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Abstract: Image classification is a powerful and widely used technique for distinguishing objects across 

various benchmarks. However, it suffers from several limitations. First, it fails to recognize or adapt to 

images of unseen categories, making it unsuitable for real-world applications where new categories 

frequently emerge during testing. Additionally, traditional classification models assume that the 

training and testing data are drawn from the same distribution, as is the case with most benchmarks. 

However, in real-word scenarios, even images from the same categories can be captured under 

different environmental conditions and challenging settings, making a well-trained classification model 

ineffective when handling out-of-distribution (OOD) data. Few-shot learning comes into play, where 

few-shot learning models can adapt to unseen categories and generalize better to OOD data using only 

a small labeled support set during test. In this paper, we present a resource-efficient deep metric 

learning network for plant leaf disease recognition in few-shot scenarios, addressing real-world 

challenges, where new diseases may emerge and field conditions can vary significantly. Specifically, we 

introduce a lightweight triplet network that leverages efficient embedding backbones. We employ 

MobileNetV2 and MobileViT-S as our network embedding backbones and optimize the network using 

the triplet loss. Experiments are conducted on the PlantVillage dataset, where the model is trained on 

28 categories and evaluated on 10 unseen categories. Using MobileViT-S as the embedding backbone, 

our approach achieves a top-1 few-shot classification accuracy of 87.18% on the unseen categories. 
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1. Introduction 

 

Plants and crop diseases are one of the key concerns for food security, as crops are considered the main 

source of food for the world population [1], [2]. Identifying plant diseases at an early stage is essential 

as it can reduce its harmful effects. Monitoring plant diseases manually can be time-consuming, 

difficult and error-prune. Deep learning and computer vision have been widely useful in automatically 

detecting plant diseases, especially in its early stages [3], [4]. 

 

Image classification models have demonstrated powerful performance in distinguishing between 

different categories. However, Image classification comes with various limitations. Image classification 

models are typically trained with Softmax output layer where the neurons in the output layer correspond 

to a fixed set of categories. During inference, the model assigns the input image to the category 

corresponding to the output neuron with the highest probability. This limits the classification model’s 

ability to recognize or adapt to images of unseen categories, making it unsuitable for tasks where new 

categories frequently emerge during testing, such as person re-identification, retail product recognition 

and signature verification. Secondly, in most datasets, the training and testing sets are drawn from the 

same distribution, so a well-trained classification model can achieve very high accuracy on the test set 

but fails to generalize on out-of-distribution (OOD) data, which is a very common challenge in real-

world scenarios. 

 

Motivated by this, Few-Shot learning (FSL) [5] has been developed to address classification tasks with 

only few labeled examples. It typically aims to mimic the human ability to recognize new objects from 

just one or a few labeled instances. Various approaches have been proposed to address few-shot 

recognition tasks, most notably deep metric learning [6], [7], [8] and meta-learning [9], [10]. 

 

In plant disease recognition, most available datasets consist of images collected under controlled 

environments and conditions. For example, PlantVillage dataset [3] is one of the most widely used 

benchmarks for plant disease classification contains images captured in consistent settings. As a result, 

training and testing samples are drawn from the same distribution, allowing classification models to 

achieve high accuracy on the test set but fail to generalize effectively to real-world out-of-distribution 

agricultural scenarios, where new diseases may emerge and field conditions can vary significantly, and 

thus motivating the adoption of few-shot learning approaches in our work. 

 

In this work, we introduce a resource-efficient and lightweight deep metric learning approach for few-

shot recognition of plant leaf diseases. Specifically, we employ a triplet network that utilizes a 

lightweight backbone as the embedding model and optimize it using the triplet loss function [6]. We 

evaluate our approach on the PlantVillage dataset by splitting it into disjoint training and testing sets, 

with 28 classes used for training and the remaining 10 for testing. Our network employs two lightweight 

backbone architectures: MobileNetV2 (CNN-based) [11] and MobileViT-S (hybrid) [12]. The 

performance is assessed under various N-way K-shot settings, with classification accuracy reported 

using both 1-NN and mean-based strategies, as detailed in the Experiments section. Our approach 

achieves its best few-shot classification accuracies of 65.02%, 84.01% and 87.18% for the 10-way 1-

shot, 10-way 5-shot and 10-way 10-shots settings, respectively, when using MobileViT-S as the 

embedding backbone along with the 1-NN classification strategy. 
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In the following sections, we present the structure of the paper. Section 2 provides recent advances in 

deep metric learning and efficient lightweight backbones and how they are integrated in our work. The 

proposed approach is discussed in detail in Section 3. Section 4 discussed the implementation details, 

the utilized datasets as well as the experiments conducted in our research. Lastly, Section 5 provides a 

conclusion and outlines the future directions. 

 

2. Related Work 

 

2.1. Deep Metric Learning 

 

Deep metric learning aims to encode similarity between instances by learning a representation function 

that maps data into a non-linear embedding space, where instances of the same category are mapped 

close together, while instances of different categories are mapped far apart. Deep metric learning 

approaches take advantage of deep neural network backbones to construct these representative 

embeddings from input images. These approaches have shown significant success across a variety of 

real-world applications including face verification [6], [13], [14], [15], person re-identification [16], 

[17], [18], fashion item retrieval [19], [20] and image retrieval [7], [21], [22]. A variety of loss functions 

have been proposed to optimize deep metric learning models [23], [6], [24], [25], [18], [26]. 

 

2.2. Efficient Lightweight Backbones 

 

Building resource-efficient and lightweight deep neural networks is essential for practical real-world 

applications, particularly for deployment on embedded and edge devices. Lightweight backbones have 

been employed in different deep learning tasks including image classification, object detection, image 

segmentation, and few-shot learning. Efficient convolution neural networks (CNNs) have been focusing 

not only on achieving high performance on benchmark datasets, but also on developing reliable 

lightweight models with reduced computational complexity [11], [27], [28], [29], [30], [31]. 

Meanwhile, Vision Transformers (ViTs) have been effective at capturing long-range dependencies and 

acquiring global contextual representation compared to CNNs. However, they typically require higher 

computational cost due to the quadratic complexity associated with the self-attention mechanism. Thus, 

various work focused on developing efficient lightweight ViTs [32], [33]. Another research direction 

focused on developing powerful lightweight hybrid models that comprises the benefits of both CNNs 

and ViTs while being resource efficient [12], [34], [35], [36], [37]. 

 

In our work, we strive to optimally combine a powerful deep metric learning approach with an efficient 

light-weight backbone as an embedding model. Thus, we employ triplet loss as our deep metric learning 

objective, with different resource-efficient backbones including MobileNetV2 and MobileViT-S. 

 

3. Methodology 

 

In this section, we introduce the overall methodology of our proposed approach. We begin first by 

giving a brief illustration of the used lightweight backbones, we then revisit the triplet loss formulation, 

which serves as the foundation of our deep metric learning framework. Then, we describe our proposed 

lightweight triplet network. 

 

3.1. Lightweight Backbones  
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3.1.1. MobileNetV2 Backbone 

 

MobileNets [11], [29], [30] are lightweight convolutional neural networks that are designed for 

resource-constrained and edge devices. They are built primarily based on depthwise separable 

convolution, which notably reduce computational complexity compared to standard convolutions. The 

MobileNetV2 variant further introduces inverted residual blocks with linear bottlenecks, making it one 

of the most widely adopted lightweight CNN backbones across various downstream applications such 

as image classification, image segmentation, object detection and few-shot learning. 

 

3.1.2. MobileViT Backbone 

 

MobileViT, proposed by Mehta et al. [12], aims to effectively combine the advantages of convolutional 

neural networks (CNNs) and Vision Transformers (ViTs) to design a lightweight and resource-efficient 

backbone for mobile and edge vision tasks. Since CNNs are powerful due to their spatial built-in 

inductive biases. However, they are spatially local and lack the global processing capabilities present in 

ViTs due to their limited receptive field. On the other hand, ViTs are powerful in learning global 

representation, but are typically considered heavyweight compared to CNNs. From this pursuit, 

MobileViT introduces a novel MobileViT block that integrates convolution with transformers to 

effectively model local and global context. MobileViT models the local information using the 

MobileNetV2 (MV2) block and models the global information using the MobileViT block which 

substitutes local processing in convolutions with global processing using the multi-headed self-attention 

(MHSA) operation [38]. Although MHSA operations generally have quadratic complexity and are 

considered a key source of computational bottleneck in ViTs. MobileViT applies MHSA only to low-

resolution feature maps, significantly reducing computational costs and maintaining lightweight design. 

 

3.2. Triplet Loss 

 

The concept of triplet loss was originally presented by [6]. It is one of the most employed loss functions 

in deep metric learning. Triplet loss constructs triplets consisting of three instances, an anchor (𝒙), a 

positive (𝒙+) and a negative (𝒙−). The anchor and positive are sampled from the same class (i.e., share 

the same label) while the negative is sampled from a different class. Each element in the triplet is fed to 

a deep neural network to be transformed from the input space to the embedding space, forming 

𝒇(𝒙), 𝒇(𝒙+) 𝒂𝒏𝒅 𝒇(𝒙−) corresponding to the anchor, positive and negative images, respectively. The 

triplet loss objective is to decrease the distance between the anchor and positive samples while 

increasing the distance between the anchor and negative samples. Specifically, it enforces the distance 

between the feature embeddings of the anchor and positive to be smaller than the distance between the 

feature embeddings of the anchor and negative with a fixed margin 𝜶. The triplet loss is formulated as 

follows: 

ℒ = ∑ 𝑚𝑎𝑥(‖𝑓(𝑥) − 𝑓(𝑥+)‖2
2 − ‖𝑓(𝑥) − 𝑓(𝑥−)‖2

2 + 𝛼, 0)                (1)

𝑥, 𝑥+, 𝑥−∈ 𝑇

 

𝜶 is a fixed violate margin that determines the minimum distance to be enforced between the anchor-

positive and anchor-negative pairs. 𝑻 denotes a mini-batch of triplets composing { 𝒙,  𝒙+, 𝒙−}. The 

term ‖ . ‖𝟐
𝟐 refers to the squared Euclidian distance in the embedding space. 

 

3.3. Proposed Approach 
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Our proposed approach employs the triplet network [6]. The triplet network processes three images as 

input, an anchor image, a positive image, and a negative image. The anchor and positive images are 

taken randomly from the same category while the negative is taken from a different category within the 

training set. Consequently, the three images are fed to a shared embedding network which projects the 

given images from the input image space to a low-dimensional embedding space. In this space, images 

from the same category should have embeddings that are close together, whereas images belonging to 

different categories should be positioned far apart. We adopt the triplet loss function for optimizing our 

network, which is clearly discussed in the previous section. Prior to computing the triplet loss, the three 

output embedding vectors are L2-normalized to have unit norm. We utilize lightweight and efficient 

backbone architectures pre-trained on the ImageNet dataset [39] for building a resource-efficient triplet 

network. Our proposed lightweight triplet network is given in Figure 1. 

 

 
 

Figure. 1: The architecture of our proposed lightweight triplet network. The weights of the lightweight backbone are shared 

across all three branches, as depicted in the figure. During the training phase, triplets are formed only from a subset of 

classes (denoted as N in the figure), while the remaining M classes are left for testing purposes to assess the model's ability 

to generalize to unseen categories. 

 

4. Experiments and Results 

 

4.1 Implementation Details 

 

Our triplet networks are trained on input images resized to 224×224 resolution over 25 epochs, with a 

batch size of 32 on the Plant Village dataset. Training is performed with PyTorch on an NVIDIA P100 

GPU. We use the Adam optimizer [40] with an initial learning rate of 1e-5 and a StepLR scheduler 
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which decreases the learning rate by a factor of 0.1 every 8 epochs. In Eq 1., the margin 𝜶 is set to 1 in 

our experiments. 

 

4.2. Dataset 

 

The Plant Village dataset [3] is one of the largest and most widely employed datasets for plant disease 

classification. It comprises 54,303 labeled images of both healthy and diseased plant leaves, belonging 

to 38 distinct classes, representing diseases across 14 different crop species. We split the dataset into a 

source domain and a target domain, ensuring that there is no overlap in categories between them. 

Specifically, the embedding models are trained on 28 categories, while the remaining 10 categories are 

reserved for testing purposes to assess the network's generalization ability on unseen classes, as 

provided in Table 1 and Table 2. To maintain a balanced formulation of triplets across training 

categories, we generate the training triplets by randomly sampling 500 anchor-positive pairs from each 

class. For each of these pairs, a negative sample is randomly selected from a different category, 

resulting in a total number of 14000 training triplets. A sample of the constructed triplets from the 

training categories is depicted in Figure 2. 

 
Figure. 2: Example of the triplets constructed from the training categories 
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Table 1: The list of categories used for training the proposed triplet network 
. 

 Plant Type Category 

1 Apple Healthy 

2 Apple Cedar apple rust 

3 Apple Black rot 

4 Grape Healthy 

5 Grape Leaf blight 

6 Grape Esca (black measles) 

7 Grape Black rot 

8 Corn Healthy 

9 Corn Cerocospora leaf spot 

10 Corn Northen leaf blight 

11 Corn Common rust 

12 Peach Healthy 

13 Peach Bacterial Spot 

14 Strawberry Healthy 

15 Strawberry Leaf scorch 

16 Cherry Healthy 

17  Cherry Powdery mildew 

18 Potato Healthy 

19 Potato Early blight 

20 Potato Late blight 

21 Tomato Healthy 

22 Tomato Yellow leaf curl virus 

23 Tomato Early blight 

24 Tomato Late blight 

25 Tomato Mosaic virus 

26 Tomato Spider mites 

27 Tomato Target spot 

28 Tomato Leaf mold 

 
Table 2: The List of categories used for evaluating the proposed methodology in our experiments. 

 

 Plant Type Category 

1 Apple Healthy 

2 Blueberry Healthy 

3 Orange Citrus greening 

4 Raspberry Healthy 

5 Soybean Healthy 

6 Squash Powdery mildew 

7 Pepper Healthy 

8 Pepper Bacterial spot 

9 Tomato Bacterial spot 

10 Tomato Septoria leaf spot 

 

4.3. Experimental Results 
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As stated in the dataset section, we split our data into training and testing sets, denoted as 𝑫𝒕𝒓𝒂𝒊𝒏 and 

𝑫𝒕𝒆𝒔𝒕, respectively. 𝑫𝒕𝒓𝒂𝒊𝒏 contains categories 𝑪𝒕𝒓𝒂𝒊𝒏, while 𝑫𝒕𝒆𝒔𝒕 comprises unseen categories  𝑪𝒕𝒆𝒔𝒕 . 

Where 𝑫𝒕𝒓𝒂𝒊𝒏 and 𝑫𝒕𝒆𝒔𝒕 are non-overlapping in terms of object categories, such that 𝑪𝒕𝒓𝒂𝒊𝒏  ∩  𝑪𝒕𝒆𝒔𝒕  =
 ∅. The 𝑫𝒕𝒓𝒂𝒊𝒏 contains 28 categories while the 𝑫𝒕𝒆𝒔𝒕 includes the remaining 10 categories which are 

stated in Table 1 and Table 2. For few-shot learning evaluation, our approach is assessed under standard 

N-way K-shot settings.  Specifically, we conduct experiments using 10-way 1-shot, 10-way 5-shot, and 

10-way 10-shot configurations. In our experiments, we fixed the parameter N to 10 which represents the 

unseen categories in 𝑫𝒕𝒆𝒔𝒕. Following common few-shot protocols, we randomly sample K support 

images from each of the N categories in 𝑫𝒕𝒆𝒔𝒕, where the remaining images in 𝑫𝒕𝒆𝒔𝒕 serving as query 

samples. Consequently, the total support set size becomes 10, 50, and 100 for K values of 1, 5, and 10, 

respectively. During testing, the model classifies each query image into one of the N novel classes 

based on feature embeddings learned by the network, by comparing its embedding to those of the 

support set for all N categories. In Table 3, we report the computational complexity of lightweight 

backbones employed in our triplet network, in terms of parameters and floating-point operations 

(FLOPs). 

 
Table 3: A comparison between MobileNetV2 and MobileViT-S in terms of Params and FLOPs. The Params and FLOPs are 

recomputed on 224×224 input images, excluding the models' fully connected layers. 
 

Backbone network # Params FLOPs 

MobileNetV2  3.0M 0.3G 

MobileViT-S  5.4M 1.4G 

 

We evaluate and compare the performance of our network using two different lightweight embedding 

backbones: MobileNetV2 and MobileViT-S. These backbones are evaluated under various N-way K-

shot configurations, as previously described. For calculating the test classification accuracy, we use two 

classification strategies based on the support and query embeddings. First, we apply the 1-nearest 

neighbor (1-NN) approach, where each query image is assigned to the class of its nearest support 

embedding among the N test classes. Second, we compute the distance between the query embedding 

and all K support embeddings for every test class, and the query is then assigned to the class whose 

support set (comprising K samples) yields the lowest mean distance to the query embedding among all 

N classes. As observed in Table 4, adopting MobileViT-S as the embedding backbone along with the 1-

NN as the classification strategy yields to favorable performance across all evaluation settings. The 

detailed few-shot classification accuracies for both backbones under various N-way K-shot settings and 

evaluation strategies (1-NN and mean-based) are reported in Table 4. 
 

Table 4: Few-shot classification performance on the PlantVillage dataset. 10-way here represents the 10 unseen classes 

within the test set. 
 

 

 

 

 

 

 

5. Conclusion 

 

Backbone Classification strategy 10-way 1-shot 10-way 5-shot 10-way 10-shot 

MobileNetV2 Mean 55.18% 70.88% 73.34% 

MobileNetV2 1-NN 55.18% 74.10% 80.92% 

MobileViT-S Mean 65.02% 82.85% 83.96% 

MobileViT-S 1-NN 65.02% 84.01% 87.18% 
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In this work, we introduce a computationally efficient deep metric learning network for few-shot 

recognition, which leverages a lightweight backbone and is optimized using the triplet loss. we 

experiment our triplet network with both a lightweight CNN-based backbone (MobileNetV2) and a 

hybrid backbone (MobileViT-S). One of our experimental observations is that using a hybrid 

embedding backbone outperforms its CNN-based counterpart in deep metric learning approaches, 

owing to its global context modeling and input-adaptive weighting mechanisms. The proposed approach 

achieves a top-1 few-shot classification accuracy of 87.18% on the PlantVillage dataset, demonstrating 

strong generalization performance on unseen test categories. In future, we plan to investigate alternative 

efficient embedding backbones, explore various hard-mining strategies to enhance the effectiveness of 

the triplet loss, and even experiment with different loss functions to further improve model optimization 

and generalization. 
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