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Abstract: Microsatellite instability (MSI) is considered a significant biomarker for gas-

trointestinal (GI) cancer prognosis and treatment planning. Traditionally, molecular as-

says such as polymerase chain reaction (PCR) testing and immunohistochemistry (IHC) 

have been used to determine MSI status. Despite their effectiveness, these methods are 

labor-intensive and time-consuming .MSI tumors are known to respond better to im-

munotherapy due to their high mutational burden and increased immunogenicity, 

making accurate MSI assessment vital for selecting appropriate treatments. This study 

proposes a novel ensemble framework that combines Xception and InceptionResNetV2 

using a soft-voting strategy to predict MSI directly from histopathological images. Unlike 

prior studies, which focused on single architectures or more complex ensembles, our 

approach integrates complementary CNN features with methodological simplicity and 

computational efficiency. The suggested ensemble model outperformed earlier methods 

with an accuracy of 96.97% and an area under the curve (AUC) of 99.57%. These results 

demonstrate the potential of efficient ensemble learning methods in advancing 

AI-assisted pathology, facilitating more personalized treatment decisions, and ultimately 

improving outcomes for patients receiving immunotherapy. 

Keywords: Microsatellite instability, Gastrointestinal cancer, Transfer learning, ensemble 

model. 

 

1. Introduction 

Cancer continues to be a major global cause of mortality, with GI cancers making a substantial contribution to 

this global burden. All tumors that potentially impact the organs, such as the esophagus, stomach, liver, pan-

creas, colon, and rectum, are referred to as GI cancers[1]. According to the International Agency for Research on 

Cancer (IARC) under the World Health Organization (WHO), GI cancers account for about 1 in 4 cancer cases 

(26%) and 1 in 3 cancer-related deaths (35%) worldwide [2]. Among GI cancers, gastric and colorectal types 

occur frequently and have high fatality rates. Globally, colorectal cancer (CRC) ranks as the third most diag-

nosed cancer and the second most common cause of cancer-related deaths. Simultaneously, Gastric cancer (GC) 

also holds the position of being the fifth most diagnosed cancer and the fourth in terms of mortality rate. [3]. 

Alarmingly, the global impact of CRC is predicted to expand dramatically in the future years. By 2040, the 

number of new cancer cases is expected to increase dramatically by 63% to 3.2 million annually, while the 
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number of deaths may increase by 73% to 1.6 million [4].Consequently, there is an urgent need to increase ini-

tiatives that concentrate on prevention, early diagnosis, and enhanced treatment methods.  

To combat GI cancer, early diagnosis is crucial. This can improve patient survival rates, overall quality of life, 

and treatment efficacy. Less intrusive therapeutic approaches will also be available. A multidisciplinary 

workup 

including clinical examination, imaging, endoscopy, and histopathologic analysis of biopsy material is required 

to diagnose GI cancers [5]. Despite the existence of various diagnostic methods, several limitations persist, in-

cluding the invasiveness and aggressive nature of some examinations, the time-consuming nature of many 

procedures, and an over-reliance on the individual physician's personal judgment and experience. Moreover, 

the biological complexity and heterogeneity of GI tumors pose challenges for early detection and personalized 

treatment. Recently, the role of MSI in pathophysiology has received more attention. With implications for 

prognosis and treatment response, particularly to immunotherapy, MSI stands out as a crucial biomarker 

[6].The evaluation of MSI has made molecular diagnostics indispensable in this context. 

Microsatellites are short repetitive DNA sequences which can be error-prone during replication due to DNA 

polymerase slippage [7]. The Mismatch repair (MMR) system is responsible for correcting replication errors, 

thereby maintaining genomic stability. Deficiency in MMR (dMMR) occurs when critical MMR proteins, such 

as MLH1, MSH2, MSH6, or PMS2, are epigenetically silenced or have their genes mutated, causing microsatel-

lite errors to accumulate—a phenomenon known as MSI.MSI results in a high mutational burden and contrib-

utes to the development of tumors with distinct molecular and immunogenic characteristics [8]. Microsatellite 

stable (MSS) tumors, on the other hand, possess a functional MMR system, which maintains genomic stability, 

exhibits a lower mutation burden. Microsatellite status is strongly associated with GI cancers, most notably 

CRC and GC, and plays a critical role in guiding treatment and improving patient outcomes. Table 1 summa-

rizes the difference between the two types of tumors [9]. 

Table 1. Summary of differences between MSS and MSI tumors. 

Feature MSS tumors MSI tumors 

Mismatch Repair Status Proficient Mismatch Repair   Deficient Mismatch Repair   

Tumor Mutation Burden Low High (hypermutated) 

Response to Immunotherapy Poor response to immunotherapy High response to immunotherapy 

Associated Syndrome Not typically associated with hereditary 

syndromes 

Often associated with Lynch syn-

drome 

The most common methods for determining MSI are IHC, which evaluates the presence or absence of MMR 

proteins, and PCR, which identifies changes in microsatellite length between tumor and normal tissues. More 

recently, MSI has also been assessed using next-generation sequencing (NGS) methods in conjunction with 

broader genomic profiling [10].  

Identifying MSI tumors is clinically important because they often have a high mutational burden and unique 

histopathological features. Most importantly, MSI predicts improved responsiveness to immunotherapies, such 

as immune checkpoint inhibitors, which have altered the patients' treatment Options. Additionally, MSI testing 

is a crucial screening technique for Lynch syndrome, a genetic predisposition to GI cancers. 

Traditional diagnostic techniques for the assessment of MSI face several challenges, including high costs, la-

bor-intensive procedures, time-consuming processes, reliance on access to specialized molecular laboratories, 

and dependence on tissue quality. Emerging artificial intelligence (AI) technologies, particularly deep learning 

in digital pathology and medical imaging, provide solutions to these challenges. AI algorithms have the ability 

to integrate complex data from imaging, pathology, and clinical records to provide more comprehensive and 

personalized assessments. This can improve patient stratification, speed up early cancer detection, and facilitate 

the creation of more individualized and efficient treatment plans [11]. In GI oncology, AI algorithms can 
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quickly and effectively analyze Hematoxylin and Eosin ( H&E ) stained histopathology slides to predict MSI; 

their performance is frequently better than that of humans in recognizing patterns, as illustrated in Figure 1. 

This allows patients to receive appropriate treatment based on their cancer type, with MSI tumors responding 

better to immunotherapies, while MSS tumors respond better to chemotherapy [12]. 

 

 

 

 

 

 

 

 

 

 

Although deep learning has shown significant promise in digital pathology, detecting microsatellite status from 

histopathological images remains a challenging task. A primary reason is the lack of clear morphological dif-

ferences between MSI and MSS cases, which makes it inherently difficult to achieve high classification accuracy. 

Furthermore, dataset imbalance was frequently not sufficiently addressed in earlier research, which can result 

in biased models and a negative impact on model performance. 

To address these challenges, this study makes the following contributions: 

 Balanced learning through undersampling: To solve the MSI/MSS class imbalance, systematic under-

sampling was used to ensure equal representation of MSI and MSS cases and reduce bias in model training. 

 Streamlined ensemble with efficient integration: A soft voting ensemble of two complementary CNNs 

(Xception and InceptionResNet-v2) avoids the complexity of stacked meta-learners by directly combining 

their prediction probabilities, leveraging different feature strengths. This probability-level fusion lowers the 

risk of overfitting, simplifies implementation, and reduces computational costs. 

 Comparative benchmarking: Evaluated both models and their ensemble across accuracy, recall, precision, 

F1‑score, and AUC for fair and consistent performance assessment.  

 Improved performance: The suggested framework outperforms all prior works on the same dataset, exhib-

iting both robustness and clinical potential with an accuracy of 96.97% and an AUC of 99.57%. 

 Clinical applicability: The approach emphasizes high accuracy alongside minimal false‑positive and 

false‑negative rates, ensuring reliable performance for real‑world MSI screening. 

2. Literature Review 

Deep learning techniques have radically transformed the field of medical image analysis. In gastrointestinal 

(GI) cancer imaging, many studies have applied deep learning approaches across various imaging modalities 

such as CT, MRI, and endoscopy. However, a subset of research has focused on the Microsatellite status pre-

diction from H&E histopathology images, which is a significant biomarker influencing treatment decisions in 

GI cancers. Recent deep learning models have demonstrated promising results in predicting MSI directly from 

histopathological images without the need for excessive lab tests. Most of the Prior studies have relied on a 

common and foundational dataset introduced by Kather et al.[13], which consists of histological image tiles 

derived from the Cancer Genome Atlas (TCGA) cohort. A subset of 192,312 histopathological images stained 

with H&E and preserved using formalin-fixed paraffin-embedding (FFPE) is publicly accessible via Kaggle and 

has become a benchmark resource for MSI prediction tasks. However, existing models still face limitations in 

Figure 1. Detection of microsatellite instability (MSI) using traditional methods (a) IHC (b) PCR vs. (c) Modern method using AI 

techniques. 
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achieving high predictive accuracy and addressing the class imbalance between MSI and MSS cases. A sum-

mary of key studies utilizing this dataset is provided in Table 2. 

Kather et al. [14] introduced a deep learning approach capable of predicting MSI directly from histopathology 

images in GI cancers, including CRC and GC. The authors applied a deep learning architecture (ResNet18) to 

identify MSI by analyzing histological patterns from TCGA without any molecular data. The German colorectal 

cancer cohort (DACHS) was used as an external validation. Achieving AUC values between 0.77 and 0.84 across 

several datasets, their model had excellent predictive performance. 

Venkatesh et al. [15] proposed a modified ResNet architecture for the binary classification of MSI and MSS in GI 

cancer using histopathological images. The publicly accessible dataset of 192312 images on Kaggle was used for 

the study. The researchers evaluated baseline models such as logistic regression, a 4-layer feedforward neural 

network, and a CNN, followed by transfer learning using VGG16 and various versions of ResNet (ResNet-18, 

34, 50, 101, 152). Their modified 41-layer ResNet model, which they developed based on these insights, per-

formed the best of all the models, with an accuracy of 89.81% and an F1-score of 91.78%. 

Khan and Loganathan [16] applied transfer learning techniques for the prediction of microsatellite status in GI 

cancer. They employed Xception, a convolutional neural network architecture renowned for its depthwise 

separable convolutions, which enhance parameter efficiency and reduce computational cost. Utilizing the da-

taset of 192312 images accessible on Kaggle, the model demonstrated its reliability with an AUC of 0.932 and a 

test accuracy of 90.17%. 

Ghosh and Santosh [17] introduced a stacked generalization-based ensemble Deep Neural Network for binary 

classification of GI cancer histological images into MSI and MSS categories. Their framework enhanced classi-

fication performance by integrating predictions from three base models—a modified VGG16, DenseNet201, and 

a custom CNN—through a meta-learner to create an ensemble model. As a result, they were able to benefit 

from various feature extraction capabilities. Utilizing a dataset of 192,315 histological images accessible on 

Kaggle, they achieved an impressive accuracy and sensitivity of 94.91% and 95.95%, respectively, along with an 

AUC of 0.9821. This method demonstrates how ensemble models can enhance the diagnostic accuracy and 

dependability of automated pathology workflows. 

Pamuk and Erikçi [18] proposed a deep learning approach to predict microsatellite instability in GI cancer from 

histopathology images. Their work utilized 150,000 image patches from a histological dataset available on 

Kaggle. They employed transfer learning to compare and evaluate nine pretrained CNN models. Among these, 

VGG19 achieved the highest classification results, recording an accuracy of 90.60%, a precision of  88.60%, and 

an AUC of 90.60%. 
 

Table 2. Related studies in the classification of MSI and MSS tumors. 

Study year Approach Result Advantages Disadvantages 

[14] 2019 CNN based on 

ResNet18 

AUC: 0.77–0.84 

(across several da-

tasets) 

 The paper provided a less in-

vasive and scalable method 

for predicting MSI status from 

histological images. 

 Validated on external da-

tasets. 

 No other metrics were 

mentioned for evalua-

tion 

 Low to Moderate per-

formance 

 Imbalanced dataset  

[17] 2021 Stacked ensemble 

(VGG16, Dense-

Net201, custom 

CNN). 

Accuracy:94.91% 

Sensitivity:95.95% 

precision:93.35% 

AUC: 09821. 

 

 Improved performance 

through ensemble learning, 

surpassing individual base 

models. 

 Imbalanced dataset  

 High computational 

cost. 
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Table 2. Continued 

Study year Approach Result Advantages Disadvantages 

[16] 2022 Transfer learning 

using Xception 

Accuracy: 90.17%  

AUC:0.932. 

 

 Transfer learning im-

proved training efficien-

cy. 

 Good AUC and test gen-

eralization 

 Imbalanced dataset 

 Evaluation was lim-

ited to a narrow set 

of metrics. 

 

[15] 2022 Modified ResNet 

(custom architec-

ture with 41 layers) 

Accuracy:89.81% 

F1-score:91.78% 

 Improved feature learn-

ing through architectural 

modifications. 

 Implemented several 

CNN models and com-

pared them with modi-

fied ResNet. 

 Imbalanced dataset 

 The accuracy 

achieved is relatively 

low compared to 

other studies. 

 Reported only accu-

racy and F1-score. 

 

[18] 2025 Comparative study 

of nine pre-trained 

models. 

(Top performer: 

VGG19). 

VGG19 achieved: 

Accuracy: 90.60% 

Precision: 88.60% 

Recall: 93.10% 

AUC: 90.60% 

• Evaluated multiple 

models on the same da-

taset. 

• Used a balanced dataset. 

 Reported comprehensive 

performance metrics 

 The proposed model 

shows slightly lower 

accuracy compared 

to previous transfer 

learning studies. 

 

3. Materials and methods  

This section focuses on the materials and methodology used in the current study. A publicly available dataset of 

histological images of GI cancer was used. Several preprocessing techniques, such as resizing, normalization, 

and undersampling, were applied to these images to address the class imbalance and ensure input dimension 

consistency. An average ensemble model was constructed by combining two pretrained CNNs: Xception and 

InceptionResNetV2. These models were adapted to the task by removing their top layers and adding new cus-

tom ones. Finally, the performance of the proposed ensemble model was evaluated using a set of standard 

classification metrics. An outline of the proposed methodology is shown in Figure 2. 
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3.1. Dataset Description 

In this study, histological images of CRC and GC were obtained from TCGA, which is a comprehensive and 

publicly accessible repository of cancer-related data [19]. The dataset consists of high-resolution whole-slide 

images (WSIs) stained with H&E, obtained from a population of patients, encompassing a wide variety of his-

topathological characteristics pertaining to CRC and GC. The original dataset included 411,890 distinct image 

patches that were taken from cancer patients' SVS-format WSIs from the TCGA cohort. During the dataset's 

creation, several preprocessing steps were carried out by Kather [13]. Every image was subjected to the same 

preprocessing pipeline, which included automatic tumor region detection, resizing to 224 × 224 pixels at a spa-

tial resolution of 0.5 µm/px, and color normalization using the Macenko technique [20]. Based on the corre-

sponding patient's microsatellite status, each image patch was annotated and classified as either MSS or MSI. A 

subset of 192,312 images—consisting of 117,273 MSS images and 75,039 MSIMUT images—was used in this 

study. This preprocessed and labeled dataset is publicly available on Kaggle [21] and Zendo [13]. Illustrative 

samples from the histological dataset are presented in Figure 3.  

 

 

 

 

 

 

 

 

 

 

3.2. Dataset Preparation and Preprocessing 

The dataset went through a methodical preprocessing pipeline to ensure consistency and compatibility with 

deep learning models. The first step was to balance the dataset by undersampling the majority class, which 

produced an equal number of 75,000 images for the MSS and MSIMUT classes, as presented in Figure 4. This 

step was essential to prevent model bias towards the dominant class. Following class balancing, all images were 

resized to 299 × 299 pixels with three RGB channels to match the input dimensions required by the selected 

pretrained models (Xception and InceptionResNetV2). The next step was normalization, which involved scaling 

the pixel values ranging from 0 to 255 to a range of 0 to 1. This step was performed using Keras Image Data 

(a) (b) 

Figure 3. Samples of the histological dataset : (a) MSS, (b) MSI 

Figure 2. Key stages of the proposed methodology. The pipeline includes dataset preprocessing (undersampling, resizing, nor-

malization), dataset splitting into training (80%), validation (10%), and testing (10%) sets, training of pretrained CNN models 

(Xception and InceptionResNetV2), integration via an average ensemble classifier, and final classification of histopathology im-

ages. 
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Generator. The preprocessing techniques, undersampling, resizing, and normalization, collectively prepare the 

dataset in a form that is appropriate for deep learning classification tasks and computationally efficient. Finally, 

80% of the dataset was used to train the proposed model, while 10% was set aside for validation, and another 

10% for testing. Table 3 shows the image distribution across the train, validation, and test sets after applying 

undersampling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 3. The number of images in each dataset split after undersampling. 

 

3.3. An overview of convolutional neural network 

Convolutional Neural Network is a feedforward neural network that is designed to process visual data like 

images [22] .They are well-suited to perform tasks like object detection and image classification since they 

possess layers that automatically learn to identify features like edges, textures, and shapes.  

Several deep layers with various tasks make up CNNs. These layers consist of the input layer, the convolution 

layer, the pooling layer, the fully connected layer (FC), and the final output layer. An image of size H × W × C is 

received by the input layer, where H and W represent the image's height and width, and C indicates the num-

ber of channels. 

The convolution layer, which is the main feature extractor, applies several filters to identify significant patterns, 

such as edges and textures. A feature map highlighting some local features is generated by each filter [23]. To 

provide non-linearity and enable the model to identify complex patterns, a non-linear activation func-

tion—most frequently the Rectified Linear Unit (ReLU)—is added after each convolution. Mathematically, 

ReLU is expressed in equation (1). 

 ( )     (   )  ( )  

Where   is the output of the convolution operation. 
 

Class Type Train (80%) 
Val 

 (10%) 

Test 

(10%) 

MSS 60,000 15,000 15,000 

MSI 60,000 15,000 15,000 

Total 120,000 30,000 30,000 

Figure 4. Distribution of dataset (a) before undersampling (b) after undersampling  

(a) (b) 
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Pooling layers are used to shrink the spatial dimensions of feature maps and reduce computational complexity. 

This process can involve methods like max pooling or average pooling, which downsample the input while 

retaining essential information. The feature maps that are produced after a series of convolution and pooling 

layers are passed into FC layers, which serve as classifiers by flattening the maps and linking every neuron to 

those in the preceding layer [24] .Finally, the CNN’s classification or prediction is generated by the output layer. 

The choice of activation function in this layer can vary based on the specific task. In binary classification, a sin-

gle neuron with a sigmoid activation function is often used, which generates a probability prediction between 0 

and 1. The sigmoid function is defined by equation (2). 

 ( )  
 

     
 ( )  

Where   denotes the function’s input. 

3.4. Pre-trained models and transfer learning approach 

Transfer learning is a deep learning method where a model created for one task can be used as the starting point 

for another. Instead of building new deep neural networks from scratch, which require enormous volumes of 

labeled data and computational resources, transfer learning employs pre-trained models that have already been 

trained on huge datasets like ImageNet to identify useful features [25]. These pre-trained models, such as 

Xception and InceptionResNetV2, have learned rich feature representations that can generalize well to new 

visual tasks. 

In this study, two pre-trained models, including Xception and InceptionResNetV2, were employed to classify 

histopathology images as MSI or MSS. To adapt them to our specific task, the original classification head was 

replaced with a custom set of new layers compatible with the desired output. These layers included a Glob-

alAveragePooling2D layer, Dropout layers for regularization with rates of 0.3 and 0.5, and a Dense layer using 

ReLU activation. The network concluded with a Dense layer employing a sigmoid activation function for binary 

classification. Figures 5 and 6 display the architecture of these models along with the newly added layers. 

3.4.1 Inception-Resnet-v2 

Inception-ResNet-v2, developed by Szegedy et al. [26] , is a CNN architecture that combines the strengths of 

two distinct deep learning models: Inception and ResNet. The model integrates Inception modules, which en-

able the network to use parallel convolutional layers with several kernel sizes (1×1, 3×3, and 5×5) to capture 

features at multiple scales, thus enhancing performance and efficiency. Meanwhile, it uses residual connections 

(also called skip connections) from the ResNet architecture, which bypass multiple layers, thereby preventing 

problems like vanishing gradients. Inception-ResNet-v2 merges these concepts by inserting residual connec-

tions into the Inception architecture, creating a hybrid model that is both deep and computationally efficient. 

Inception-ResNet-v2 comprises approximately 55 million parameters and accepts inputs of size 299x299. The 

architecture achieves high accuracy on large-scale image classification tasks such as the ImageNet dataset. As 

illustrated in Figure 5 , the network is composed of three major components: the stem module, which applies 

several convolution and pooling layers to extract low-level features from the input image; Incep-

tion-ResNet-A/B/C blocks, which contain multiple parallel convolutional filters that extract features at various 

scales; and reduction blocks, which downsample feature maps while preserving representational power. 

3.4.2 Xception 

 Xception, short for "Extreme Inception", is a deep CNN architecture introduced by François Chollet [27]. It is a 

modified version of Inception-V3. It is built upon the hypothesis that depthwise separable convolutions can 

replace the Inception modules, hence improving performance. The feature extraction base of the model is 

comprised of 36 convolutional layers organized in 14 modules. It processes 22.9 million parameters and accepts 

inputs of size 299x299. 

In contrast to conventional convolution operations, Xception uses depth-wise separable convolutions to de-

couple spatial and cross-channel correlations. A depth-wise convolution (per-channel spatial filtering) is ap-

plied first, then a pointwise (1x1) convolution to combine the outputs across channels. This factorization im-

proves learning efficiency and drastically lowers the number of parameters. As presented in Figure 6 , the 

structure of Xception has three main parts: the entry flow, which extracts basic features from the image; the 
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middle flow, which repeats the same block several times (8 times) to learn deeper patterns; and the exit flow, 

which finalizes the features before classification.  

 

 

The voting ensemble approach 

Ensemble learning is a method that integrates several models, which are referred to as base learners or weak 

learners, to enhance overall performance and generalization. This approach produces more robust and accurate 

predictions by leveraging the strengths of different models. Bagging, boosting, and voting are the most popular 

types of ensemble learning. These methods vary in terms of model training and result combination.  

Voting ensemble methods are widely used in classification problems to improve predictive performance by 

aggregating the outputs of multiple models [28].The main types of voting ensembles are hard voting and soft 

voting. In hard voting, each base classifier generates its prediction (a class label), and the final decision corre-

sponds to the class receiving the majority vote. Soft voting, in contrast, averages the probability of outputs from 

all classifiers instead of relying on class labels. The final prediction is determined by identifying the class with 

the highest average probability. The average voting ensemble's predicted class is expressed by equation (3). 

 

  ̂        (
 

 
∑  ( )

 

   

) ( )  

Figure 5. Inception-ResNet-v2 architecture with new added layers. 

Figure 6. Xception architecture with new added layers. 
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Where M refers to the number of classifiers and   ( ) represents the predicted probability for the class   as de-

termined by the model  .    

 

To enhance classification performance in determining microsatellite status from histopathological images, a soft 

voting ensemble classifier is proposed. In this approach, the final prediction is generated by averaging the pre-

dicted probabilities from each base classifier, which helps to leverage the strengths of multiple classifiers while 

reducing the variance associated with individual models. The prediction procedure based on the average of the 

two models’ outputs is shown in the Figure 7.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Evaluation metrics 

To evaluate the effectiveness of the proposed deep learning models, several performance measures have been 

employed in this study. A common key tool is the confusion matrix, which compares the predicted labels with 

the actual ground truth labels for each class to offer an overview of the prediction outcomes [29].It includes four 

key quantities: 

 True Positives (TP): positive samples correctly classified as positive. 

 True Negatives (TN): negative samples correctly classified as negative. 

 False Positives (FP): negative samples incorrectly classified as positive. 

 False Negatives (FN): positive samples incorrectly classified as negative 

Based on these quantities, multiple metrics—such as accuracy, sensitivity, precision, and F1-score—can be 

computed. Accuracy (Acc) reflects the proportion of correctly predicted samples (both positive and negative) 

among all predictions. Precision (Pre) expresses the percentage of predicted positives that are actually correct. 

Recall (Rec) is the proportion of actual positives that the model successfully identifies. The F1-score computes 

Figure 7. The average voting ensemble's class prediction process, where p refers to the prediction probabilities from 

each model expressed as percentages. The average of these probabilities is used to determine the final class. 
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the harmonic mean of precision and recall, providing a balanced measure. The mathematical formulas for these 

metrics are given in Equations (4)–(7). 

 

         
     

           
 ( )  

 

          
  

     
 ( )  

 

       
  

     
 ( )  

 

         
                  

                
 ( )  

 

Furthermore, the Receiver Operating Characteristic (ROC) curve, which compares the true positive rate against 

the false positive rate at various threshold values, is used to assess the classification model's effectiveness. An 

overall indicator of the classifier's performance is provided by the Area Under the Curve (AUC), where values 

approaching 1.0 suggest that it is powerful for distinguishing between classes. 

4. Experimental results 

This study was conducted in two phases. In the first phase, two pretrained CNN architectures were individu-

ally trained and evaluated. In the second phase, a soft voting ensemble classifier was employed to integrate the 

strengths of these models and improve overall predictive accuracy. 

4.1. Performance evaluation of pre-trained CNN models 

Two deep CNN architectures, InceptionResNet-v2 and Xception, were employed as base models. Training was 

performed using stochastic gradient descent (SGD), with a 0.01 learning rate and a batch size of 64. With an 

accuracy of 96.11% and an AUC of 99.32%, the Xception model outperformed the InceptionResNet-v2 model. It 

also achieved the highest recall of 96.17% and F1-score of 96.12%, indicating strong generalization. However, its 

precision (96.06%) was slightly lower than that of InceptionResNet-v2, which achieved a higher precision of 

96.16%, along with a competitive accuracy of 95.66% and AUC of 99.31%. These results demonstrated that both 

models are well-suited for the task, with Xception being the most effective as a standalone classifier. However, 

further improvements were necessary to minimize false predictions, leading to the exploration of ensemble 

approaches. 

4.2. Performance evaluation of the voting ensemble Approach 

To enhance generalization and improve classification performance, the predictions of the individual models 

were integrated using a soft voting ensemble approach. This ensemble, proposed as the final model, performed 

the best overall, with an accuracy of 96.97%, a recall of 96.84%, a precision of 97.10%, an F1-score of 96.97%, and 

an AUC of 99.57%. These results indicate a well-balanced and robust classifier that effectively leverages the 

strengths of its base models. Table 4 summarizes the performance metrics of all evaluated models. 

Confusion matrices and ROC curves were generated for all models and are shown in Figures 8 and 9, respec-

tively. The confusion matrix for the proposed average ensemble demonstrated minimal false positives and false 

negatives, confirming its reliability in distinguishing between class labels. 

All models' ROC curves showed AUC values above 99%, demonstrating strong discriminative power and re-

liable generalization ability. Notably, the suggested average ensemble had the highest AUC value of 99.57%, 

highlighting the effectiveness of ensemble strategies in improving classification performance. 
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Table 4. Evaluation metrics of all conducted experiments. 

Model  Accuracy Precision  Recall  F1-score AUC 

Inceptionresnet-v2 95.66% 96.16% 95.12% 95.64% 99.31% 

Xception 96.11% 96.06% 96.17% 96.12% 99.32% 

Soft voting (Average) 96.97% 97.10% 96.84% 96.97% 99.57% 

5. Discussion 

The study involved a two-phase approach for MSI/MSS status prediction from histopathological images. In the 

first Phase, two pre-trained CNN models (InceptionResNet-v2 and Xception) were employed by replacing the 

final classification layers to suit the binary classification problem. Both models showed strong performance on 

the dataset, with Xception achieving the highest results among them, reaching an accuracy of 96.11% and an 

AUC of 99.32%. However, residual misclassifications in the confusion matrix suggested that more improvement 

was required. 

In the second phase, a soft voting ensemble technique was applied to improve robustness and reduce predictive 

variance. This approach significantly enhanced performance by averaging the predicted probabilities, effec-

tively leveraging the complementary strengths of the base models. The resulting ensemble demonstrated su-

perior performance, achieving an accuracy of 96.97%, a precision of 97.10%, a recall of 96.84%, an F1-score of 

96.97%, and an exceptional AUC of 99.57%, consistently outperforming individual models across all evaluation 

metrics. Furthermore, the low number of misclassifications in the confusion matrix (only misclassifying 237 out 

of 7500 MSI cases and 217 out of 7500 MSS cases), as presented in Figure 8, demonstrates the ensemble model's 

applicability for real-world medical applications where both false positives and false negatives have serious 

consequences. 

Notably, the Xception model alone achieved very strong results, which can be attributed to its use of depthwise 

separable convolutions.  Histopathological images benefit greatly from the effective and fine-grained feature 

extraction made possible by this design. Nevertheless, the proposed ensemble consistently provided marginal 

but reliable improvements by combining complementary representations from both Xception and Inception-

ResNetV2. Even modest gains in accuracy and AUC are clinically meaningful, since they translate into fewer 

misclassified patients and thus more reliable treatment planning. In diagnostic applications, a 1–2% improve-

ment can correspond to dozens of correctly identified cases in large screening programs, which is highly im-

pactful in practice. 

Beyond predictive performance, interpretability is essential for clinical applicability. Deep learning models, 

including our ensemble, are often described as ‘black boxes which could prevent their adoption in pathology 

workflows. Grad-CAM, SHAP, and LIME are examples of Explainable AI (XAI) techniques that could be used 

to identify regions of interest in histopathological images and uncover the characteristics that influence 

MSI/MSS predictions. Transparency would be increased, and pathologists could use their own knowledge to 

cross-validate AI-generated insights. Importantly, since MSI/MSS classification is often visually indistinguish-

able on H&E slides, such explanations could reveal patterns not detectable by the human eye. The adoption of 

AI in routine diagnostic procedures could be accelerated by reducing the gap between algorithmic performance 

and clinical trust through the integration of predictive performance and interpretability. 

A detailed comparison of recent studies on MSI prediction using deep learning methods is summarized in Table 

2, highlighting the performance and limitations of prior approaches. Although Kather et al. [14] demonstrated a 

CNN based on ResNet18 and reported an AUC range of 0.77–0.84 across multiple datasets; they didn't evaluate 

the model using important measures like F1-score, precision, and recall. Ghosh and Santosh [17] introduced a 

stacked generalization ensemble with multiple networks, reaching an accuracy of 94.91%, and an AUC of 

0.9521. Even though they showed better performance through their ensemble model, the meta-learner archi-

tecture meant that they needed a lot of processing power and didn't specifically address the dataset imbalance. 

Both Khan et al. [16] and Venkatesh et al. [15] reported accuracy of 93.18% and 89.81%, respectively, by utilizing 

transfer learning techniques (using Xception and modified ResNet). However, neither study reported essential 

performance metrics such as precision and recall. 
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Pamuk and Ertürk [18] performed a comparative evaluation of pretrained CNN models, where VGG19 yielded 

a recall of 93.10%, a precision of 85.80%, a classification accuracy of 90.60%, and an AUC value of 90.60%. Alt-

hough they used a balanced dataset and reported more detailed metrics, their overall performance was lower 

than recent ensemble or transfer learning methods. 

In contrast, the proposed average ensemble in this study offers both state-of-the-art performance and practical 

applicability, outperforming all prior works. It demonstrates an approximate 2% improvement in accuracy over 

the best prior approach and delivers consistently high precision and sensitivity, supported by notably low 

false-positive and false-negative rates. These underscore the model’s effectiveness and reliability as a robust 

solution for MSI/MSS classification in real-world medical applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.ROC curves of all experiments. 

Figure 8.The confusion matrix of evaluated models. (a) Inceptionresnetv2, (b) Xception, (c) Soft voting. 
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6. Conclusion and future work 

Early and precise detection of MSS and MSI in GI cancer patients is essential for determining the optimal 

treatment plan and improving overall clinical outcomes. MSI is considered an important biomarker that helps 

identify patients who are likely to benefit from immunotherapy. Precise identification of MSI allows clinicians 

to personalize treatment plans, reduce unnecessary side effects, enhance therapeutic response rates, and ulti-

mately improve patient survival and quality of life. 

In this study, an average ensemble of pre-trained CNNs (InceptionResNet-v2 and Xception) is proposed to 

automatically identify MSI and MSS from histopathological images. With an accuracy of 96.97% and an AUC of 

99.57%, the ensemble classifier successfully utilized the complementary strengths of the individual networks. 

These results demonstrated low false-positive and false-negative rates, confirming the reliability of the pro-

posed model while surpassing the performance of individual learners and existing approaches. The strong 

overall performance of the classifier highlights its potential as a useful clinical decision-support tool to help 

oncologists and pathologists make prompt and accurate treatment decisions for patients with GI cancer. 

Future research could explore different CNN architectures, experiment with alternative ensemble approaches 

like stacking and boosting, and validate the proposed model on external datasets to ensure its generalizability 

in different clinical settings. Importantly, prospective validation and cross-cohort evaluation across multiple 

institutions will be necessary to confirm robustness and ensure applicability in real-world clinical scenarios. 

Furthermore, integrating explainable AI techniques—such as SHAP or LIME—could improve interpretability 

and transparency, boost clinical confidence, and facilitate integration into actual diagnostic settings. 
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