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Abstract: Recently, localization systems tailored for indoor environments have been introduced, 

leveraging the existing wireless local area network (WLAN) infrastructure. These systems utilize 

position fingerprinting methods rather than direction-based or time-of-arrival approaches to 

determine the spatial positions of mobile users. Nevertheless, experimental studies on these systems 

indicate that factors such as signal attenuation and scattering caused by the higher density of walls 

significantly impact the accuracy and performance of indoor positioning. Furthermore, the accuracy 

of indoor positioning systems (IPS) may be compromised by variations in environmental factors, 

including alterations in height, the introduction or removal of a WLAN Access Point (AP), or 

modifications to AP power settings. This paper analyses the impact of AP power through a 

probabilistic analytical model that exclusively utilizes high signal relations to mitigate the effects of 

low signal relations on WLAN fingerprinting-based IPS, thereby enhancing accuracy performance. A 

total of 33,300 RSS (Received Signal Strength) data points were collected from five access points and 

seventy-four reference points to develop the model. The dataset was gathered during the offline 

learning phase, with RSS readings systematically recorded to maintain consistency. During the online 

phase, 11,100 data points (33% of the total dataset) were introduced to test the model. Through 

comprehensive experimental evaluations, the proposed algorithm demonstrates an improvement in 

the accuracy of the IPS by an average of 15.794% as measured by the Root Mean Square Error 

(RMSE). The findings suggest that the integration of AP power and high signal relations can 

substantially enhance the accuracy performance of WLAN fingerprinting-based IPS. 

 

Keywords: Wireless local area network, Indoor positioning system, Access point, Fingerprinting, 

Probabilistic. 
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With the growing use of wireless technologies, location detection systems have become increasingly 

important. The implementation of localization services varies depending on the positioning techniques 

utilized. These systems enable context-aware applications by providing position-related information 

[1], [2]. They are also essential in supporting emergency response operations. In recent years, 

fingerprinting positioning methods using existing WLAN setups have been proposed for indoor 

settings where GPS is less effective [3], [4]. Such systems offer additional capabilities for modern 

WLAN networks [5]. Compared to techniques such as angle-of-arrival (AoA) and time-of-arrival 

(ToA), fingerprinting is relatively simpler to deploy [5], [6]. 

 

In alignment with this research trajectory, a multitude of extant scholarly works concentrate on 

optimizing accuracy performance through various methodologies. The most contemporary 

investigations concerning indoor positioning systems predominantly emphasize research to augment 

positioning precision and refine estimation algorithms. Conversely, a limited number of studies take 

into account the implications of transmitter power setting and the relationship between Received 

Signal Strength Indicator (RSSI) signals on accuracy performance. [7] demonstrated the feasibility 

and practicality of utilizing RSSI-based ranging technology for indoor three-dimensional spatial 

positioning systems through an in-depth analysis of RSSI characteristics. Building on this foundation, 

[8] investigated the relationship among path loss and the transmitting antenna altitude using a 2.4 GHz 

wireless signal. However, their study kept the WLAN Access Point (AP) power settings constant, 

leaving the effects of varying power levels on signal performance unexplored. In another study, Hu et 

al. examined the relationship amid signal propagation characteristics and variables such as AP 

elevation, communication distance, and propagation path for 5.8 GHz radio frequency transmission 

rather than focusing solely on 2.4 GHz frequencies. [9] extended the analysis to both indoor and 

outdoor environments, identifying significant differences in received signal strength due to variations 

in antenna height. [10] also investigated how user orientation and existence influenced RSSI 

measurements. [11], [12] highlighted that user orientation significantly impacts fluctuations in RSSI 

levels. They suggested incorporating RSSI data alongside user orientation awareness to enhance the 

accuracy of human-centric indoor positioning systems. However, their study did not explore the 

effects of signal relation or variations in Access Point (AP) power settings on positioning performance. 

 

According to the reviewed studies, the factors influencing characteristics of indoor Received Signal 

Strength Indicator (RSSI), which directly hinder positioning accuracy, have not been systematically 

or quantitatively analysed within the context of RSSI-based indoor positioning methods. Additionally, 

existing research has yet to explicitly investigate the impact of AP power settings on the accuracy of 

Wireless Local Area Network (WLAN) fingerprinting-based Indoor Positioning Systems (IPS), 

particularly in scenarios with high signal correlations. Therefore, it is essential to evaluate how AP 

power settings affect the performance accuracy of WLAN fingerprinting-based IPS, focusing on high 

signal correlations. 

 

This study analyses the transmitter's power setting variations and the role of high signal correlation, 

aiming to characterize 2.4 GHz RSSI behaviour in indoor environments quantitatively. By employing 

a probabilistic analytical model, the study examines the effects of these factors on IPS WLAN 

fingerprinting-based accuracy. The study key contributions are as follows:  
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– The study compiles RSSI datasets corresponding to various AP power settings utilizing a bespoke 

methodology tailored for IPS WLAN fingerprinting-based.  

– This study presents a novel algorithm designed to identify substantial signal correlations and 

ascertain positions by conceptualizing position fingerprints and measuring Received Signal Strength 

Indicator (RSSI) values as distinct stochastic variables. The algorithm employs the probability density 

function (PDF) within the signal domain to augment the precision and dependability of the positioning 

methodology. 

 – The study evaluates the accuracy performance of the algorithm proposed in the context of IPS 

WLAN fingerprinting-based.  

The structure of this paper is organized as follows. Initially, Section 2 elucidates the related work of 

the WLAN fingerprinting indoor positioning system. Subsequently, Section 3 elucidates the 

methodology and mathematical concepts of IPS WLAN fingerprinting-based and its operational 

mechanics designed to actualize our concept. Following this, Section 4 presents the performance 

outcomes alongside a discussion. Finally, Section 5 concludes the discourse and proposes avenues for 

future research. 

 

2. Related work 

 

Indoor positioning systems (IPS) based on Wireless Local Area Networks (WLAN) have gained 

significant attention due to their cost-effectiveness and wide availability. Various studies have 

explored the feasibility of using IEEE 802.11b access points (APs) for localization, leveraging 

Received Signal Strength Indicator (RSSI) values for positioning. These approaches commonly rely 

on fingerprinting, which maps RSSI values to predefined locations in an indoor environment to 

estimate a user's position [1], [12]. 

 

2.1 WLAN-Based Indoor Positioning Systems 

 

Traditional IPS methods primarily utilize signal propagation models, location fingerprinting, or hybrid 

techniques to determine indoor locations. Fingerprinting-based approaches remain popular due to their 

robustness in complex environments, as they rely on RSSI measurements rather than requiring line-

of-sight conditions like Time of Arrival (ToA) or Angle of Arrival (AoA) methods [13], [14]. 

However, RSSI-based positioning suffers from several limitations, including multipath effects, signal 

attenuation, and environmental interferences, which introduce inaccuracies in position estimation 

[15], [16]. 

 

Prior research has attempted to model these challenges by incorporating probabilistic techniques to 

improve location accuracy. Various studies have focused on RSSI-based location estimation and 

proposed probabilistic models to account for signal variability. These models often assume a 

straightforward relationship between signal strength and distance, but real-world environments 

introduce non-linear dependencies due to obstacles, dynamic changes, and interference [17], [18]. 

Traditional positioning models do not fully capture these variations, leading to significant errors in 

location estimation. 

 

Despite advancements in WLAN-based indoor positioning, existing models struggle with adapting to 

environmental changes such as variations in access point power settings, furniture rearrangements, or 
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human obstructions. These factors lead to inconsistencies in RSSI measurements, reducing 

positioning accuracy over time. Most conventional models do not incorporate mechanisms for 

dynamically adjusting parameters to mitigate these inconsistencies [19]. Additionally, existing 

fingerprinting approaches are often computationally expensive and require extensive data collection 

efforts for model training, limiting their scalability in real-world deployments. 

 

To address these challenges, this study proposes an enhanced probabilistic model that refines RSSI-

based positioning by integrating high-signal relations while mitigating the influence of low-signal 

variations. Unlike conventional approaches, the proposed model dynamically adjusts to environmental 

changes by incorporating adaptive filtering mechanisms and power variation compensation 

techniques. Through leveraging advanced signal behaviour prediction methods, the model aims to 

improve positioning accuracy in complex indoor environments. Furthermore, the proposed approach 

enhances scalability by reducing reliance on extensive pre-collected fingerprinting datasets, making 

deployment more efficient across diverse indoor settings. This research aims to bridge the gap between 

theoretical modelling and real-world applicability, ensuring that WLAN-based IPS remains robust, 

adaptable, and efficient for future localization applications. 

 

 
 

Figure 1. Two example points demonstrating how the identified access points might be used to create the appropriate 

position vectors RSS 

 

3. Methodology  

 

In the experimental design section, the dataset collection process is meticulously detailed to ensure 

transparency and reproducibility. A total of 33,300 RSS (Received Signal Strength) data points were 

collected to develop the proposed model. The data acquisition was carried out using a Dell Inspiron 

N5050 laptop equipped with an Interactive Scanning Driver tool, which recorded RSS measurements 

from five Access Points (APs) operating on the 2.4 GHz frequency band. The APs were strategically 

positioned at a height of two meters (2 m) and configured with adjustable power settings, including 

LOW (≤-43 dBm), MEDIUM (≤-30 dBm), and HIGH (≤-18 dBm), to simulate varying signal strength 

conditions. The experimental area spanned approximately 350 square meters and included 74 

Reference Points (RPs) distributed in a grid pattern at intervals of 1–1.5 meters. At each RP, 30 RSS 

samples were collected at a sampling rate of 1 Hz, ensuring a robust and consistent dataset. The RPs 
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were maintained at a constant height (ground floor level) to minimize variability. The dataset was 

gathered during the offline learning phase, with RSS readings systematically recorded to maintain 

consistency. During the online phase, 11,100 data points (33% of the total dataset) were introduced to 

test the model, ensuring a rigorous evaluation of its performance under real-world conditions. The 

layout of the RPs and APs is illustrated in Figure 2, while Table 1 summarizes the key experimental 

parameters, including RP density, AP density, and power configurations.  

 
 

 

Figure 2. Grid and fingerprinted reference location on a map 
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Table 1. Illustrations of the experiment settings assumptions 
 

Factors Options 

Sampling rate 1 Hz 

RPs heights Constant (at ground floor level) 

RPs distribution 1-1.5m 

Number samples 30 per reference point 

RPs density 74 

APs density 5 

Receiver model Inspiron N5050 

APs power HIGH(≤-18dBm), MEDIUM(≤-30dBm), LOW (≤-43dBm) 

 

3.1 Mathematical model 

 

In the process of estimating a mobile user's location, two primary vectors are employed. The first 

vector, denoted as the RSS (Received Signal Strength) sample vector, is crucial for real-time location 

determination. This vector is composed of RSS samples collected from N Access Points (APs) during 

an active online session within the designated area. For the purposes of this study, the RSS sample 

vector is mathematically represented as:  R = [r₁, r₂, ..., r] where rᵢ represents the RSS value received 

from the i-th AP.  The indoor localization system utilizes this RSS sample vector to infer the mobile 

device's position through a sophisticated amalgamation process. Each component of the RSS vector 

is considered a random variable, subject to specific assumptions that are fundamental to the accuracy 

of the localization algorithm.  Two key assumptions are made regarding the statistical properties of 

these random variables which are Independence and Normal Distribution. 

 

 In independence, the random variables rᵢ (measured in dBm) are assumed to be mutually independent 

for all i. This assumption allows for simplified mathematical modelling and analysis of the RSS data.  

In normal distribution, each random variable rᵢ (in dBm) is assumed to follow a normal (Gaussian) 

distribution. This assumption is based on empirical observations and theoretical considerations of 

signal propagation in indoor environments.   

 

These assumptions play a critical role in the development and implementation of robust indoor 

localization algorithms, enabling the system to estimate the mobile user's position with a high degree 

of accuracy and reliability. The normal distribution assumption, in particular, facilitates the 

application of various statistical techniques and machine learning algorithms for location estimation. 

 

The secondary vector, integral to the creation of location fingerprints, is composed of the empirical 

means derived from the Received Signal Strength (RSS) random variables collected within a specified 

area from N Access Points (APs). This comprehensive information is meticulously recorded and 

organized within the position database. Throughout this paper, this vector is interchangeably referred 

to as position fingerprints, location fingerprints, or the RSS vector, and is symbolically represented as 

μ:  μ = [μ₁, μ₂, ..., μ] where μᵢ represents the mean RSS value from the i-th AP.  The assumption that 

the RSS follows a normal distribution is not arbitrary but is substantiated by multiple research studies 

[20]. This theoretical foundation provides a robust basis for the utilization of RSS in location 

fingerprinting techniques, enhancing the reliability and accuracy of positioning systems that rely on 

these signal strength measurements. The normal distribution of RSS can be expressed as:  P(RSS) = 
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(1 / (σ√(2π))) * e^(-(RSS - μ)² / (2σ²))  where: P(RSS) is the probability density function of the RSS, 

μ is the mean RSS value, σ is the standard deviation of the RSS, e is the base of the natural logarithm  

These equations form the mathematical basis for the RSS-based location fingerprinting technique, 

allowing for precise and reliable position estimation in various indoor positioning systems. 

 

The aim of this study is to optimize the WLAN fingerprinting indoor positioning system by reducing 

computational complexity while improving accuracy. The proposed approach involves selecting three 

Reference Points (RPs) with the lowest mean average signal strengths before comparing the signal 

relationships between online and offline Access Points (APs). At its core, the model adopts a 

probabilistic method that utilizes AP signal strength relationships and a mean average filter, departing 

from the traditional Received Signal Strength (RSS) approach. 

 

To clarify the concept of the mean average filter and its relationship to signals, consider the following 

example: 

 

Let x̄₁ represent the offline RSSI (Received Signal Strength Indicator) mean at Reference Point 1 for 

various Access Points (APs), and ȳ₁ represent the online RSSI mean at Reference Point 1 for the same 

APs. 

The Average Mean Filter (AMF) for Reference Point 1, considering N Access Points, is expressed by 

Equation 1: 

AMF = (1/N) * Σ(x̄₁ - ȳ₁)                            1 

 

This equation calculates the average difference between the offline and online RSSI means across all 

N Access Points at Reference Point 1. The AMF provides a measure of how the signal strength at a 

specific location compares to previously recorded values 

 

In the subsequent stage, the radio map is utilized to select the three K points exhibiting the lowest 

Average Magnitude Function (AMF) values. These points are then employed to establish signal 

relationships. This selection process effectively eliminates other Reference Points (RPs) from further 

consideration, thereby reducing the computational burden associated with the model. 

 

The intensity of the relationship is modulated by amplifying the signal correlation. This correlation is 

evaluated by comparing the relationships between user-transmitted values and their corresponding 

database entries within the algorithm's assessment framework. For instance, if α = 70 and β = 68, the 

relationship can be expressed as: 

γ = α - β = 70 - 68 = 2                   2 

 

his equation demonstrates how the difference between two signal values (α and β) is used to quantify 

their relationship (γ). 

 

It is an established fact that the signal strength values received by a terminal device at a specific 

reference point are significantly greater than those encountered in any other location. This conceptual 

framework is employed to formulate the algorithmic model. When the signal strength from an access 

point is sufficiently elevated, it indicates that the terminal's position is in proximity to that access 

point, thereby enhancing the likelihood of that position being selected. In cases where two signal 

strengths, X and Y, exhibit Gaussian distributions, the probabilistic relational approach employs a 
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random variable Z, defined as the difference between these strengths: Z = X - Y. This resulting variable 

Z also follows a Gaussian distribution. The mean of Z is subsequently expressed by Equation 3. 

yxz                               3 

 

And variance is defined by Equation 4 
222

yxz                                                 4 

 

The approach's operational mechanics enable the calculation of probability density function values 

for each prevalent association between user-retrieved and database beacons corresponding to 

candidate locations. The term, "prevalent" refers to relationships with identical MAC addresses. The 

probability density function values are then aggregated for each location and normalized by the total 

number of relationships.  To be considered a candidate, a database location must have a sufficient 

number of common user signal relationships. This method allows for the exclusion of positions that 

lack an adequate number of signals in the appropriate configuration before applying the probabilistic 

equation.  The methodology is implemented through an iterative process. For instance, if k=3 during 

the initial relationship computation, k=k+3 is applied in the subsequent iteration. Ultimately, as shown 

in Equations 5 and 6, the normal difference distribution's density function serves as the definitive 

probability density function approach. 

 

)(1

)22(2

2)(

)(
22

yx

yx

yx

e
zf









































                    5 

 

n

zf

LP

n

i

i
 1

)(

)(                                                         6 

 

4.  RESULTS AND DISCUSSION 

 

4.1 System Parameter Dynamics and Their effect on Performance 

 

This segment explores how varying access point (AP) power settings impact the accuracy of the 

Indoor Positioning System (IPS) model, considering both signal relation and non-signal relation 

approaches. The study aims to test whether integrating the signal relation method can improve IPS 

model accuracy as AP power configurations change. To reach a conclusive finding, the IPS model's 

performance is assessed before comparing it with relevant studies in the field. 

 

4.1.1 Effect of WLAN Access Points Power on Accuracy Performance Based on Signal Relation 

Technique 

 

Figure 3 elucidates the performance concerning position estimation measured in terms of Root Mean 

Square Error (RMSE) across various Test Points (TPs). The investigation revealed that the power 
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setting of the WLAN Access Point (AP) resulted in RMSE values of 0.8596 m, 0.8653 m, and 1.1986 

m, respectively. This observation indicates that the RMSE recorded under the "low" power 

configuration is comparatively minor in relation to that observed under the "high" setting. As the 

power level escalates, there is a related increase in the RMSE. This outcome signifies that the "low 

power" AP arrangement is capable of providing a more precise representation of interior positioning 

in comparison to the configuration utilizing a high-power signal. 

 

 

Figure 3. Performance of location estimation in meter over different test points (TPs) when height 2 meter 

 

4.1.2 Effect of WLAN Access Points Power on Accuracy Performance Based on None-Signal 

Relation Technique 

 

Figure 4 depicts the position estimation performance in terms of Root Mean Square Error (RMSE) 

across various Testing Points (TPs). The analysis revealed RMSE values of 1.1507 m, 1.086 m, and 

1.2201 m for different Access Point (AP) power configurations. After power setting adjustments, the 

RMSE showed no clear trend of increase or decrease, likely due to the complex interplay between low 

and high signal relationships affecting position estimation. Notably, the observed RMSE is higher 

than that achieved using the signal relation methodology. This suggests that the signal relationship 

approach may offer improved accuracy in indoor positioning compared to none-signal relation 

methods. Figure 4 specifically illustrates the position estimation performance in terms of RMSE 

across different TPs without employing a signal relation technique.   
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Figure 4. Performance of location estimation in meter over different test points (TPs) when height 2 meter 
 

4.1.3 Performance Comparison of Indoor Positioning Systems 

 

As noted earlier in the introductory portion of this paper, the fundamental purpose of this research is 

to construct an innovative algorithm tailored to reduce the adverse consequences of lowered signal 

correlation instigated by access point power configurations on WLAN fingerprinting indoor 

localization systems, consequently enhancing accuracy. This investigation has commenced at a 

pivotal juncture; notwithstanding the plethora of research endeavours yielding substantial accuracy, 

numerous studies have failed to acknowledge the influence of reduced signal correlation attributable 

to transmitter power settings on overall accuracy [6]. The empirical results delineated in this research 

contribute to a novel theoretical framework regarding the WLAN fingerprinting methodology in 

localization, particularly in tackling the challenges associated with accuracy in indoor positioning 

performance. 

 

Previous research has explained the influence of access point power and significant signal fluctuations 

as barriers to the performance of the WLAN fingerprinting technique in enhancing indoor localization 

accuracy. Notwithstanding these efforts and numerous additional initiatives, achieving high accuracy 

in indoor positioning through WLAN-based fingerprinting techniques continues to pose a significant 

challenge. 

 

The investigation provides valuable insights into the impact of transmitter power settings on indoor 

positioning accuracy using WLAN fingerprinting. The study's findings highlight the significance of 

these settings in determining positioning accuracy, emphasizing the need for careful consideration of 

power configurations in indoor positioning systems.  The study also demonstrates the effectiveness of 

clustering techniques, particularly signal correlation, in enhancing indoor positioning accuracy. This 

observation aligns with and reinforces the conclusions drawn by [21], lending credibility to the study's 

findings. The consistency with other international studies [22], [23] further strengthens the validity of 

the results.  However, it is important to critically evaluate the conflicting findings presented in [24] 
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and [25]. While [24] supports the impact of access point power on positioning accuracy, [25] claims 

no substantial effect when power variations are minimal. The discrepancy in these findings warrants 

further investigation to determine the specific conditions under which power settings significantly 

influence accuracy.  The methodology employed in [25], which involved altering the mobile device's 

orientation rather than directly manipulating transmitter power, raises concerns about the study's 

validity. The authors' conclusion may be uncertain due to the limitations imposed by human body 

interference during orientation measurements. This approach fails to account for the complexities of 

real-world scenarios and may not accurately represent the true impact of power settings on positioning 

accuracy.  Furthermore, the study overlooks the crucial role of antenna sensitivity and manufacturer-

specified antenna gain in determining transmitter power limitations. These factors can significantly 

influence the relationship between power settings and positioning accuracy, and their omission may 

lead to incomplete or potentially misleading conclusions. 

 

Moreover, to elucidate the enhancement in percentage accuracy, Equation 7 has been employed to 

calculate the percentile. Table 2 demonstrates that the proposed model achieves a mean accuracy 

improvement of 15.794% in a two-meter configuration upon the introduction of the high signal 

relation concept. Additionally, the mean accuracy was determined utilizing Equation 7. The 

percentage accuracy improvement (Hp) using the signal relation algorithm can be expressed as: 

𝐻𝑝 = [
𝐻𝑛𝑠−𝐻𝑤𝑠

𝐻𝑛𝑠
] ∗ 100%     7 

Where Hws is the accuracy with the signal relation algorithm, and Hns is the accuracy without the signal 

relation algorithm. 

 
Table 2: Performance Accuracy Comparison of Non-Signal and Signal Relation Techniques Configuration 

 

Power Settings LOW MEDIUM HIGH 

Highest RMSE Value Achieved by Signal Relation-Aware Algorithm (in Meters) 0.8596 0.8653 1.1986 

Highest RMSE Value Achieved without Signal Relation-Aware Algorithm (in 

Meters) 
1.1507 1.086 1.2201 

Relative Improvement in RMSE Performance with Signal Relation-Aware 

Algorithm in meter (%) 
25.297 20.322 1.762 

Average Relative Improvement in RMSE Performance with Signal Relation-Aware 

Algorithm in meter (%) 
15.794 

 

The overall performance of the proposed model demonstrates significant improvement with the 

introduction of the high signal relation concept, as evidenced by the data presented in Table 2. The 

model achieves an average accuracy enhancement of 15.794% in a two-meter configuration, 

calculated using Equation 7, which quantifies the percentage accuracy improvement (Hp) by 

comparing results with (Hws) and without (Hns) the signal relation algorithm. Additionally, the signal 

relation-aware algorithm shows notable reductions in Root Mean Square Error (RMSE) across low, 

medium, and high-power settings, with relative improvements of 25.297%, 20.322%, and 1.762%, 

respectively. These results highlight the effectiveness of the signal relation algorithm in enhancing 

both accuracy and precision, particularly in low and medium power configurations, where the 

improvements are most pronounced. Overall, the integration of the signal relation concept 

significantly boosts the model's performance, making it a valuable enhancement for practical 

applications. 
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5. CONCLUSIONS AND FUTURE WORK  

 

This investigation has examined the influence of access point (AP) power configurations on the 

accuracy of indoor positioning systems (IPS) that employ WLAN fingerprinting techniques. The study 

has analysed the significance of high signal relations while minimizing the repercussions of low signal 

variations. The proposed probabilistic analytical algorithm has demonstrated its efficacy in enhancing 

IPS accuracy, as substantiated by a notable decline in the Root Mean Square Error (RMSE). 

Experimental results indicate that the proposed method achieves an average accuracy enhancement of 

15.794% in terms of RMSE, reinforcing its effectiveness in mitigating signal degradation effects and 

improving localization precision. The findings highlight the potential benefits of varying AP power 

levels to augment the functionality of WLAN-based localization systems, particularly within 

environments characterized by elevated wall density and significant signal attenuation. The 

incorporation of AP power into the fingerprinting technique presents a promising strategy for 

addressing various intrinsic challenges associated with indoor positioning, ultimately resulting in 

more dependable and precise location determinations. 

 

Although this investigation has revealed the advantages of integrating AP power into WLAN 

fingerprinting-based IPS, additional scholarly inquiry is imperative to resolve several unresolved 

issues. Future study could investigate the real-time dynamic modulation of AP power levels to 

accommodate variations in environmental conditions, such as changing user density or the emergence 

of new physical barriers. Furthermore, an exploration of the scalability of the proposed methodology 

within larger and more intricate indoor settings, such as multi-story structures or areas with a high 

concentration of access points, would yield significant insights. In addition, the amalgamation of other 

localization methodologies, such as machine learning techniques or sensor fusion, with the proposed 

framework could further enhance positioning precision. Lastly, it would be essential to assess the 

implications of forthcoming WLAN standards and technologies on indoor positioning efficacy to 

ensure the continued advancement of robust and future-oriented IPS solutions. 
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