reliability than 

Maximum Voluntary Isometric Contraction for Normalizing Electromyography during Level Walking among Older Adults 

with Knee Osteoarthritis. Front Bioeng Biotechnol 2024, 12, 1276793. 

69.  Wang, X.; Beltran Martinez, K.; Golabchi, A.; Tavakoli, M.; Rouhani, H. A Dynamic Procedure to Detect Maximum Volun-

tary Contractions in Low Back. Sensors 2023, 23, 4999. 

70.  Tanaka, T.; Nambu, I.; Maruyama, Y.; Wada, Y. Sliding-Window Normalization to Improve the Performance of Machine-

Learning Models for Real-Time Motion Prediction Using Electromyography. Sensors 2022, 22, 5005. 

71.  Faro Viana, F.; Cotovio, G.; da Silva, D.R.; Seybert, C.; Pereira, P.; Silva, A.; Carvalho, F.; Oliveira-Maia, A.J. Reducing Motor 

Evoked Potential Amplitude Variability through Normalization. Front Psychiatry 2024, 15, 1279072. 

72.  Pontim, C.E.; Júnior, J.J.Al.M.; Martins, H.V.P.; Campos, D.P. Impact of SEMG Time-Series Segmentation Parameters on the 

Recognition of Hand Gestures. Journal of Applied Instrumentation and Control 2020, 8, 1–7. 

73.  Mendez-Moreno, S.; Espinosa, L.; Vital-Ochoa, O.; Espinosa-Tanguma, R.; Acosta-Elias, J. Segmentation of Surface Electro-

myography Signals: A Comparative Analysis of Time and Frequency Domain Methods. Computación y Sistemas 2024, 28. 

74.  Wang, G.; Zhang, Y.; Wang, J. The Analysis of Surface EMG Signals with the Wavelet-Based Correlation Dimension Method. 

Comput Math Methods Med 2014, 2014, 284308. 

75.  Guo, S.; Pang, M.; Gao, B.; Hirata, H.; Ishihara, H. Comparison of SEMG-Based Feature Extraction and Motion Classification 

Methods for Upper-Limb Movement. sensors 2015, 15, 9022–9038. 



Industrial Technology Journal, 2025, Vol 3, Issue 1. 29 of 30 
 

 

76.  Khokhar, Z.O.; Xiao, Z.G.; Menon, C. Surface EMG Pattern Recognition for Real-Time Control of a Wrist Exoskeleton. Bio-

med Eng Online 2010, 9, 1–17. 

77.  Yu, H.; Fan, X.; Zhao, L.; Guo, X. A Novel Hand Gesture Recognition Method Based on 2-Channel SEMG. Technology and 

Health Care 2018, 26, 205–214. 

78.  Li, W.; Shi, P.; Yu, H. Gesture Recognition Using Surface Electromyography and Deep Learning for Prostheses Hand: State-

of-the-Art, Challenges, and Future. Front Neurosci 2021, 15, 621885. 

79.  Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature Reduction and Selection for EMG Signal Classification. Expert 

Syst Appl 2012, 39, 7420–7431. 

80.  Chen, B.; Chen, C.; Hu, J.; Nguyen, T.; Qi, J.; Yang, B.; Chen, D.; Alshahrani, Y.; Zhou, Y.; Tsai, A. A Real-Time EMG-Based 

Fixed-Bandwidth Frequency-Domain Embedded System for Robotic Hand. Front Neurorobot 2022, 16, 880073. 

81.  Hocaoglu, E.; Patoglu, V. SEMG-Based Natural Control Interface for a Variable Stiffness Transradial Hand Prosthesis. Front 

Neurorobot 2022, 16, 789341. 

82.  Azhiri, R.B.; Esmaeili, M.; Nourani, M. Emg-Based Feature Extraction and Classification for Prosthetic Hand Control. arXiv 

preprint arXiv:2107.00733 2021. 

83.  She, H.; Zhu, J.; Tian, Y.; Wang, Y.; Yokoi, H.; Huang, Q. SEMG Feature Extraction Based on Stockwell Transform Improves 

Hand Movement Recognition Accuracy. Sensors 2019, 19, 4457. 

84.  Zhong, T.; Li, D.; Wang, J.; Xu, J.; An, Z.; Zhu, Y. Fusion Learning for Semg Recognition of Multiple Upper-Limb Rehabili-

tation Movements. Sensors 2021, 21, 5385. 

85.  Wang, G.; Zhang, Y.; Wang, J. The Analysis of Surface EMG Signals with the Wavelet-Based Correlation Dimension Method. 

Comput Math Methods Med 2014, 2014, 284308. 

86.  Miah, A.S.M.; Hassan, N.; Maniruzzaman, M.; Asai, N.; Shin, J. EMG-Based Hand Gesture Recognition through Diverse 

Domain Feature Enhancement and Machine Learning-Based Approach. arXiv preprint arXiv:2408.13723 2024. 

87.  Kim, J.; Koo, B.; Nam, Y.; Kim, Y. SEMG-Based Hand Posture Recognition Considering Electrode Shift, Feature Vectors, and 

Posture Groups. Sensors 2021, 21, 7681. 

88.  Liu, W.; Lu, B. Multi-Stream Convolutional Neural Network-Based Wearable, Flexible Bionic Gesture Surface Muscle Fea-

ture Extraction and Recognition. Front Bioeng Biotechnol 2022, 10, 833793. 

89.  Shin, J.; Miah, A.S.M.; Konnai, S.; Takahashi, I.; Hirooka, K. Hand Gesture Recognition Using SEMG Signals with a Multi-

Stream Time-Varying Feature Enhancement Approach. Sci Rep 2024, 14, 22061. 

90.  Li, M.; Liu, Z.; Tang, S.; Ge, J.; Zhang, F. Unsupervised Layer-Wise Feature Extraction Algorithm for Surface Electromyog-

raphy Based on Information Theory. Front Neurosci 2022, 16, 975131. 

91.  Yuan, Y.; Liu, J.; Dai, C.; Liu, X.; Hu, B.; Fan, J. Exploring Pattern-Specific Components Associated with Hand Gestures 

through Different SEMG Measures. J Neuroeng Rehabil 2024, 21, 1–13. 

92.  Kim, J.; Koo, B.; Nam, Y.; Kim, Y. SEMG-Based Hand Posture Recognition Considering Electrode Shift, Feature Vectors, and 

Posture Groups. Sensors 2021, 21, 7681. 

93.  Zhai, X.; Jelfs, B.; Chan, R.H.M.; Tin, C. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control 

Based on Convolutional Neural Network. Front Neurosci 2017, 11, 379. 

94.  Farley, J.; Stark, G. Clinical Overview of EMG Control for Upper Limb Prosthetic Devices. Curr Phys Med Rehabil Rep 2025, 

13. 

95.  Azhiri, R.B.; Esmaeili, M.; Nourani, M. EMG-Based Feature Extraction and Classification for Prosthetic Hand Control. 2021. 

96.  Parajuli, N.; Sreenivasan, N.; Bifulco, P.; Cesarelli, M.; Savino, S.; Niola, V.; Esposito, D.; Hamilton, T.J.; Naik, G.R.; 

Gunawardana, U.; et al. Real-Time EMG Based Pattern Recognition Control for Hand Prostheses: A Review on Existing 

Methods, Challenges and Future Implementation. Sensors (Switzerland) 2019, 19. 

97.  Garg, L.; Dilip, ·; Sisodia, S.; Kesswani, N.; Vella, J.G.; Brigui, I.; Xuereb, P.; Misra, S.; Singh, D. Lecture Notes in Networks 

and Systems 521; 

98.  Atzori, M.; Gijsberts, A.; Castellini, C.; Caputo, B.; Hager, A.G.M.; Elsig, S.; Giatsidis, G.; Bassetto, F.; Müller, H. Electromy-

ography Data for Non-Invasive Naturally-Controlled Robotic Hand Prostheses. Sci Data 2014, 1, doi:10.1038/sdata.2014.53. 

99.  Hua, A.; Wang, G.; Bai, J.; Hao, Z.; Liu, J.; Meng, J.; Wang, J. Nonlinear Dynamics of Postural Control System under Visual-

Vestibular Habituation Balance Practice: Evidence from EEG, EMG and Center of Pressure Signals. Front Hum Neurosci 

2024, 18, doi:10.3389/fnhum.2024.1371648. 

100.  Dutta, P.; Chakrabarti, S.; Bhattacharya, A.; Soumi, ·; Celia, D.·; Editors, S. Lecture Notes in Networks and Systems 490 

Emerging Technologies in Data Mining and Information Security; 

101.  Savoji, K.; Soleimani, M.; Moshayedi, A.J. A Comprehensive Review of Electromyography in Rehabilitation: Detecting In-

terrupted Wrist and Hand Movements with a Robotic Arm Approach. EAI Endorsed Transactions on AI and Robotics 2024, 

3, doi:10.4108/airo.7377. 

  

 

 

 

 



Industrial Technology Journal, 2025, Vol 3, Issue 1. 30 of 30 
 

 

 

 

 

 

 

 

 

 

 


