
IJICIS, Vol.25, No.3, 73-92

DOI: 10.21608/ijicis.2025.411803.1419

*Corresponding Author: Shymaa H. Mahmoud

Museums and Archaeology Sites Management Department, Faculty of Archeology, Ain Shams University, Cairo, Egypt

Email address: shymaa.hosny@arch.asu.edu.eg

International Journal of Intelligent

Computing and Information Sciences

RL-BASED FRAGMENT ALLOCATION AND REPLICATION FOR

DISTRIBUTED HERITAGE MULTIMEDIA DATABASES

Received 2025-08-07; Revised 2025-08-09; Accepted 2025-08-10

Abstract: Optimizing fragment allocation and replication in distributed heritage multimedia databases

is crucial for minimizing query execution costs in dynamic, resource-constrained environments.

Existing heuristics, such as VFAR (Vertical Fragment Allocation and Replication), often neglect inter-

fragment dependencies, join relationships, and site capacity limitations, which can result in inefficient

allocations. This paper introduces RL-FAWM (Reinforcement Learning-based Fragment Allocation and

Replication for Workload-aware Multimedia Systems), a Q-learning framework that models fragment

placement as a Markov Decision Process. RL-FAWM incrementally learns effective allocation and

replication strategies over multiple episodes using a Q-table, enabling the system to adapt to dynamic

workload changes. The approach incorporates structured workload matrices, including read frequency

(FRM), manipulation intensity (FMM), and co-access patterns (FCAM), along with inter-site

communication costs and strict storage capacity constraints. A cost estimator provides real-time

feedback to guide the learning process toward globally optimal and constraint-compliant

configurations.Experimental results on a distributed multimedia case study simulating cultural heritage

archives demonstrate that RL-FAWM significantly outperforms VFAR, reducing replication costs by

over 93% and allocation costs by over 30%. Additionally, RL-FAWM achieves notable reductions in

both allocation-stage and replication-stage join costs while effectively preventing site overloading.

These results highlight the potential of reinforcement learning for adaptive, scalable, and constraint-

aware data management in digital preservation systems.

Keywords: Distributed Heritage Multimedia Database, Reinforcement Learning, Q-learning, Cost-

based Optimization, Allocation and Replication Optimization.

Shymaa H. Mahmoud*

Museums and Archaeology Sites Management

Department

Faculty of Archeology, Ain Shams University,

Cairo , Egypt

shymaa.hosny@arch.asu.edu.eg

Ahmed E. Abdelraouf

Information System Department

Faculty of Computer and Information Science,Ain Shams

University,

Cairo , Egypt

ahmed_ezzat@cis.asu.edu.eg

Nagwa L. Badr

Information System Department

Faculty of Computer and Information Science,Ain

Shams University,

Cairo , Egypt

nagwabadr@cis.asu.edu.eg

Mohamed I.Ali

Museums and Archaeology Sites Management Department

Faculty of Archeology, Ain Shams University,

Cairo, Egypt

mohamed.ibrahim22s@arch.asu.edu.eg

https://ijicis.journals.ekb.eg/

mailto:shymaa.hosny@arch.asu.edu.eg
mailto:nagwabadr@cis.asu.edu.eg

74 Shymaa H. Mahmoud et al.

1. Introduction

As the demand for high-quality multimedia applications continues to grow, distributed multimedia

databases have become essential for storing and managing vast collections of video, audio, and image

data across geographically dispersed servers [1][2][3][4]. These systems support advanced use cases

such as online streaming, virtual museums, and multimedia search engines, where both the volume and

variety of data demand are scalable and intelligent data management. Effectively accessing such large

databases presents major challenges, particularly in data maintenance, consistency, and organization.

Without proper fragmentation and optimization strategies, information retrieval from extensive datasets

can become slow and inefficient, leading to degraded performance and user dissatisfaction due to delays

and limited accessibility.

Moreover, managing and storing these databases requires substantial infrastructure investments,

including high-capacity storage, robust communication links, and distributed processing capabilities

[5][6][7]. With the proliferation of data-intensive applications ranging from multimedia archives to

financial and scientific analytics, fragment allocation has emerged as a central challenge in distributed

database system design. Poor allocation strategies can result in unbalanced workloads, increased inter-

site communication, and elevated query latency. Historically, static allocation techniques were widely

adopted. These methods assumed fixed query patterns and rarely adapted to changes in workload or

access frequency. While effective in controlled environments, static methods often fail to maintain

performance in real-time and dynamic settings [8].

In the cultural heritage domain, managing multimedia data introduces even greater complexity. This is

due to the involvement of diverse institutions, each operating under different mandates, standards, and

archival frameworks. Inconsistencies in data documentation, storage formats, and metadata sharing

further limit system interoperability and hinder effective data stewardship. These barriers also constrain

knowledge dissemination and prevent systems from serving the needs of varied user groups [9][10].

Technological progress has extended the boundaries of cultural interaction beyond traditional settings.

As digital technologies have evolved, cultural expression is now embedded across platforms and

disciplines, enabling new interpretations and interactions with cultural content. The emergence of the

World Wide Web introduced a transformative phase by facilitating web-based cultural dissemination

through virtual exhibitions, digital libraries, and interactive museum platforms [11][12].

To support such complex applications, distributed multimedia database systems must be capable of

handling dynamic query workloads that often involve large volumes of data, multi-fragment joins, and

mixed read/write operations. The strategy used to allocate data fragments across distributed sites

directly influences system performance, as it affects query execution time, communication cost, and

storage efficiency.

As queries become more diverse and data volumes increase, fragment allocation and replication become

critical to ensure low-latency and efficient access. Fragment allocation is the task of determining where

to place individual data fragments within the distributed system. Techniques such as the Vertical

Fragmentation Allocation Rule (VFAR) [13][14] allocate and replicate fragments statically based on

minimizing individual access costs, such as read or manipulation frequency. However, these methods

do not account for global performance factors such as fragment co-access patterns, join relationships,

RL-BASED FRAGMENT ALLOCATION AND REPLICATION FOR DISTRIBUTED HERITAGE

MULTIMEDIA DATABASES 75

and site capacity limitations, making them suboptimal in complex, real-world multimedia environments.

This challenge is further compounded in multimedia workloads, where queries frequently involve multi-

fragment joins across heterogeneous media types, including video, audio, and subtitles, each with

varying size, synchronization demands, and access frequency.

Conventional fragment allocation and replication models typically aim to reduce access latency by

analyzing individual read and manipulation patterns. For instance, VFAR and related techniques

optimize fragment placement using local statistics such as access frequency and proximity to users

[2][13][14]. However, by treating fragments independently, these models overlook inter-fragment

relationships and fail to adapt to dynamic, multi-fragment query behavior. This limitation is particularly

evident in multimedia contexts, where complex queries may involve correlated data elements, such as

matching time-synchronized video and audio, which require joint optimization to achieve efficient

execution.

To overcome these limitations, this research introduces a reinforcement learning based fragment

allocation framework specifically designed for distributed multimedia database environments. Unlike

static heuristics, the proposed approach utilizes Q-learning to dynamically adapt fragment-to-site

assignments based on real-time workload feedback.

It minimizes total execution cost by jointly accounting for read, manipulation, and inter-fragment join

operations, while strictly enforcing site capacity constraints. Moreover, the model preserves learned

allocation policies across episodes, enabling continuous improvement without requiring retraining from

scratch. This adaptive capability makes the system particularly well-suited for complex, evolving

multimedia workloads typical of heritage information systems.

As shown in Figure 1, the proposed system architecture must support efficient fragment allocation to

serve diverse user applications and query patterns in a distributed environment. The figure illustrates a

high-level view of a distributed multimedia database system designed to support various user

applications such as Virtual Museum, Streaming, and Search. These applications issue queries that

access multimedia fragments stored across multiple servers. The figure shows how fragments are

allocated across three servers (S1, S2, and S3) based on RL-FAWM (Reinforcement Learning based

Fragment Allocation and Replication for Workload-aware Multimedia Systems). In this example,

Figure 1: Overview of a distributed multimedia database

system

76 Shymaa H. Mahmoud et al.

fragments are assigned to servers S1 and S3 to ensure responsive, efficient access that matches the

content demands of each application. The figure highlights how user access patterns influence fragment

placement in distributed multimedia systems.

The structure of this paper is as follows: Section 2 provides a review of related work; Section 3 details

the proposed methodology; Section 4 presents and analyzes the experimental results; and Section 5

Conclusion and Future Work.

2. Related Work

Fragment allocation and replication is a fundamental process in distributed database systems, crucial for

improving query execution efficiency, minimizing communication overhead, and balancing storage

loads across multiple sites. Over the years, various techniques have been developed to address this

challenge. However, most existing approaches assume static workloads, lack runtime adaptability, or

overlook cost factors critical to complex and media-rich environments. This section reviews prominent

research in this area, with a focus on their allocation strategies and corresponding limitations.

This study [13] proposes an integrated vertical fragmentation, allocation, and replication scheme

optimized at design time. Site assignments are decided via cost-based heuristics after fragment

formation. Despite achieving initial cost reduction, it does not offer any mechanism for policy

adjustment or feedback-based updates once the system is deployed, limiting its applicability under

changing query distributions.

The researchers [14] proposed a vertical fragmentation and allocation framework specifically designed

for distributed multimedia databases. Their method utilizes an Enhanced CRUD matrix to capture site-

specific access behavior and applies a modified Prim’s Minimum Spanning Tree algorithm, enhanced

with Fibonacci heaps, to efficiently group attributes into fragments. Allocation and replication decisions

are guided by communication and storage cost metrics across network nodes. While the approach is

effective for static environments and minimizes system cost at design time, it lacks adaptability to

runtime workload variations and does not incorporate feedback from actual query execution.

In the work presented in [16] enhanced vertical fragmentation through the Differential Bond Energy

Algorithm (DBEA), combining bond energy principles with differential evolution to improve attribute

grouping. While this method leads to well-structured fragments and higher affinity measures, it

separates allocation from the fragmentation process. The model offers no defined strategy for site

assignment, and the allocation phase does not reflect live query behavior, limiting its use in systems that

require responsive data placement based on workload feedback.

Introduced research [17] a K-means clustering–based methodology for vertical fragmentation and

allocation in distributed database systems. The approach groups queries with similar access patterns and

forms fragments, accordingly, assigning them to network sites to improve data locality. Although this

technique avoids the need for large access logs and is computationally efficient during system

initialization, the allocation remains static once deployed. It does not provide mechanisms for online

refinement or respond to changes in access frequency, making it less suitable for dynamic or interactive

multimedia systems.

This research proposed a fragmentation method tailored for multimedia databases, integrating content-

RL-BASED FRAGMENT ALLOCATION AND REPLICATION FOR DISTRIBUTED HERITAGE

MULTIMEDIA DATABASES 77

based query semantics, such as audio and image similarity, into the fragmentation logic. The resulting

fragments are allocated using heuristic rules that prioritize semantic relevance and access efficiency.

Although this approach is innovative in capturing multimedia content relationships, it does not adapt

allocation in response to shifting query patterns or system performance and lacks learning mechanisms

that reflect ongoing operational needs.

In [18] present a vertical fragmentation method specifically designed for multimedia databases, where

content-based query semantics such as audio and image similarity are integrated into the fragmentation

logic. Their approach seeks to improve query performance by aligning fragment structures with content-

based access patterns, thus enhancing retrieval efficiency for multimedia queries. However, while the

method effectively addresses the fragmentation process, the authors acknowledge that allocating these

fragments across distributed sites remains an open challenge. This limitation is especially significant in

large-scale or geographically dispersed environments. The proposed method does not incorporate

runtime workload adaptation or feedback mechanisms. In their discussion of future work, the authors

suggest that integrating adaptive allocation strategies, including those based on machine learning or

reinforcement learning, could further optimize system performance by dynamically responding to

changing query workloads and system conditions.

As this work [19] introduced RL_Qptimizer, a reinforcement learning–based query optimizer that

improves join order selection in centralized relational databases. Their model uses Q-learning and deep

Q-networks (DQN) to adjust execution plans based on actual performance feedback, demonstrating

dynamic adaptability at the query optimization level. However, their work does not address fragment

allocation or data placement across distributed systems. It focuses on plan generation for given data

layouts, leaving the challenge of fragment placement, especially in multimedia or geographically

dispersed systems, unresolved.

The authors [20] present an adaptive vertical partitioning approach for distributed databases, where a

partitioning evaluator serves as the core cost model. This evaluator assesses candidate partitioning

schemes by calculating both query I/O cost and migration cost, thereby providing a comprehensive

measure of partitioning effectiveness under dynamic workloads. The partitioning evaluator directly

guides the system’s optimization process, serving as the reward function in the adaptive partitioning

algorithm. While this approach effectively adapts to evolving workload patterns and improves query

efficiency, it primarily focuses on partitioning at the attribute level and does not address joint

optimization for fragment allocation, join costs, or strict site capacity constraints. In contrast, our work

introduces a reinforcement learning-based allocation framework that incorporates a richer cost model,

explicitly modeling join operations and capacity limitations to enable globally optimal, workload-aware

fragment placement.

In summary, while previous studies have advanced fragmentation, allocation and replication in various

directions, including clustering, evolutionary search, semantic modeling, and cost-based heuristics, most

suffer from common limitations: static decision-making, lack of runtime feedback, absence of join cost

modeling, or failure to integrate allocation and replication with system behavior. To overcome these

gaps, this research introduces a reinforcement learning based allocation model that dynamically learns

fragment placement policies from real query execution. By jointly minimizing read, manipulation, and

join costs, while respecting site capacity constraints and maintaining prior learning, the proposed model

offers a flexible, cost-aware solution for real-world distributed multimedia environments.

78 Shymaa H. Mahmoud et al.

3. RL-FAWM (Reinforcement Learning based Fragment Allocation and Replication for

Workload-aware Multimedia Systems)

Figure 2 illustrates the proposed architecture for adaptive fragment allocation and replication in

distributed multimedia databases using reinforcement learning (RL). This architecture is designed to

minimize execution costs dynamically based on query patterns and system constraints. Each of the

layers is described in details in each of the following subsections.

3.1 Presentation Layer (User Interface / Applications)

Figure 2 : RL-FAWM -Based Fragment Allocation and Replication Architecture

RL-BASED FRAGMENT ALLOCATION AND REPLICATION FOR DISTRIBUTED HERITAGE

MULTIMEDIA DATABASES 79

This layer represents diverse end-user applications, such as virtual museum platforms, streaming

services, and multimedia search engines. These applications generate a wide variety of queries, driving

the workload that must be efficiently managed by the underlying data system.

3.2 Data Layer (Storage & Raw Input)

Serving as the central data repository, this component stores fragmented multimedia data such as

images, descriptions, and logs of user query access. The database is responsible for supplying both

content and historical access information necessary for workload analysis.

3.3 Processing / Logic Layer (Learning, Allocation, and Validation)

This layer contains the entire fragment allocation decision-making pipeline.

3.3.1 Fragment Analyzer

The Fragment Analyzer processes the access logs and existing fragment metadata to generate structured

workload matrices. These include the read frequency matrix (FRM), manipulation matrix (FMM), and

fragment co-access frequency matrix (FCAM), which together capture usage patterns, modification

intensities, and inter-fragment relationships.

3.3.1.1 Read Matrix (FRM)

A synthetic example dataset is used across tables 1 to table 4. Table 1 presents the frequency of read

operations from each site to each fragment (FRM). Tables 2 through table 4 complement this by

showing manipulation frequencies, co-access patterns, and communication costs, together illustrating

the overall system workload.
Table 1 Read matrix

F1 F2 F3

S1 3 6 9

S2 6 3 3

S3 9 9 6

FRM (S1, F1) = 3 milliseconds→ Site S1 read fragment F1 three times. For the whole system, total read

cost is determined using Eq (1) as [13][14].

 Cread= ∑ ∑ 𝐹𝑅𝑀(𝑠, 𝑓). 𝐶𝐶(𝑠, 𝑙𝑜𝑐(𝑓))𝑓∈𝐹𝑠∈𝑆 (1)

Where loc(f) is the site to which fragment f is assigned. For example, if fragment F1 is placed at S2, and

site S1 reads it, that access incurs cost = FRM (S1, F1) × CC (S1, S2) = 3 × 6 = 18 milliseconds.

3.3.1.2 Manipulation Matrix (FMM)

Table 2 tracks the frequency of update/write operations (INSERT/UPDATE/DELETE).

Table 2 Manipulation Matrix (FMM)

80 Shymaa H. Mahmoud et al.

 F1 F2 F3

S1 2 3 1

S2 3 2 1

S3 1 2 3

FMM (S2, F2) = 2 milliseconds → Site S2 performed two updates to fragment F2. Total manipulation

cost calculated with Eq (2) as [13][14].

 Cmanip= ∑ ∑ 𝐹𝑀𝑀(𝑠, 𝑓). 𝐶𝐶(𝑠, 𝑙𝑜𝑐(𝑓))𝑓∈𝐹𝑠∈𝑆 (2)

3.3.1.3 Co-access Matrix (FCAM)

Reflects how often fragment pairs are joined in the same query can be found in Table 3.

Table 3 Co-access Matrix (FCAM)

 F1–F2 F2–F3 F1–F3

FCAM 15 15 12

FCAM (F1, F2) = 15 milliseconds → Fragments F1 and F2 were joined fifteen times. The total join cost

was computed using Eq (3). If two fragments are co-located (loc(fi)∩loc(fj)≠∅), join cost is zero since

the join can be executed locally without communication

Cjoin= ∑ FCAM(fi, fj) (fi,fj)ϵFCAM {
0, if loc(fi) ∩ loc(fj) ≠ ∅,

min
sp∈loc(fi),sq∈loc(fj)

. cc(Sp, Sq) , otherwise, (3)

Consider three fragments: F1 allocated to site S1, F2 allocated to site S2 and F3 allocated to site S3.Let

the communication cost CC (S1, S2) =5, CC (S2, S3) =4, CC (S1, S3) =7milliseconds. Then Pair (F1,

F2), 15 ×5=75, Pair (F2, F3),15 ×4=60 and Pair (F1, F3), 12 ×7=84 so Cjoin=75+60+84=219

millisecond, the contribution of this fragment pair to the total join cost is calculated as Eq (3). This

value represents the communication cost incurred when the system needs to join these two fragments

across their respective sites.

3.3.1.4 Communication Matrix (CC)

The network or access cost between any two sites [13][14] is provided in Table 4.

Table 4 Communication Matrix (CC)

S1 S2 S3

S1 0 6 12

S2 6 0 10

S3 12 10 0

CC (S1, S2) = 6 milliseconds → Cost of communication between site S1 and S2 is 6 units.

3.3.2 RL Agent Component

RL-BASED FRAGMENT ALLOCATION AND REPLICATION FOR DISTRIBUTED HERITAGE

MULTIMEDIA DATABASES 81

The Reinforcement Learning (RL) agent serves as the core decision-making component in the fragment

allocation and replication framework. It formulates the allocation and replication task as a Markov

Decision Process (MDP), where each state encodes the complete mapping of fragments to sites and

each action corresponds to assigning a specific fragment to a candidate site. The agent receives

workload matrices, including read frequency, manipulation intensity and co access patterns, from the

Fragment Analyzer to inform its decisions. Its operation integrates two closely interconnected

mechanisms: placement optimization and feedback-driven learning. Together, these mechanisms

establish the closed feedback loop through which fragment placement decisions are proposed, validated,

enacted, and progressively refined.

Firstly, Placement Optimization. The RL agent operates in two stages. In the initial allocation stage,

each fragment is assigned to exactly one site, establishing a non-replicated baseline distribution. Once

this allocation is complete, the agent proceeds to the replication refinement stage, where actions may

introduce new replicas or remove redundant ones. At each iteration, the agent selects a candidate

placement action based on the current state. Before execution, the proposed action is validated by the

Capacity Checker to ensure that storage constraints are not violated. If the action passes validation, the

RL agent enacts the update, modifying the fragment-to-site mapping. This state transition constitutes an

environment step, setting the stage for performance evaluation.

Secondly, Feedback-Driven Learning Once an allocation or Replication change is applied, the Cost

Estimator evaluates the new configuration and calculates the resulting total execution cost. The adaptive

decision-making process is governed by a value-based Q-learning algorithm, which enables the agent to

iteratively improve its strategy. The agent maintains a Q table in which each entry estimates the

expected long-term reward (the negative of total execution cost) for taking a specific allocation or

replication action in a given state. The Cost Model/Estimator computes this reward by combining read,

update and join costs with any penalties for capacity violations. During learning, the agent updates its

Q-values using the standard Q-learning update formula Bellman Eq 4 [21][22][32].

Q(s,a)←Q(s,a)+α[r+γ⋅a′maxQ(s′,a′)−Q(s,a)] (4)

Here, Q(s,a) is the current value of taking action a in state s, alpha α is the learning rate that controls

how quickly the agent updates its beliefs, gamma γ is the discount factor for future rewards, r is the

immediate reward received (which in this system is the negative total cost), and s′ is the resulting new

state after taking action a.

To strike a balance between exploring new possibilities and exploiting known good decisions, the agent

follows an epsilon-greedy policy. This means that with some probability, it will try a random action to

discover potentially better allocations, while most of the time it will choose the action that currently has

the highest Q-value. The reinforcement learning cycle can be summarized in Table 5, which details the

core steps that govern the agent’s interaction with the environment.

Through repeated execution of these steps, the RL agent gradually converges toward fragment

placements that minimize execution cost while respecting site constraints. Once training stabilizes, the

learned allocation policy is deployed in the distributed multimedia database to support adaptive and

cost-efficient fragment management. Figure 3 presents the full Q learning allocation loop in pseudocode

form.

82 Shymaa H. Mahmoud et al.

Table 5 RL feedback Loop Steps

Step RL Feedback Loop Component Description

Step 1 Action Proposal (RL Agent) The agent selects a new allocation action based on the current state.

Step 2 Capacity Validation (Capacity

Checker)

The proposed action is validated against site capacity constraints.

Step 3 Placement Update (RL) If valid, the action is applied to update the fragment-site mapping.

Step 4 Cost Calculation (Cost Estimator) The updated allocation is evaluated using the total cost model.

Step 5 Reward Feedback (RL Agent) The negative reward is used to update the Q-value for the executed

action.

Figure 3 RL-FAWM

RL-BASED FRAGMENT ALLOCATION AND REPLICATION FOR DISTRIBUTED HERITAGE

MULTIMEDIA DATABASES 83

3.3.3 Capacity Checker

The Capacity Checker module enforces storage constraints on each site during the fragment allocation

process, as defined in Eq. (5). For every candidate allocation generated by the RL Agent, it calculates

the cumulative storage usage of all fragments and their replicas placed on each site:

𝑈𝑠𝑎𝑔𝑒(𝑠) ∑ 𝑥𝑓, 𝑠 . 𝑠𝑖𝑧𝑒(𝑓) ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑠) ∀𝑠 ∈ 𝑆 (5)
𝑓𝜖𝐹𝑠

Where xf,s 1 if fragment f is placed on site s, otherwise 0.F is the set of all fragments, S the set of sites,

size(f) the storage requirement of fragment f, and capacity(s) the maximum storage capacity of site s. If

any site is overloaded, the proposed action is immediately rejected and not forwarded to the Cost

Estimator.

This proactive validation ensures that the RL Agent explores only feasible and deployable allocation

decisions, thereby enhances training stability and accelerates convergence. By discarding invalid states

before they reach the Cost Estimator, the Capacity Checker eliminates the inefficiencies of penalty-

based approaches that impose costs only after violations occur. Consequently, the system generates

more realistic and resilient fragment (and replica) distributions during both training and evaluation

phases [21].

3.3.4 Cost Estimator

The Cost Estimator is a central module in the RL-FAWM architecture, responsible for evaluating the

quality of each candidate fragment allocation, where allocation may involve replicating fragments

across multiple sites. It computes the total execution cost of a given allocation plan, and this value is

used as a negative reward for the RL Agent, directly guiding its learning and optimization process.

Unlike static models that capture only local costs, the Cost Estimator integrates real workload patterns

through structured matrices: the Read Frequency Matrix (FRM), Manipulation Matrix (FMM),

Fragment Co-access Matrix (FCAM), and Communication Cost Matrix (CC), as illustrated in Figure 4.

The overall execution cost is defined as Eq (6):

Ctotal = Cread + Cmanip + Cjoin + Cpenalty (6)

Each term is calculated using fragmented access patterns and current assignments. For instance, the read

cost for fragment F1 assigned to S1, accessed by S2, as Eq (1). Manipulation cost uses FMM according

to Eq (2). In this work, the above cost functions are extended to handle replication by considering

multiple replica sites for each fragment. For instance, the read cost is minimized by directing each

access to the nearest replica, while manipulation cost propagates updates to all replicas. The join cost

sums FCAM frequencies multiplied by communication costs, but only when joined fragments are stored

at different sites (3).

To strictly enforce site capacity constraints, a penalty is added when a site is overloaded using Eq (7).

 Cpenalty= ∑ 𝒎𝒂𝒙(𝟎, 𝒖𝒔𝒂𝒈𝒆(𝒔) − 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚(𝒔)) × 𝝀𝑺𝝐𝑺𝒊𝒕𝒆𝒔 (7)

84 Shymaa H. Mahmoud et al.

where λ is a scaling factor that strongly discourages invalid allocations. For example, to prevent site

overloads 100 milliseconds per MB overflow. If no site is overloaded, the penalty is zero. The total cost

output is used as a negative reward during Q-learning.

3.4 Final Fragment Allocation

After training converges, the RL agent selects the best-known fragment-to-site assignment observed

during exploration. This final allocation minimizes the total execution cost across read, manipulation,

and join operations while also adhering to site capacity constraints. In contrast to static approaches such

as VFAR, which make one-time decisions without feedback, the RL-based method evolves through

Figure 4 Cost computation

RL-BASED FRAGMENT ALLOCATION AND REPLICATION FOR DISTRIBUTED HERITAGE

MULTIMEDIA DATABASES 85

continuous interaction with the system. As a result, it produces a more adaptive and cost-efficient

allocation strategy that is well suited for dynamic multimedia workloads.

3.5 RL-Based Replication Optimization

After determining the primary allocation of fragments, replication becomes a critical step for improving

query performance and data availability in distributed multimedia databases. Replication can reduce

read latency, increase fault tolerance, and balance system load. However, if not optimized carefully,

replication may violate site capacity limits or introduce unnecessary overhead. This section compares

two approaches to replication: a traditional heuristic method that applies greedy rules after allocation,

and a reinforcement learning–based strategy that jointly considers total execution cost and capacity

constraints.

3.5.1 Background and Conventional Heuristic

In classical distributed database design, the allocation and replication of data fragments are typically

treated as two separate and sequential processes. After vertical fragmentation divides relations into

column-based groups, each fragment is first assigned to a primary site to minimize manipulation costs.

This initial allocation step is usually guided by the Fragment Manipulation Matrix (FMM), which

captures the intensity of manipulation operations across sites.

In a later phase, replication is introduced to improve data accessibility and reduce the cost of remote

read operations. The Fragment Read Matrix (FRM), which reflects read frequencies at each site, is used

to determine suitable locations for placing additional replicas. This two-phase heuristic reflects common

practices in much of the classical replication literature [13][14][15].

The heuristic process generally proceeds as follows: for each fragment, the site with the lowest overall

manipulation cost is selected as the primary allocation site. This cost is calculated by summing the write

frequencies from all sites and the corresponding communication costs to the candidate site. After the

primary allocation, replicas are added at other sites where they can most effectively reduce read costs.

These decisions are based on total read frequency and communication cost from all sites. The heuristic

avoids redundant replication by ensuring that no fragment is replicated at its primary site.

Although this sequential approach simplifies the problem, it often fails to find globally optimal

solutions. Allocation decisions are made without considering their impact on future replication, and

replication choices do not account for manipulation or join costs. As a result, the final system

performance may be suboptimal when compared to methods that integrate allocation and replication

into a unified optimization process.

3.5.2 RL-FAWM Based Replication Strategy

RL-FAWM first performs fragment allocation using a Q-learning agent, considering read, manipulation,

and join costs. Once an optimal allocation is established, a replication refinement step is applied using

reinforcement learning to further reduce system-wide communication overheads and execution costs.

Unlike classical heuristic-based approaches[13][14], this method integrates replication into a unified,

cost-aware optimization framework. In this phase, Q-learning is employed to iteratively learn which

86 Shymaa H. Mahmoud et al.

fragments should be replicated across which sites. The environment is defined as a set of fragment-to-

site mappings, where each fragment can reside on one or more sites.

The agent interacts with the system by attempting to add or remove replicas at selected sites for each

fragment, using an epsilon-greedy policy to balance exploration and exploitation during replication

decisions [20][21][22]. For instance, suppose the agent has previously observed that replicating

Fragment F3 on Site S2 yields the lowest system cost and thus has the highest Q-value. With epsilon set

to 0.1, the agent will replicate F3 on S2 with a 90% probability (i.e., 1 - epsilon), leveraging its learned

knowledge. However, with the remaining 10% probability (epsilon), it explores other options by

randomly selecting a different site (such as S1 or S3). This strategy allows the agent to continue

discovering potentially better replication configurations while still benefiting from prior successful

choices. After each action, the system computes a total cost (as described in Section 3.3.4), which is

then used as the reward signal for Q-value updates.

Figure 5 RL-FAWM Replication optimization

RL-BASED FRAGMENT ALLOCATION AND REPLICATION FOR DISTRIBUTED HERITAGE

MULTIMEDIA DATABASES 87

Any configuration violating storage capacity constraints receives a significant penalty (see Section

3.3.3), steering the agent away from infeasible states. As shown in Figure 5, the agent begins with a

warm-start replica configuration derived from the initial allocation and progressively refines its policy

through episodic learning. The search process is directed toward cost-effective and capacity-compliant

configurations, where the learned Q-values capture the expected long-term benefit of each allocation or

replication action.

This method enables a scalable and adaptive replication mechanism, particularly well-suited for

dynamic or large-scale distributed systems. By embedding cost-awareness directly into the learning

process and supporting multi-replica configurations, the RL-FAWM -based approach improves overall

system performance while remaining flexible for future extensions or real-time adaptation.

4. Results and Discussion

The experimental evaluation of the RL-FAWM model was implemented in Python and executed on an

Intel(R) Core (TM) i5-7300U CPU at 2.60GHz. The system was tested using a real-world multimedia

dataset from the Alexandria Library Museum, selected as a case study due to its cultural and archival

significance.

Bibliotheca Alexandrina Antiquities Museum was established after the discovery of significant artifacts

from the Hellenistic, Roman, and Byzantine eras during excavation work. Officially opened in 2002,

emphasizing Egypt's multicultural history through modern design and educational programs.

Additionally, the museum has contributed 1,324 records to heritage multimedia databases, enhancing

access to its collections and promoting cultural awareness both on-site and online, including virtual

tours. This section presents the evaluation of the proposed RL-FAWM (Reinforcement Learning based

Fragment Allocation and Replication for Workload-aware Heritage Multimedia systems) architecture.

The analysis focuses on allocation and replication quality, execution cost reduction, convergence

behavior, and constraint enforcement. The system was evaluated in a synthetic, simulated distributed

heritage multimedia database environment consisting of three fragments and three sites, with workload

behavior modeled using structured matrices (FRM, FMM, FCAM, and CC), shown in table 1,2,3 and 4

respectively.

4.1 Allocation Process Overview

The fragment allocation process begins with the RL Agent (see Section 3.3.2) generating an initial

allocation of fragments to sites, using random sampling to ensure broad coverage of the state space.

Each allocation is then passed through the Capacity Checker (Section 3.3.3), which ensures that no site

exceeds its defined storage constraint. Valid allocations are subsequently evaluated by the Cost

Estimator (Section 3.3.4), which computes the total execution cost according to Eq (6), incorporating

read, manipulation, join, and penalty costs.

The Q-learning agent maintains a Q-table, where each state-action pair corresponds to a potential

fragment-to-site mapping and its estimated long-term value. To balance exploration and exploitation,

the agent adopts an epsilon-greedy (ε-greedy) strategy: with probability ε, it explores by randomly

selecting a site for a fragment, while with probability 1 – ε, it exploits the current Q-table by choosing

the site with the highest estimated value. For instance, if ε is set to 0.2, the agent will randomly explore

20% of the time and rely on known best choices 80% of the time. This allows the agent to discover new,

88 Shymaa H. Mahmoud et al.

potentially better allocations while still refining its learned strategy. The total cost computed for each

valid allocation is converted into a negative reward, which is then used to update the Q-values

according to the Bellman Equation (4). Through repeated interactions over multiple episodes, the agent

incrementally improves its allocation policy, ultimately minimizing total execution cost while

respecting storage capacity constraints across all sites.

4.2 Matrix-Based Cost Evaluation

The quality of fragment allocations in RL-FAWM is evaluated using structured workload matrices that

reflect real or simulated query behavior. These include the Read Frequency Matrix (FRM) as table 1,

Manipulation Frequency Matrix (FMM) as table 2, Fragment Co-access Matrix (FCAM) shown in table

3, and Communication Cost Matrix (CC) shown in table 4. Together, these matrices form the core input

to the Cost Estimator (Section 3.3.4), which computes the total execution cost using Eq (5). This cost

includes the read, manipulation, and join costs, along with a penalty using Eq (7) for exceeding site

capacity.

For each valid fragment-site allocation proposed during Q-learning, the Cost Estimator calculates the

total cost, which is then used as a negative reward signal to update the Q-table. This cost-driven

feedback enables the RL agent to iteratively refine its policy, learning to prefer allocations that reduce

global workload execution cost while satisfying system constraints.

4.2.1 Workload Matrices

The following tables summarize the key data used by the RL agent and the Cost Estimator, Frequency

of reads from each site to each fragment as table 1, table 2 Frequency of updates

(INSERT/UPDATE/DELETE) from each site to each fragment. Fragment Co-access Matrix (FCAM)

Indicates how often fragments were joined together described by table 3, Communication Cost Matrix

(CC) Represents the unit cost of transferring data between each site as table 4. These matrices were

used by the Cost Estimator (Section 3.3.4) to compute the total execution cost using Eq (6). The

resulting cost value was then provided to the RL Agent (Section 3.3.2) as a negative reward during

training, guiding the Q-learning process toward more efficient fragment allocation and replication.

4.2.2 Fragment Sizes and Site Capacities

In addition to workload patterns, the system must enforce storage constraints to avoid overloading any

site. The Capacity Checker (Section 3.3.3) using Eq (5) uses table 6 and table 7.

Table 6 Fragment Sizes

Fragment Size (MB)

F1 30

F2 30

F3 50

Table 7 Site Capacities

Site Capacity (MB)

S1 55

S2 60

S3 50

RL-BASED FRAGMENT ALLOCATION AND REPLICATION FOR DISTRIBUTED HERITAGE

MULTIMEDIA DATABASES 89

Each time the RL agent proposes a new allocation, the total size of all fragments assigned to each site is

computed. If this total exceeds the site's defined capacity, the allocation is immediately discarded. By

enforcing constraints preemptively, the agent avoids deploying invalid configurations while still

recording them in the Q-table, allowing it to learn from both valid and invalid options. This promotes

stable convergence and leads to higher-quality final allocations.

4.3 RL vs VFAR: Cost Comparison

This section compares the allocation quality and cost-efficiency of the proposed RL-FAWM framework

with the traditional VFAR heuristic [13][14], considering both the read-oriented and manipulation-

oriented versions. The evaluation relies on the structured cost model introduced in Section 3.3.4 and

computed according to Eq (6), which aggregates manipulation, read, join, and penalty costs for each

allocation strategy.

Table 8 compares the allocation results of the traditional VFAR heuristic against the proposed RL-

FAWM approach in a scenario with three fragments and three sites. For each method, the final

allocation vector is shown along with the corresponding manipulation, read, join, penalty, and total

execution costs:

Table 8 Allocation Results

Method Allocation Manip. Read Join Penalty Total

VFAR Allocation (Read) [13][14] ['S3', 'S3', 'S1'] 152 288 324 1000 1764

VFAR Allocation (Manipulation) [13][14] ['S2', 'S1', 'S3'] 80 372 390 0 842

RL-FAWM (Total Cost Opt.) ['S2', 'S2', 'S1'] 102 324 162 0 588

Figure 6 Allocation Result Times(milliseconds)

90 Shymaa H. Mahmoud et al.

As shown in Table 8 and Figure 6, the RL-FAWM approach achieves the lowest total execution cost of

588 milliseconds, reducing costs by 30% compared to VFAR (Manipulation) and by 66.7% compared

to VFAR (Read). This is accomplished by effectively balancing manipulation, read, and join costs while

strictly enforcing site capacity constraints, thereby eliminating penalty costs. In contrast, VFAR (Read)

achieves a lower read cost but suffers from substantially higher manipulation, join, and especially

penalty costs due to site overloading. VFAR (Manipulation) lowers manipulation cost but at the expense

of increased read and join costs.

These results confirm that RL-FAWM delivers a more adaptive and globally optimized allocation than

traditional VFAR heuristics, improving system efficiency for distributed heritage multimedia databases

under realistic workload and capacity constraints. The performance gap underscores the strength of

value-based reinforcement learning for multi-objective optimization in resource-constrained

environments, as RL-FAWM learns and leverages trade-offs across multiple cost dimensions rather than

optimizing a single metric in isolation.

4.4 Replication Optimization :Comparative Insights

This section provides a comparative analysis of the proposed RL-FAWM replication strategy against

the classical VFAR-style heuristic, focusing on total system execution cost. The VFAR method treats

replication as a separate step following fragment allocation, without fully integrating cost components

across system operations. In contrast, RL-FAWM performs joint optimization using a reinforcement

learning framework that holistically evaluates read, manipulation, join, and penalty costs.

Table 9 Replication Strategies

Method Replication Allocation Manipulation Read Join Penalty
Total

Cost

VFAR-style Replication

[13][14]

{'S2', 'S3'}, {'S3', 'S1'}, {'S3',

'S1'}
232

54
0 8500

8786

RL-FAWM Replication [{'S2'}, {'S2'}, {'S3', 'S1'}] 124 252 162 0 538

As shown in Table 9, the RL-FAWM approach reduces the total execution cost from 8786 milliseconds

under the VFAR-style replication to just 538 milliseconds, representing a 93.9% improvement. This

significant gain is achieved through more efficient resource utilization and a cost-aware replication

layout that prevents capacity violations and lowers both manipulation and join costs.

While RL-FAWM exhibits a higher read cost compared to VFAR, this trade-off is intentional and

justified. The reinforcement learning model prioritizes global system optimization over local cost

minimization. By accepting a moderately increased read cost, RL-FAWM achieves substantial

reductions in manipulation, join, and penalty costs, which contribute more heavily to total execution

time and system performance degradation. Specifically, the approach reduces manipulation costs by

nearly 50% and eliminates penalties caused by site capacity violations, leading to more reliable and

balanced resource utilization across all sites.

These findings highlight the effectiveness of RL-FAWM’s integrated, cost-sensitive replication

strategy. By embedding operational constraints and multiple cost dimensions directly into the learning

process, the reinforcement learning model adapts to workload dynamics and capacity limits, offering a

RL-BASED FRAGMENT ALLOCATION AND REPLICATION FOR DISTRIBUTED HERITAGE

MULTIMEDIA DATABASES 91

scalable, flexible, and robust solution for data replication in distributed multimedia database

environments. This makes RL-FAWM particularly suitable for complex, real-world systems where

multiple competing factors must be optimized simultaneously.

5. Conclusion and Future Work

This research introduced Reinforcement Learning–based Fragment Allocation and Replication for

Workload-aware Multimedia Systems (RL-FAWM), a Q-learning framework designed to optimize the

placement of data fragments in heritage multimedia databases. These systems, such as those managing

the digital collections of the Bibliotheca Alexandrina Antiquities Museum, require sophisticated

strategies to efficiently store and serve complex, high-volume cultural assets.

This research introduced RL-FAWM, a reinforcement learning–driven framework for intelligent

fragment allocation and replication in distributed multimedia databases. Unlike traditional heuristics

that treat allocation and replication as separate tasks and often overlook global cost optimization, RL-

FAWM jointly considers read, manipulation, join, and capacity constraints to adaptively learn effective

data placement strategies. By modeling the allocation and replication process as a Markov Decision

Process and leveraging structured workload matrices, the RL agent continuously improves system

performance under dynamic conditions.

Experimental results demonstrate that RL-FAWM reduced replication costs by over 93% and allocation

costs by over 30% compared to the VFAR heuristic, while also lowering both allocation-stage and

replication-stage join costs and preventing site overloading. This unified optimization framework offers

a robust foundation for scalable, workload-aware data management in complex digital heritage

environments. Beyond improving technical efficiency, RL-FAWM supports the sustainable

management of digital heritage repositories, enhancing both long-term preservation and user access.

For future work, the RL-FAWM framework can be extended to accommodate larger and more

heterogeneous distributed environments, such as national digital libraries or interlinked museum

networks. Potential enhancements include adaptive fragment reallocation in response to changing usage

patterns, support for sites with varying capabilities (such as different storage or bandwidth limits), and

broader validation across multilingual and multicultural datasets to ensure generalizability and

scalability.

 References

1. Eźechiel KK, Kant S, Agarwal R (2019) A systematic review on distributed databases systems and

their techniques. J Theor Appl Inf Technol 96(1)

2. Özsu, M. T., & Valduriez, P. (2020). Principles of Distributed Database Systems (4th ed.).

Springer.

3. Li, X., Liu, J., & Wu, S. (2022). “Distributed multimedia databases: Challenges and new

directions.” ACM Computing Surveys.

4. Shorfuzzaman, M., et al. (2021). “Edge intelligence-enabled multimedia data management: A

review.” IEEE Access.

5. Mahmoud, Shymaa H., et al. "Optimizing Multi-Media Database Performance: A Comprehensive

Review of Fragmentation Methods and Dynamic Access Patterns." 2023 Eleventh International

Conference on Intelligent Computing and Information Systems (ICICIS). IEEE, 2023.

92 Shymaa H. Mahmoud et al.

6. Siddiqa, Aisha, Ahmad Karim, and Abdullah Gani. "Big data storage technologies: a survey."

Frontiers of Information Technology & Electronic Engineering 18 (2017): 1040-1070.

7. Özsu, M. Tamer, and Patrick Valduriez. Principles of distributed database systems. Vol. 2.

Englewood Cliffs: Prentice Hall, 1999.

8. Chandra Gope, Dejan. "Dynamic data allocation methods in distributed database

system." American Academic & Scholarly Research Journal 4.5 (2012).

9. Fensel D. Ontologies. In: Fensel D, editor. Ontologies: a silver bullet for knowledge management

and electronic commerce. Berlin: Springer; 2001. p. 11–8.

10. Ranjgar, Babak, et al. "An ontological data model for points of interest (POI) in a cultural heritage

site." Heritage Science 10.1 (2022): 13.

11. Bearman, D.; Trant, J. Interactivity comes of age: Museums and the World Wide Web. Mus. Int.

1999, 51, 20–24. [CrossRef]

12. Poulopoulos, Vassilis, and Manolis Wallace. "Digital technologies and the role of data in cultural

heritage: The past, the present, and the future." Big Data and Cognitive Computing 6.3 (2022): 73.

13. Raouf, Ahmed E. Abdel, Nagwa L. Badr, and M. F. Tolba. "An optimized scheme for vertical

fragmentation, allocation and replication of a distributed database." 2015 IEEE Seventh

International Conference on Intelligent Computing and Information Systems (ICICIS). IEEE, 2015.

14. Sharma, Deepak Kumar, et al. "Modified minimum spanning tree based vertical fragmentation,

allocation and replication approach in distributed multimedia databases." Multimedia Tools and

Applications 81.26 (2022): 37101-37118.

15. Sharma, Deepak Kumar, et al. "Modified minimum spanning tree based vertical fragmentation,

allocation and replication approach in distributed multimedia databases." Multimedia Tools and

Applications 81.26 (2022): 37101-37118.

16. Mehta, Shikha, et al. "Differential bond energy algorithm for optimal vertical fragmentation of

distributed databases." Journal of King Saud University-Computer and Information Sciences 34.1

(2022): 1466-1471.

17. Amer, Ali A. "On K-means clustering-based approach for DDBSs design." Journal of Big Data 7.1

(2020): 31.

18. 15. Ortiz-Ballona, Aldo Osmar, et al. "A Vertical Fragmentation Method for Multimedia Databases

Considering Content-Based Queries." Handbook on Decision Making: Volume 3: Trends and

Challenges in Intelligent Decision Support Systems. Cham: Springer International Publishing,

2022. 3-23

19. Ramadan, Mohamed, et al. "Rl_qoptimizer: a reinforcement learning based query optimizer." IEEE

Access 10 (2022): 70502-70515.

20. Liu, Pengju, et al. "AVPS: Automatic Vertical Partitioning for Dynamic Workload." International

Conference on Intelligent Computing. Singapore: Springer Nature Singapore, 2024.

21. Zhang, T., Liu, Y., Lin, M., & Shahabi, C. (2023). RL-QOptimizer: A Reinforcement Learning-

Based Query Optimizer for Distributed Databases. Proceedings of the VLDB Endowment, 16(12),

3451–3464.

22. Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol. 1. No. 1.

Cambridge: MIT press, 1998.

23. Watkins, Christopher JCH, and Peter Dayan. "Q-learning." Machine learning 8 (1992): 279-292.

