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Ahmad Atef Husseiny' Abstract: Rate of Penetration (ROP) is a critical parameter influencing
Attia M. Attia2 drilling efficiency and accelerating field development. Although
Ahmed G. Hagag conventional ROP models (e.g., Bourgoyne, Hareland) provided reasonable

results, they often struggle with limited accuracy and adaptability across
different well conditions. Recent advances in hybrid machine learning
(ML)-physics or deep ML models improve ROP prediction; however, these
methods typically require complex programming, limiting their practical
adoption. This study addresses these gaps by introducing a prompt, simple,
and strong ROP prediction for directional wells, eliminating the need for
hybrid modelling through the platform Dataiku Data Science Studio (DSS).
To evaluate the impact of domain-specific parameters, two calculated
metrics, D-exponent and Mechanical Specific Energy (MSE) were
Machine learning, integrated into the dataset. Three ML algorithms (Gradient Boosted Trees,
Directional Drilling, XQBoost, and Support Vector Machines (SVM)) were trained and tested
Dataiku, ROP prediction using R?, Mean Absolute Error, and Root Mean Square Error (RMSE)
across three directional offshore wells from the same field. XGBoost
showed best performance and significant improvement R? scores for all
wells after incorporating MSE and D-exponent: from 0.373 to 0.974 (Well-
1), 0.216 to 0.945 (Well-2), and 0.862 to 0.983 (Well-3). Features
importance and SHAP values analyses further quantified the contributions
of MSE and D-exponent to all models’ accuracy, demonstrating their role
in enhancing predictions. This work provides a practical, programming-free
solution for ROP optimization in directional drilling, achieving high
performance without using advanced ML technologies.
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1. Introduction

Drilling operations have critical importance within oil and gas industry as they are directly
related to capital costs, production and field allocation. The efficiency of drilling operations
requires minimization of drilling expenditures. Many efforts and approaches have been
conducted to mitigate drilling issues to enhance operational performance by either minimum
non-productive time (NPT) and/or minimum required drilling time. It is known that
increasing the speed of drilling increases (ROP), the costs will be more efficient. This
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parameter (ROP) is one of the most focal parameters that influence both the expense and
execution of drilling. In addition, it guides drilling engineers to select optimal variables for
achieving the lowest cost per foot. To attain minimal costs and maximum efficiency, various
parameters must be analysed to comprehend their impacts on ROP. Elkatatny et al. (2017)
defined that Rate of Penetration (ROP) is the volume of rock fractured per foot per hour.
Alternatively, it has been characterized as the velocity at which rock is drilled beneath the
bit. ROP has been defined by Bourgoyne (1986) [5] as a metric quantifying the advancement
of the bit through rock formations. Although the increase of ROP seems better for
accelerating drilling process and reducing its time, the probability of operational issues such
as stuck pipe and poor whole cleaning will be increased to be in critical condition. Therefore;
this parameter must be optimized and monitored to avoid such these issues and to maintain
cost efficiency (Akgun, (2002) [2]).

ROP is affected by several parameters while drilling such as the borehole dimensions, bit
design, geological properties of the rock formation being drilled (including rock strength and
drillability), and operational parameters such as WOB, rotational speed, torque, and hydraulic
conditions. In addition to the drilling fluid parameters and BHA, factors. The prediction of ROP
must be takin in considerations to enable precise calculation of drilling costs and timelines,
thereby facilitating the design of drilling parameters, optimization of operational variables, and
even support in refining wellbore trajectories and well structures. They will assist to guide field
engineers to achieve strategic allocation of field production (Abdulmalek et al., (2018) [1];
Jahanbakhshi et al., (2012) [13]). In past decades, most approaches to predict ROP are basically
relying on the interpretations of historical drilling data. However, most of these approaches are
not effective for prediction as some of them are based on mathematical assumptions or based on
specific field condition which is not applicable for another field. Consequently, the development
of a reliable predictive model for drilling rates, which integrates empirical correlations with
available data, has been identified as a pressing challenge within drilling engineering. The Table-
1, represents common ROP correlations used for past decades.

Table 1: Previous researches on ROP

References Input parameters Output Results Remarks

Speer, J.W.

Rotation Rate, Bit Type, Properties
of Circulating Mud, Weight on Bit

ROP optimization

Without statistical

(1959) [25] (WOB), Hydraulic Horsepower curves metrics
Cunningham Analytical ROP Without validation
R.A. (1960) [7] Rotary Speed and WOB equations metrics
Bingham, M.G.  Rotary Speed and WOB, Dirill Bit 1 yqee s Correlation with
(1964) [4] OD, formation type Drillability index ROP
Rotary Speed, WOB, Drill Bit OD,
Bourgoyne A.T. ge[f)th, B.l tlt(l))Oth weari)Compactlon, ROP model with ~ Calibrated to field
etal. (1974)[6] oo crentia) Pressure, POre pressure, —p, _ g 800,95 data
Bit hydraulics and jet compact
factor
Hareland, G. et  Rotary Speed, WOB, Drill Bit ROP prediction with
al. (1994) [10]. OD, Rock compressive strength. R2>0.85
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References Input parameters Output Results Remarks
Weight on Bit (WOB), Rotary . L
Maurer W.C. Speed, Rock Strength, Bit Theoretical ROP W1t.h0u.t emp 1r19a1
(1962) [19] Geometry validation metrics
Mechanical Specific Energy Correlation: MSE «
Ee(;a]le R-(1965) (MSE), Weight on Bit (WOB), Rock strength compressive
Drillability of the Formation strength; R implied
Weight on Bit (WOB), Rotary
Warren T.M. Speed, Hydraulic impact factor, o
(1987) [31] rock strength, differential ROP with R*2=0.89  ROP for roller cones
pressure
Detournay E. et Rock Cutting Mechanics, Bit Analytical
y = Geometry, Intrinsic Specific ROP/Torque models validation; no
al. (1992) [32] Ener - .
4% statistical metrics
WOB, RPM, Stick-slip, lateral
. vibrations, Drill Bit size and Dy MSE-based
zle S(Sll Srgg)([; 3e]t cutter type, Formation ROP mogeglzw ith R*= dysfunction
' Abrasiveness, Cuttings removal ' detection
efficiency

As mentioned, the above that these listed methods are limited in obtaining precise ROP prediction.
This limitation arises from the complex, indirect, and inherent relationships of drilling parameters,
such as WOB, RPM, geomechanical rock properties, and drilling hydraulic efficiency, all of which
control the behavior of ROP. These conventional equations are generally investigated and derived
under laboratory conditions and/or mathematical conversions. These derivations do not reflect to
onsite drilling environments.

With the evolution of technology, Artificial Intelligence (Al), Machine Learning (ML) and
statistical analysis, drilling experts tried to advantage from Al into traditional ROP prediction
models. This fusion has emphasized innovative approaches and insights in the field (Moran and
Ibrahim 2010 [20]). Current approaches for predicting ROP are divided into two categories: those
grounded in theoretical or empirical frameworks, and those leveraging statistical or machine
learning (ML) techniques. Among ML algorithms applied to ROP forecasting, logistic regression,
support vector machines (SVMs), Neural Networks, and Random Forest (RF) are prominent
(Noshi et al. 2019 [15]). While Neural Networks and Random Forest can achieve prediction
accuracies as high as 80%, their "black box" nature limits interpretability, leaving modelers
unable to understand the internal mechanisms and reliant on trial-and-error adjustments. Shi X. et
al. (2016) [17] stated that logistic regression which pairs with historical drilling data and real-
time operational metrics can uncover underlying relationships with ROP. This approach
highlights the use of these techniques in constructing predictive models for drilling efficiency. El-
Sayed et al. (2023) [9] used unsupervised MLs coded by Python, K-Nearest Neighbours (KNN)
and Multilayer Perceptron (MLP) in order to predict ROP in vertical offshore wells. The authors
highlighted that greater accuracy of ROP can be achieved by removing outliers. Benzminabadi et
al. (2017) [3] successfully predicted ROP using ANN and Multiple Nonlinear Regression (MNR)
coded in Python. By combining operational drilling parameters and mechanical rock properties,
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they achieved significant improvements in their results, highlighting the importance of nonlinear
relationships in ROP prediction. Omogbolahan S. et al. (2019) [28] employed four models SVM,
Least-Squared SVR, ANN, and Extreme Learning Machine (ELM) for ROP prediction. Their
study observed that reducing the number of features yielded nearly the same performance for the
models, which means that excessive features can impede or reduce model performance such as
standpipe pressure or mud density which generally contributed less than 1% to model accuracy
based on results. These features could to lead to data noise and overburden ML models without
improving ROP prediction. This highlights the importance of effective feature selection and the
ability of ML techniques to handle limited datasets. Mohamadian et al. (2021) [26], made
statistical analysis of drilling parameters used for wellbore instability prediction such as stuck
pipe and hole cleaning using Al. They found that most input parameters for wellbore problems
are WOB which has been used in 70.97% of the reviewed papers), the flow rate (FR: 54.84%),
the ROP (51.61%), the revolutions per minute (RPM: 38.71%) and the measured depth (MD:
35.48%) as these parameters are easy to obtain and not costly comparing to other parameters
obtained by downhole tools which are expensive. Olukoga et al. (2021) [21] analysed 94 studies
to evaluate prevalent Machine Learning algorithms in drilling applications. They reported that
Artificial Neural Networks (18%), Support Vector Machines (17%), Regression (13%), Deep
Learning (10%), Decision Trees (8%), and Random Forests (8%) dominated the field,
collectively accounting for nearly 75% of the methodologies studied, see the figure-1. The
reason dominance of using ANN and SVM due to their effectiveness in handling with complex
features data as SVM is effective for smaller datasets, whereas ANN is effective for large
datasets as highlighted by Hegde et al. (2020) [12].

k-mear,
4%

Regression
Deep Learning 13%
10% >

Figure 1: Most ML techniques used for well drilling (Olukoga et al. 2021 [21])

In short, it is clear that combination of Al or ML for petroleum industry will promote and
enhance prediction of critical drilling parameters. This combination must conduct a clear
comparative analysis of different ML techniques within real-time data. This comparison will
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help to identify proper features selection and optimizing hyperparameters tuning to achieve best
prediction possible.

2. Literature Review

2.1 D-exponent and Mechanical Specific Energy

One of the most important parameters that affects the performance of ROP in directional drilling is
the rock brittleness. The quality of formation strength is intuitively expected to affect the well
productivity. One of indirect parameter that represents the rock toughness is D-exponent. This
exponent has a trend of drilling curves in overbalanced zones which helps to detect regimes of
formation pressure from normal to abnormal pressure (Jorden and Shirley 1966 [29]). In addition, it
represents the drillability of the formation and reflects the performance of ROP. This parameter as
shown in Equation-2 directly relates to the penetration rate and the bit size and inversely relates to
the weight on the bit and the rotational speed.

0 SDQxROP“}

D — exponent = % ............................................................................... (1)

Bitzize /

* ROP in unit of m/hr.
* WOB in unit of Ib.
* Bit size is drill bit diameter in unit of inches.

2.2 Mechanical Specific Energy (MSE)

It is used to evaluate drilling performance which means the energy required to cut and smash a
specific volume of rock using a drill bit (Teale et al. 1965 [30]). It has quantitative assessment
of how efficiently mechanical energy is converted into rock destruction. It is influenced by
various drilling factors, including torque, rotary speed, weight on bit (WOB), and ROP, which
are commonly used during present drilling operations. The efficiency of drilling process can be
optimized through monitoring values of mechanical energy being put into the system during
drilling and comparing that energy with in-situ rock strength (Majidi R. et al. 2017 [18]). The
use of MSE for estimating pore pressure depends on the conditions of influenced subsurface
rock's stresses, to some extent, by the fluid pressure in exerted in these pores. As a result, the
pore pressure is needed for rock fracture energy while drilling (Majidi R. et al. 2017 [18]). In
other words, MSE values shall be optimized through monitoring drilling parameters to achieve
effective and high ROP performance and minimizing energy waste. The values of MSE have
two indications, high MSE values indicate inefficient drilling (e.g., bit wear, excessive friction,
or improper drilling parameters) whereas low MSE values indicate optimal drilling conditions,
where energy is effectively used for rock breakage. This parameter can be calculated using the
Equation-2.
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WOE | 120.mRPM.T
MSE = Tb+ m) oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo (2)

* WOB is the weight on bit in unit of 1b.

* Ab is drill bit diameter in unit of inches.

* ROP in unit of m/hr.

* RPM is in the revolutions per min.

* T is the torque in unit of ft.1b.
MSE can improve understanding the behaviour of ROP through pore pressure prediction. In
other words, when MSE trendlines indicate abnormal pore pressures the ROP will tend to
decrease. In underbalanced conditions or indicating a potential kick, the ROP will tend to
increase. This will help to predict ROP and potentially gives an improved method of well
control. Although we reviewed several studies related to ROP prediction using different
parameters (Omogbolahan S. et al. (2019) [28], Hazbeh O. et al. (2021) [11], Shaygan K. et al.
(2023) [16], Ehsan B. et al. (2021) [8], Li C. et al. (2020) [23], Noshi and Schubert (2019) [15],
Li and Samuel (2019) [24], and Abdulmalek et al. (2018) [1]) none of them used D-exponent
for during their studies except El-Sayed et al. (2023) [9] who used this parameter and they did
not analysed the impact or the correlation of their features to ROP to optimize prediction
performance. Therefore; it is decided to calculate D-exponent and MSE in our data for three
directional wells in order to check their importance on predicting ROP.

2.3 Computational intelligence techniques

Machine Learning analysis can serve as a critical phase in knowledge discovery within
databases, including the extraction of non-relationships between features in datasets. Drilling
operations, for instance, generate vast and irregularly distributed data characterized by inherent
relationships. This complexity necessitates advanced methods capable of interpreting such
challenges. Machine Learning models can identify these hidden relationships and guide
solutions for tackling real-world problems that defy conventional approaches (Siddique &
Adeli, 2013 [27]). This section outlines previous studies of ML techniques for predicting ROP.

2.4 Machine Learning for ROP

Shaygan K. et al. (2023) [16] applied Random Forest (RF) and Multilayer Perceptron Neural
Networks (MLPNN) to forecast the ROP in directional wells. They concluded that indirect
parameters including Weight on Bit (WOB) and cutting transport efficiency are significantly
influenced. The absence of these features in input datasets was noted to degrade model
performance. Hazbeh O. et al. (2021) [11] used hybrid algorithms combining Multilayer
Perceptron (MLP) with optimization techniques such as Artificial Bee Colony (MLP-ABC),
Gravitational Search Algorithm (MLP-GSA), and Firefly Algorithm (MLP-FF). The MLP-
ABC hybrid outperformed others and indicated that integrating MLP with optimizers enhances
prediction the prediction. Ehsan B. et al. (2021) [8] optimized three neural network models,
Multilayer Perceptron (MPNN), Cascade-Forward (CFNN), and Radial Basis Function
(RBFNN) using backpropagation and biogeography-based algorithms. Their findings showed
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that computational intelligence drastically improved ROP prediction compared to traditional
neural networks. Li C. et al. (2020) [23] merged Artificial Neural Networks (ANN) with an
Integrated Genetic Algorithm (IGA) to predict ROP and WOB in China’s complex shale gas
formations. After testing ANN and IGA separately, their hybrid approach achieved superior
accuracy and real-time optimization during drilling. Kloucha C.K. et al. (2022) [14] used
Dataiku Data Science Studio software which has machine learning techniques to recommend
optimal drilling equipment for future scenarios. Their analysis showed that using ML
techniques from this software outperformed conventional statistical approaches, streamlining
equipment selection with greater precision.

These studies demonstrated the effectiveness of data-driven approaches for ROP modelling.
However, they still challenge in programming advanced ML models which are relatively hard to
be achieved from scratch (Naser M.Z. 2023) [38]. Our work will use Dataiku DSS platform as it
is free and produces the most consistent performance models (Naser M.Z. 2023) [38]. The
expected highest models performance in this study will be ensemble models and SVM due to
their effective in both bagging and possessing boosting techniques which reduce training time,
better generalization, and minimizing the multiclass error rate (Ganaie M.A. Et al. (2022) [39],
Huang F. (2018) [40]), Tabik S. et al. (2020) [41]).

3. Methodology

In order to build ML models using Dataiku DSS, this flowchart shows steps of predicting
ROP.

4. Data Collection

In this research, an actual data from an offshore three directional gas wells in sand reservoirs in
the eastern portion of the West Delta Deep Marine concession, which lies offshore in the deep
water of Nile Delta, Egypt. The exploratory well was targeting a thick Pliocene channel levee
complex trends in a NNE-SSW orientation in which no wells have been penetrated the central
Channel (Fahmy R. et al. 2025) [37]. Stratigraphically the central Channel can be correlated to
the main channel, in which there are several development wells in the same field. Three
deviated wells were being drilled with J-shape design with different depths based on reservoir
intervals. Well-1 penetrating the previously undrilled central channel, while Wells-2 and -3
developed flanking intervals. All wells were drilled with similar BHAs and mud systems but
varied in measured depth (MD) due to reservoir architecture. They also share common drilling
parameters in addition to calculated D-exponent and Mechanical Specific Energy, see table-2.
These data were available from the field, open-hole wireline logs data were unavailable for
these wells. However, unavailable these data will not invalidate the models on ROP prediction
for this study. Core predictors (WOB, RPM, MSE, D-exponent) were prioritized based on
established physical relationships with ROP as per recommendations from Teale et al. (1965)
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[30] and Jorden et al. (1966) [29]. The non-shared parameters (Pore pressure est. and pit
volume) were being collected from available sensors data permitted cross-well consistency.

Figure 2: Data workflow procedures for predicting ROP.

Table 2: wells and their features used.

Well Non-shared Total number
Target Common shared Parameters
number parameters of parameters

Measured depth (m), Inclination (degree),
Surface WOB (klb), RPM, Surface Torque

(Ib.ft), Stand Pipe Pressure (psi), Mud Wieght E;{);’)Olll)l(r)?z
Well-1  ROP  (ppg), Flow in Pum (gpm), Hours On Bit Pres; Est 15
(min), Downhole Revs On Bit (Krev), Bit (Ppe) :

Diameter (inch), D-Exponent, Mechanical
Specific Energy (psi)

Measured depth (m), Inclination (degree),
Surface WOB (klb), RPM, Surface Torque
(Ib.ft), Stand Pipe Pressure (psi), Mud Wieght Pore
Well-2 ROP (ppg), Flow in Pum (gpm), Hours On Bit pressure Est. 14
(min), Downhole Revs On Bit (Krev), Bit (ppg)
Diameter (inch), D-Exponent, Mechanical
Specific Energy (psi)

Measured depth (m), Inclination (degree),
Surface WOB (klb), RPM, Surface Torque
(Ib.ft), Stand Pipe Pressure (psi), Mud Wieght Pit volume
Well-3 ROP (ppg), Flow in Pum (gpm), Hours On Bit (bbl) 14
(min), Downhole Revs On Bit (Krev), Bit
Diameter (inch), D-Exponent, Mechanical
Specific Energy (psi)

5. Data filtering and smoothing

5.1 Model Building

Dataiku DSS offers fourteen in-memory Machine Learning (ML) models which don’t require
python coding. Other advanced or customized ML techniques such as hybrid technology or
Genetic Algorithms require special Python or Scala coding for complex data tasks to get better
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results (Dataiku DSS 2025 [34]). To assess performance differences in this study, we calculated
ROP using all in-memory ML models, then we filtered top three ML models based on R? score.
These ML models are Extreme Gradient Boosted Machine (XGBoost), Gradient Boost Trees, and
Support Vector Machine (SVM). The results will be shown as comparisons of predicted ROP
versus actual ROP for both training and testing datasets, feature importance rankings, and their
numerical effects on accuracy of ROP (SHAP values). Notably, the platform does not display
regression plots for training dataset (Dataiku DSS 2025 [35]). The platform supports training and
testing dataset through learning curves only. In order to validate normal data distribution and
interpretability, we calculated Cumulative Distribution Functions (CDFs) through the software
built in code, as illustrated in table-6. The table-3, 4, and 5 show the list of calculated
statistical parameters of the case study. These tables demonstrated that parameter characteristics
of ROP, WOB, and MSE refer to tight clustering and confirm operational consistency. The
Well-1 has ROP variability with 15% greater mean than in Wells-2/3, which attributes to
central channel lithology. The shared 13 inputs will enable us to cross-well model
comparisons. The skewness and kurtosis values in these tables refer to data distribution
normality and quantitative indication for any deviation from symmetry. For the Well-1 ROP
(skewness=4.58) means strong right-skewness which refer to intermittent high-ROP drilling
phases. For the Well-2 RPM (skewness = -2.9) means left- skewness bias from frequent low-
RPM operations. Kurtosis measures tailedness in normal distribution, with values greater than 3
(Leptokurtic) refer to outlier-prone distributions. The Kurtosis values with less than 3
(platykurtic) refer to light tails. For Wells-1/2 ROP (kurtosis = 67.04 and 88.7 respectively) are
considered highly leptokurtic, which confirms outlier-prone events, whereas Well-3 ROP
(kurtosis = -0.1) is Mesokurtic which indicates both limited outliers’ existence and smooth
drilling operations. These distributions will justify models’ performance in this study.

Table 3: Statistical characterization summary of the Well-1
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To optimize ROP prediction, each ML technique has its own hyperparameters tuning or control
parameters. These parameters were designed to reduce overfitting and avoiding excessive underfitting.
This will help for a particular model to perform best results possible. To optimize tuning values, the
platform offers “hyperparameters optimization” which makes several trials for values regularization
parameter. Based on the tested results, the software recommended to keep control parameters for
XGboost and Gradient Boost Trees with default values. These default values will help the model to
adapt automatically with input data’s variance to reduce overfitting, bias, unnecessary computation,
preventing excessive computation time, and avoiding severe imbalance regression problems. On the
other hand, control parameters of SVM have been customized as seen in table-7. The table- 8, and 9
are control parameters for XGBoost and Gradient Boost Trees respectively.
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Table 6: CDFs data input variables for the three wells

Well-1 Well-2 Well-3

Statistic Gradient Gradient Gradient

XGBoost | Boosted | SVM | XGBoost | Boosted | SVM | XGBoost | Boosted | SVM

Trees Trees Trees
Min. - - -
(raw) -7.3413 -4.9380 21960 -6.0974 -10.0190 11.2970 -1.6548 -1.8241 1.6756
Min. -2.1853 | -3.0287 - 2.6350 | -2.4373 | -1.2206 | -1.1010 | -1.1609 -
25th - i
perc. -0.5201 -0.5378 0.2687 -0.4872 -0.4521 -0.1901 -0.2446 -0.2833 0.0735
Median 0.0530 -0.0165 0.0046 0.0436 0.0839 0 0_300 0.0026 -0.0431 0.0165
Z)i:_l; 0.4738 0.5128 0.3195 0.6947 0.5952 0.2721 0.2184 0.2224 0.0497
90th
pere 0.9325 1.1785 0.7836 1.3664 1.1010 1.2036 0.4291 0.5523 0.1467
Max. 2.7666 4.1201 3.0256 2.8054 3.3827 5.3283 0.8106 1.2578 0.4287
?f::}') 6.1368 19.3410 | 34.271 12.5510 10.7280 18.4570 2.3131 3.1107 1.0498
Average 0.0037 -0.0027 0.1305 0.0965 0.1142 0.2363 -0.0230 -0.0378 0 0641
Standard | o300 | 11955 | 06960 | 10929 | 1.0625 | 1.0975 | 03901 | 04817 |0.1307
Deviation
Table 7: Control parameters for SVM model applied to the three wells
Well-1 Well-2 Well-3

Kernel rbf rbf rbf
Kernel coefficient (gamma) scale scale scale
Regularization parameter C 15 15 15
Stopping tolerance 0.001 0.001 0.001
Max iterations -1 -1 -1
Rows (before preprocessing) 1293 953 1300
Rows (after preprocessing) 1293 953 1300
Columns (before preprocessing) 15 15 15
Columns (after preprocessing) 14 14 14
Matrix type dense dense dense
Policy Split the dataset Split the dataset Split the dataset
Sampling method First records First records First records
Partitions All partitions All partitions All partitions
Record limit 100000 100000 100000
Split mode Randomly Randomly Randomly
Train ratio 0.8 0.8 0.8
Number of Training 1293 953 1300
Number of Testing 315 220 320
Random seed 1337 1337 1337
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Table 8: Control parameters for XGBoost model applied to the three wells.

Objective Reg_linear
Time Method Automatic-CPU only
Max number of trees 300
Early stopping rounds 4
Max depth of tree 3

Eta (learning rate) 0.2
Max delta step 0
Alpha (L1 regularization) 0
Lambda (L2 regularization) 1
Gamma (Min loss reduction to split a leaf 0

Min sum of instance weight in a child 1
Subsample ratio of the training instance 1
Columns subsample ratio for splits / levels 1
Columns subsample ratio for splits 1
Balancing of positive and negative weights 1
Value treated as missing NaN
Matrix type dense

Table 9: Control parameters for Gradient Boost Trees model for the three wells.

Well-1 Well-2 Well-3
Number of Boost stages 100 100 100
Feature sampling strategy Fixed Proportion  Fixed Proportion  Fixed Proportion
Proportion of features to sample 1 1 1
Learning rate 0.1 0.1 0.1
Loss Try least square Try least square Try least square
Max depth of trees 3 3 3

All the above were processed and filtered data offline. However, real-time data processing will require
addressing several operational challenges, including data latency from surface and downhole sensors,
sensors’ reliability (e.g. defected sensors, deviated data) and data filtration time. The platform can address
these limitations after obtaining real-time data and processing them with low hardware feasibility.

6. Results and Discussion

Dataiku offers eight in-memory evaluation metrics, we selected three metrices, R? score, Mean
Absolute Error (MAE), and Root Mean Square Error (RMSE) as indicators of each model’s
performance. The Table-10 shows R? score of the predicted ROP for both the training and testing
datasets, under conditions before and after using the D-exponent and MSE, applied to three directional
wells for three machine learning (ML) techniques. The Table-10 represents guidelines for R? scores
(Sarjana K. et al. 2021) [36].

Table 10: Guidelines for R2 scores

R? Evaluation
0.00-0.199 Very Low
0.20 - 0.399 Low
0.40 - 0.599 Medium
0.60 - 0.799 Strong

0.80-1.00 Very Strong

The table-12, and 13 follow the same structure but present results using MAE and RMSE, respectively.
Regression plots of the predicted ROP are provided for the testing data, while training results are
accessible exclusively through learning curves. Based on these tables, it is observed that XGBoost and
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Gradient Boosted Trees achieve strong overall performance for three wells for approximately all
metrics used. In contrast, SVM underperforms compared to the ensemble models, particularly in Well-
1, where its R? score and RMSE are poorer, and training scores are lower than testing scores (both
before and after applying MSE and D-exponent). SVM also struggles in Well-2, exhibiting high RMSE
values regardless of preprocessing (Table-13). Additionally, in the R? scores, SVM shows a
pronounced gap between training and testing scores just after addition of MSE and D-exponent
calculations (Table-11). These discrepancies suggest issues such as suboptimal hyperparameter tuning,
data quality limitations, dataset complexity, and insufficient training data volume, all of which
constrain SVM’s effectiveness relative to ensemble models. In this case, the performance of SVM can
be improved for well-2 through filtering outliers by customizing numerical values and rescaling
methods which are in Dataiku's features handling to remove automatically potential of outliers. In
general, the improvement of ROP prediction across all metrics highlights the value of integrating MSE
and D-exponent calculations with diverse ML models.

The Well-3 R? score (0.999) for SVM in training data seems overfitting due to kernel's excessive
flexibility in modelling as the Well-3 has low-variance drilling parameters (see Table-5). In addition to
its larger data inputs (rows=1300) which could increase the model overfitting. In order to limit
overfitting, it is suggested to optimize cross validation approaches through tuning training/testing
ratios, modifying number of K-folds based on number of intervals or formations (i.e. K>5) for better
evaluation, and optimizing number of regularization parameter (i.e. C<l15) to limit generalization and
overfitting. However, the testing R? score (0.997) remains valid as it reflects performance on unseen
data, and the near-identical training/testing scores which confirm this behaviour.

The Figures-3-20 show regression plot of the predicted ROP vs actual ROP for testing dataset applied on the
three wells using the three models. These plots were taken from the software directly and cannot be
customized. Every figure and what’s directly under it represent ROP prediction with inclusion and exclusion
of D-exponent and Specific Energy respectively with same technique. By reviewing the mentioned tables and
figures, it is clear that using both D-exponent and MSE have enhanced ROP prediction significantly for all
three wells and that emphasise the importance of using calculated features which evaluate drilling
performance and formation rock toughness. To understand the contribution of each feature and their quantity
importance on ROP prediction, Dataiku offers this advantage in form of features importance percentage on its
platform, so we calculated features importance percentage and summarized in Table-14, 15, and 16 for well-
1, 2, and 3 respectively. Feature importance means contribution percentage of each feature to predict the
required target (ROP). In other words, the accuracy of the predicted target will be changed when adding or
neglecting these features. Based on these tables, we can conclude that adding these features significantly
enhanced performance across all models and wells as confirmed by all metrics. The dramatic increase of R?
scores to exceed 90% indicate very strong alignment with actual ROP. On the other hand, reduction in RMSE
and MAE (e.g., Well-1’s XGBoost RMSE drops by 80%) as it confirms lower absolute error magnitudes,
demonstrated robust performance post-feature inclusion and effectiveness of handling complex data.
Ensemble models (XGBoost and Gradient Boosted Trees) outperformed SVM, primarily because they
inherently rank features based on their contribution to minimizing prediction error. This allows these
models to prioritize the most informative features, such as MSE and put them to top ranks, then
marginalize other features (e.g. D-exponent) to avoid under or overfitting predictions. In contrast, SVM
has other mechanism, which it tries to classify data patterns differently and priorities features which has
direct relationship with ROP. Thus, SVM considers D-exponent as top priority comparing to rest of
features. The inclusion of MSE and D-Exponent strengthened their relationships with rock properties
and drilling efficiency, and ensemble models will increase focusing on using these parameters and put
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them with highest priority and rest of features will be less important and deprioritized. SVM showed
also very good performance for all wells. However, due to be sensitivity to complex data and outliers,
this model performed less precise than rest of techniques. In case exclusion of MSE and D-exponent, all
models reconfigured features importance and their ranking have been changed. All features don’t have
same ranking except Surface torque which is the top importance compared to rest of features. The
reasons behind non-uniform of features ranking for all wells are mainly due to quality of data, data
complexity, presence of outliers, and/or lack of training data for the three wells. In general, it does not
mean that weak features with importance below 4% have negligible effects or negative effects on ROP
prediction. When utilizing these weak features, the accuracy of predicted ROP will be slightly increase.
However, the improvement of ROP is related to numerical values of each feature data and their
contribution to the required target. In other words, some high numerical values for a particular feature
could have either positively or negatively impact on ROP prediction and vice versa. In order to
understand behaviors of features used for ROP, we extracted features effects (or SHAP values) which
are automatically calculated through Dataiku’s platform and put in this study, see figures-21-38 were
every figure and what’s directly under it represent features effect after and before inclusion of D-
exponent and MSE respectively with same technique. For each data point, a SHAP value for a
particular feature quantitates how much that feature's actual value contributed to pushing the model's
prediction from the average prediction to its final predicted value. For better illustration, a positive
SHAP value means that feature pushed the prediction higher while negative SHAP value means that
feature pushed the prediction lower. The figures-21,22,23,27,28,29,33,34, and 35 demonstrated that all
three wells share that MSE, D-exponent, Bit diameter, and flow in pump with low numerical values are
positively impact ROP prediction. As an example for figure-21, low MSE values has span range 34
units that strongly contribute to pushing the predicted ROP higher. For D-exponent, it has span range
greater than 10 units for SVM which also contribute better prediction for ROP unlike ensemble models
which have lower span range due to their different prioritizing mechanism. For Surface Torque, surface
RPM, surface WOB, and measured depth, all techniques showed that high numerical values have
positively impact on ROP prediction and vice versa. Other features, such as mud weight, standpipe
pressure (Omogbolahan S. et al. (2019) [28]), well inclination, bit revolutions, and pore pressure
estimation, showed least influence on ROP prediction due to their low importance and span range.
Thus, variations in their numerical values had no statistically significant effect on model outputs. The
rest of figures-24,25,26,30,31,32,36,37, and 38 are exclusion of Mechanical Specific Energy and D-
exponent, the models reconfigured features effects and focused on weak features (e.g. Standpipe
Pressure, Flow in Pump, well inclination etc.) and decreased degree of overfitting data. Additionally, it
is observed that numerical values for the three wells are not uniformly distributed. In other words, some
features with high numerical values such as surface WOB and surface RPM may either have positive or
negative impact on ROP prediction due to lack of normalization. We can deduct that inclusion of MSE
and D-exponent have significant effect on distributing numerical values of other features.

While all models showed robust ROP prediction using our data from three wells, it is believed that this
study will warrant further investigation for other fields with different formations. However, the
variation effect of drilling parameters, geological properties, and data scalability on ROP prediction
will be mitigated through augmenting data training data by simulating varied drilling conditions, while
preserving physical relationships encoded in MSE and D-exponent. Future work should validate these
models against larger datasets and other formations to assess broader applicability.
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Table 11: Results of predicted ROP using coefficient R? score
Before using Specific Energy and D-Exponent

After using Specific Energy and D-Exponent

Gradient Gradient
XGBoost Boosted SVM XGBoost SVM
Boosted Trees
Trees
Train Testi Train Testi Train Tes | Traini Testi Train Testi Train Testi
ing ng ing ng ing ting ng ng ing ng ing ng
Well-1  0.570 0.373 | 0.745 0.520 | 0.342 0'338 0.995 0974 | 0989 0.946 | 0.791 0.903
Well-2 0.589 0.216 | 0.752 0.311 | 0.240 0'312 0.995 0945 | 0994 0.956 | 0.752 0.896
Well-3 0944 0.862 | 0914 0.846 | 0.868 0?1 0.997 0983 | 0990 0.978 | 0.999 0.997

Table 12: Results of predicted ROP using Mean Absolute Error (MAE)
Before using Specific Energy and D-Exponent

After using Specific Energy and D-Exponent

Gradient Gradient
XGBoost Boosted SVM XGBoost SVM
Boosted Trees
Trees
Train Testi Train Testi Train Tes | Traini Testi Train Testi Train Testi
ing ng ing ng ing ting ng ng ing ng ing ng
Well-1  3.501 3.776 | 2.822 3.143 | 3.220 3‘633 0413 0.748 | 0.600 0.898 | 0.557 0.614
Well-2 381 4499 | 2920 4.122 | 3.720 4'50 0.441 0959 | 0.459 0.867 | 0.514 0.798
Well-3 0.595 0947 | 0.753 1.002 | 0.873 1'23 0.132  0.311 | 0.260 0.371 | 0.082 0.104

Table 13: Results of predicted ROP using Root Mean Square Error (RMSE)
Before using Specific Energy and D-Exponent

After using Specific Energy and D-Exponent

Gradient Gradient
XGBoost Boosted SVM XGBoost adie SVM
Boosted Trees
Trees
Train Testi Train Testi Train Testi | Trai Testi Train Testi Train Testi
ing ng ing ng ing ng ning ng ing ng ing ng
Well-1  5.600 5.801 | 4.137 5.077 | 6.656 5.;5 0.550 1.172 | 0.800 1.710 | 3.75 2.287
Well-2 523 6524 | 4.04 6.117 | 7.066 6'5;8 0.593 1.727 | 0.626 1.541 | 4.05 2.381
Well-3 0.810 1.269 1.00 1.341 | 1.240 1';‘6 0.210 0.439 | 0.350 0.529 | 0.130 0.186
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Table 14: Feature importance percentages for predicting ROP in Well-1

Well-1
After Using D-exponent and Specific Energy | Before using D-exponent and Specific Energy
Feature Name . .
Gradient Gradient
XGBoost SVM XGBoost SVM
Boost Trees Boost Trees

MSE 39% 40 % 8% - - -
D-exponent 10 % 9% 34 % - - -
Surface Torqu« 22 % 24 % 5% 32% 33% 35%
MD (Measured 12.% 10 % 7% 36 % 32% 5%
Depth)

Surface RPM 6 % 6% 8% 2% 4% 5%
Surface WOB 6 % 6% 27 % 6 % 5% 6%
Hours on Bit 2% 1 % 1 % 8 % 9 % 8%
Pit volume 1% <0.5% 1% 3% 5% 2%
Inclination 1% 1% 2% 1% 3% 5%
S!’P (Stand <0.5% <0.5% 2% 5% 2% 9%
Pipe P.)

Flow in Pump <0.5% <0.5% 1% <0.5% 2% 4%
Pore Pressure <0.5% <0.5% 1% 4% 2% 4%
Est. ’

Revs. on Bit <0.5% 1% 2% 4% 2% 10 %
Mud density <0.5% 2% 2% <0.5% <0.5% 8 %
Table 15: Feature importance percentages for predicting ROP in Well-2

Well-2
After Using D-exponent and Specific Energy | Before using D-exponent and Specific Energy
Feature Name
Gradient Boost Gradient Boost
XGBoost Trees SVM XGBoost Trees SVM

MSE 49 % 50 % 7% - - -
D-exponent 1% 1% 38 % - - -
Surface Torqu¢ 13 % 1% 2% 25% 26 % 25%
MD (Measured <0.5% 39 1% <0.5% 6 % 13 %
Depth)

Surface RPM 10 % 14 % 7% 19 % 14 % 9%
Surface WOB 1% 1% 32 % 12 % 14 % 9%
Hours on Bit 7% 1% 1% 23 % 14 % 6 %
Bit Diameter 17 % 17 % 6% <0.5% <0.5% 8%
Inclination <0.5% 1% 3% 6% 5% 4 %
SPP (Stand <0.5% <0.5% 1% 4 % 8% 13 %
Pipe P.)

Flow in Pump <0.5% <0.5% 1% 4 % 4 % 3%
Pore Pressure <0.5% <0.5% 1% 7% 3% 5%
Est.

Revs. on Bit <0.5% 3% 1% <0.5% 8% 5%
Mud density <0.5% <0.5% 1 % <0.5% <0.5% 1%
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Table 16: Feature importance percentages for predicting ROP in Well-3

Well-3
After Using D-exponent and Specific Energy | Before using D-exponent and Specific Energy
Feature Name Gradient Boost Gradient Boost
XGBoost Trees SVM XGBoost Trees SVM
MSE 31% 30 % 21 % - - -
D-exponent 2% 1% 15% - - -
Surface Torqu¢ 3% 23 % 11 % 40 % 41 % 33%
o 0, 0,

MD (Measured 18 % 239, 8 9, 7% 8% 6 %
Depth)
Surface RPM <0.5% 4% 3% 1% 4% 2%
Surface WOB 3% 2% 14 % 4% 4% 6 %
Hours on Bit 5% 3% 3% 14 % 12% 9%
Pit volume 3% 4% 1 % 14 % 12 % 8 %
Inclination 3% 3% 1 % 9 % 9% 6 %
S?P (Stand 1% <0.5% 20, 7% 5% 7%
Pipe P.)
Flow in Pump 10 % 7% 5% 2% 2% 9%
Bit Diameter 1% <0.5% 12% <0.5% <0.5% 6
Revs. on Bit 1% 4% 3% 3% 6 % 9%
Mud density 1% <0.5% 2% <0.5% <0.5% <0.5%
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7.Conclusions

e The ROP was predicted using Dataiku DSS with built-in ML tools. This approach minimizes reliance
on Python scripting, streamlining the workflow for users without advanced programming skills. While
domain expertise remains critical for tasks such as model selection, hyperparameter tuning, and
interpretation, the software reduces dependency on external consultants for routine coding tasks.
However, the built-in ML tools in the software are constrained with flexibility such as algorithm
modifications for advanced or hybrid technology so, the alternatives will require to add custom
python scripting in the software for creating new model.

e All models showed results with very strong performance after incorporating Mechanical Specific
Energy and D-exponent, where significant improvement of all metrics indicates a strong performance
across the three wells. An example quantitative improvement to support this study that XGBoost
showed increase R? from 0.373 to 0.974 for Well-1, from 0.216 to 0.945 for Well-2, and from 0.862 to
0.983 for Well-3.

¢ The significant improvement of ROP prediction for all models is due to using calculated parameters
Mechanical Specific Energy and D-exponent which represent formation rock roughness and energy
required for enhancing drilling performance.

e The use of features importance percentage helped us to identify and highlight the most significant
features that dominate ROP prediction. All three wells have varied in features percentages and their
sorting due to data quality and complexity. However, they share that Mechanical Specific Energy and
D-exponent are the most important feature importance.

e The use of features effect or SHAP values highlighted that using calculated parameters (MSE and D-
exponent) which evaluate drilling performance indicated that weak features (e.g., mud density, SPP)
don’t have influence on predicted ROP regardless of their numerical values either high or low. In
contrast, strong features e.g. MSE and D-exponent have positively impact on ROP prediction when
having low numerical values across all models specially SVM and vice versa. This analysis will help
engineers to enhance data quality and to identify relevant relationship between drilling parameters
used and ROP in order to reach the optimum performance.

e Future works will focus on using new approaches (e.g. advanced and/or hybrid models, modified
MSE equations) for predicting ROP with comparative analysis to enhance transparency and
interpretability of model predictions. In addition to their implications on other fields.

List of abbreviations

ROP Rate of Penetration MLP-NN  Multilayer Perceptron-Neural
Network

ML Machine learning MLP-FF Multilayer Perceptron-Firefly
algorithm

WOB Weight on bit CFNN Cascade-Forward Neural Network

RPM Revolution per minute RBFNN Radial Basis Function Neural
Network

T Surface Torque IGA Integrated Genetic Algorithm

SPP Standpipe pressure MNR Multiple Nonlinear Regression

Q Pumping rate ELM Extreme Learning Machine

HOB Hours on bit MD Measured depth

TFA Total flow area MD Well measured depth

KNN K-nearest neighbors D Drill Bit diameter

R? Coefficient of determination PP Pump pressure
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MAE Mean Absolute Error BFR Bit flow rate

RMSE Root mean squared error M.wt Mud weight

MSE Mechanical Specific Energy PV Plastic viscosity
AAPRE  Average Absolute Percentage Relative Error D Bit diameter

ANN Artificial neural networks PP Pore pressure estimation
MLP Multilayer Perception OVB Over-burden pressure
MPNN Multilayer Perceptron Neural Network Inc. Inclination

MLP- Multilayer Perceptron-Gravitational Search CDF Cumulative Distribution
GSA Algorithm Functions
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