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Abstract: Rate of Penetration (ROP) is a critical parameter influencing 

drilling efficiency and accelerating field development. Although 

conventional ROP models (e.g., Bourgoyne, Hareland) provided reasonable 

results, they often struggle with limited accuracy and adaptability across 

different well conditions. Recent advances in hybrid machine learning 

(ML)-physics or deep ML models improve ROP prediction; however, these 

methods typically require complex programming, limiting their practical 

adoption. This study addresses these gaps by introducing a prompt, simple, 

and strong ROP prediction for directional wells, eliminating the need for 

hybrid modelling through the platform Dataiku Data Science Studio (DSS). 

To evaluate the impact of domain-specific parameters, two calculated 

metrics, D-exponent and Mechanical Specific Energy (MSE) were 

integrated into the dataset. Three ML algorithms (Gradient Boosted Trees, 

XGBoost, and Support Vector Machines (SVM)) were trained and tested 

using R², Mean Absolute Error, and Root Mean Square Error (RMSE) 

across three directional offshore wells from the same field. XGBoost 

showed best performance and significant improvement R² scores for all 

wells after incorporating MSE and D-exponent: from 0.373 to 0.974 (Well-

1), 0.216 to 0.945 (Well-2), and 0.862 to 0.983 (Well-3). Features 

importance and SHAP values analyses further quantified the contributions 

of MSE and D-exponent to all models’ accuracy, demonstrating their role 

in enhancing predictions. This work provides a practical, programming-free 

solution for ROP optimization in directional drilling, achieving high 

performance without using advanced ML technologies.  

Keywords 

Rate of Penetration, 

Machine learning, 

Directional Drilling, 

Dataiku, ROP prediction 

optimization 

 

 
1  Ahmad.Atef@suezuniv.edu.eg  - Dept. of Petroleum and Mining Engineering, Suez University, Egypt 
2  Attia.Attia@bue.edu.eg  - Professor, Dept. of Petroleum and Gas Technology Engineering, the British University in Egypt. 
3  Ahmed.Hagag@suezuniv.edu.eg - Associate professor, of Petroleum and Mining Engineering, Suez University, Egypt 

 

 

1. Introduction  

Drilling operations have critical importance within oil and gas industry as they are directly 

related to capital costs, production and field allocation. The efficiency of drilling operations 

requires minimization of drilling expenditures. Many efforts and approaches have been 

conducted to mitigate drilling issues to enhance operational performance by either minimum 

non-productive time (NPT) and/or minimum required drilling time. It is known that 

increasing the speed of drilling increases (ROP), the costs will be more efficient. This 
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parameter (ROP) is one of the most focal parameters that influence both the expense and 

execution of drilling. In addition, it guides drilling engineers to select optimal variables for 

achieving the lowest cost per foot. To attain minimal costs and maximum efficiency, various 

parameters must be analysed to comprehend their impacts on ROP. Elkatatny et al. (2017) 

defined that Rate of Penetration (ROP) is the volume of rock fractured per foot per hour. 

Alternatively, it has been characterized as the velocity at which rock is drilled beneath the 

bit. ROP has been defined by Bourgoyne (1986) [5] as a metric quantifying the advancement 

of the bit through rock formations. Although the increase of ROP seems better for 

accelerating drilling process and reducing its time, the probability of operational issues such 

as stuck pipe and poor whole cleaning will be increased to be in critical condition. Therefore; 

this parameter must be optimized and monitored to avoid such these issues and to maintain 

cost efficiency (Akgun, (2002) [2]). 

ROP is affected by several parameters while drilling such as the borehole dimensions, bit 

design, geological properties of the rock formation being drilled (including rock strength and 

drillability), and operational parameters such as WOB, rotational speed, torque, and hydraulic 

conditions. In addition to the drilling fluid parameters and BHA, factors. The prediction of ROP 

must be takin in considerations to enable precise calculation of drilling costs and timelines, 

thereby facilitating the design of drilling parameters, optimization of operational variables, and 

even support in refining wellbore trajectories and well structures. They will assist to guide field 

engineers to achieve strategic allocation of field production (Abdulmalek et al., (2018) [1]; 

Jahanbakhshi et al., (2012) [13]). In past decades, most approaches to predict ROP are basically 

relying on the interpretations of historical drilling data. However, most of these approaches are 

not effective for prediction as some of them are based on mathematical assumptions or based on 

specific field condition which is not applicable for another field. Consequently, the development 

of a reliable predictive model for drilling rates, which integrates empirical correlations with 

available data, has been identified as a pressing challenge within drilling engineering. The Table-

1, represents common ROP correlations used for past decades.  

 

Table 1: Previous researches on ROP 

References Input parameters Output Results  Remarks 

Speer, J.W. 

(1959) [25] 

Rotation Rate, Bit Type, Properties 

of Circulating Mud, Weight on Bit 

(WOB), Hydraulic Horsepower 

ROP optimization 

curves 

Without statistical 

metrics 

Cunningham 

R.A. (1960) [7] 
Rotary Speed and WOB 

Analytical ROP 

equations 

Without validation 

metrics 

Bingham, M.G. 

(1964) [4] 

Rotary Speed and WOB, Drill Bit 

OD, formation type 
Drillability index 

Correlation with 

ROP 

Bourgoyne A.T. 

et al. (1974) [6] 

Rotary Speed, WOB, Drill Bit OD, 

Depth, Bit tooth wear, Compaction, 

Deferential Pressure, Pore pressure, 

Bit hydraulics and jet compact 

factor 

ROP model with 

R² = 0.80–0.95 

Calibrated to field 

data 

Hareland, G. et 

al. (1994) [10]. 

Rotary Speed, WOB, Drill Bit 

OD, Rock compressive strength. 

ROP prediction with 

R² > 0.85 
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References Input parameters Output Results  Remarks 

Maurer W.C. 

(1962) [19] 

Weight on Bit (WOB), Rotary 

Speed, Rock Strength, Bit 

Geometry 

Theoretical ROP 
Without empirical 

validation metrics 

Teale R. (1965) 

[30] 

Mechanical Specific Energy 

(MSE), Weight on Bit (WOB), 

Drillability of the Formation 

Rock strength 

Correlation: MSE ∝ 

compressive 

strength; R implied 

Warren T.M. 

(1987) [31] 

Weight on Bit (WOB), Rotary 

Speed, Hydraulic impact factor, 

rock strength, differential 

pressure 

ROP with R² ≈ 0.89 ROP for roller cones 

Detournay E. et 

al. (1992) [32] 

Rock Cutting Mechanics, Bit 

Geometry, Intrinsic Specific 

Energy 

ROP/Torque models 

Analytical 

validation; no 

statistical metrics 

Pessier R.C. et 

al. (1992) [33] 

WOB, RPM, Stick-slip, lateral 

vibrations, Drill Bit size and 

cutter type, Formation 

Abrasiveness, Cuttings removal 

efficiency 

ROP model with R² = 

0.92 

MSE-based 

dysfunction 

detection 

1.  

 

As mentioned, the above that these listed methods are limited in obtaining precise ROP prediction. 

This limitation arises from the complex, indirect, and inherent relationships of drilling parameters, 

such as WOB, RPM, geomechanical rock properties, and drilling hydraulic efficiency, all of which 

control the behavior of ROP. These conventional equations are generally investigated and derived 

under laboratory conditions and/or mathematical conversions. These derivations do not reflect to 

onsite drilling environments. 

With the evolution of technology, Artificial Intelligence (AI), Machine Learning (ML) and 

statistical analysis, drilling experts tried to advantage from AI into traditional ROP prediction 

models. This fusion has emphasized innovative approaches and insights in the field (Moran and 

Ibrahim 2010 [20]). Current approaches for predicting ROP are divided into two categories: those 

grounded in theoretical or empirical frameworks, and those leveraging statistical or machine 

learning (ML) techniques. Among ML algorithms applied to ROP forecasting, logistic regression, 

support vector machines (SVMs), Neural Networks, and Random Forest (RF) are prominent 

(Noshi et al. 2019 [15]). While Neural Networks and Random Forest can achieve prediction 

accuracies as high as 80%, their "black box" nature limits interpretability, leaving modelers 

unable to understand the internal mechanisms and reliant on trial-and-error adjustments. Shi X. et 

al. (2016) [17] stated that logistic regression which pairs with historical drilling data and real-

time operational metrics can uncover underlying relationships with ROP. This approach 

highlights the use of these techniques in constructing predictive models for drilling efficiency. El-

Sayed et al. (2023) [9] used unsupervised MLs coded by Python, K-Nearest Neighbours (KNN) 

and Multilayer Perceptron (MLP) in order to predict ROP in vertical offshore wells. The authors 

highlighted that greater accuracy of ROP can be achieved by removing outliers. Benzminabadi et 

al. (2017) [3] successfully predicted ROP using ANN and Multiple Nonlinear Regression (MNR) 

coded in Python. By combining operational drilling parameters and mechanical rock properties, 
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they achieved significant improvements in their results, highlighting the importance of nonlinear 

relationships in ROP prediction. Omogbolahan S. et al. (2019) [28] employed four models SVM, 

Least-Squared SVR, ANN, and Extreme Learning Machine (ELM) for ROP prediction. Their 

study observed that reducing the number of features yielded nearly the same performance for the 

models, which means that excessive features can impede or reduce model performance such as 

standpipe pressure or mud density which generally contributed less than 1% to model accuracy 

based on results. These features could to lead to data noise and overburden ML models without 

improving ROP prediction. This highlights the importance of effective feature selection and the 

ability of ML techniques to handle limited datasets. Mohamadian et al. (2021) [26], made 

statistical analysis of drilling parameters used for wellbore instability prediction such as stuck 

pipe and hole cleaning using AI. They found that most input parameters for wellbore problems 

are WOB which has been used in 70.97% of the reviewed papers), the flow rate (FR: 54.84%), 

the ROP (51.61%), the revolutions per minute (RPM: 38.71%) and the measured depth (MD: 

35.48%) as these parameters are easy to obtain and not costly comparing to other parameters 

obtained by downhole tools which are expensive. Olukoga et al. (2021) [21] analysed 94 studies 

to evaluate prevalent Machine Learning algorithms in drilling applications. They reported that 

Artificial Neural Networks (18%), Support Vector Machines (17%), Regression (13%), Deep 

Learning (10%), Decision Trees (8%), and Random Forests (8%) dominated the field, 

collectively accounting for nearly 75% of the methodologies studied, see the figure-1. The 

reason dominance of using ANN and SVM due to their effectiveness in handling with complex 

features data as SVM is effective for smaller datasets, whereas ANN is effective for large 

datasets as highlighted by Hegde et al. (2020) [12].  

 

 
Figure 1: Most ML techniques used for well drilling (Olukoga et al. 2021 [21]) 

 

In short, it is clear that combination of AI or ML for petroleum industry will promote and 

enhance prediction of critical drilling parameters. This combination must conduct a clear 

comparative analysis of different ML techniques within real-time data. This comparison will 
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help to identify proper features selection and optimizing hyperparameters tuning to achieve best 

prediction possible. 

 

 

2. Literature Review 

 

2.1 D-exponent and Mechanical Specific Energy 

One of the most important parameters that affects the performance of ROP in directional drilling is 

the rock brittleness. The quality of formation strength is intuitively expected to affect the well 

productivity. One of indirect parameter that represents the rock toughness is D-exponent. This 

exponent has a trend of drilling curves in overbalanced zones which helps to detect regimes of 

formation pressure from normal to abnormal pressure (Jorden and Shirley 1966 [29]). In addition, it 

represents the drillability of the formation and reflects the performance of ROP. This parameter as 

shown in Equation-2 directly relates to the penetration rate and the bit size and inversely relates to 

the weight on the bit and the rotational speed.  

 

………..…………………………………………………………..(1) 

 

• ROP in unit of m/hr. 

• WOB in unit of lb. 

• Bit size is drill bit diameter in unit of inches. 

 

2.2 Mechanical Specific Energy (MSE) 

It is used to evaluate drilling performance which means the energy required to cut and smash a 

specific volume of rock using a drill bit (Teale et al. 1965 [30]). It has quantitative assessment 

of how efficiently mechanical energy is converted into rock destruction. It is influenced by 

various drilling factors, including torque, rotary speed, weight on bit (WOB), and ROP, which 

are commonly used during present drilling operations. The efficiency of drilling process can be 

optimized through monitoring values of mechanical energy being put into the system during 

drilling and comparing that energy with in-situ rock strength (Majidi R. et al. 2017 [18]).  The 

use of MSE for estimating pore pressure depends on the conditions of influenced subsurface 

rock's stresses, to some extent, by the fluid pressure in exerted in these pores. As a result, the 

pore pressure is needed for rock fracture energy while drilling (Majidi R. et al. 2017 [18]). In 

other words, MSE values shall be optimized through monitoring drilling parameters to achieve 

effective and high ROP performance and minimizing energy waste. The values of MSE have 

two indications, high MSE values indicate inefficient drilling (e.g., bit wear, excessive friction, 

or improper drilling parameters) whereas low MSE values indicate optimal drilling conditions, 

where energy is effectively used for rock breakage. This parameter can be calculated using the 

Equation-2. 
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\ …….…………………..…………………………………………....(2) 

 

• WOB is the weight on bit in unit of lb. 

• Ab is drill bit diameter in unit of inches. 

• ROP in unit of m/hr. 

• RPM is in the revolutions per min. 

• T is the torque in unit of ft.lb. 

MSE can improve understanding the behaviour of ROP through pore pressure prediction. In 

other words, when MSE trendlines indicate abnormal pore pressures the ROP will tend to 

decrease. In underbalanced conditions or indicating a potential kick, the ROP will tend to 

increase. This will help to predict ROP and potentially gives an improved method of well 

control. Although we reviewed several studies related to ROP prediction using different 

parameters (Omogbolahan S. et al. (2019) [28], Hazbeh O. et al. (2021) [11], Shaygan K. et al. 

(2023) [16], Ehsan B. et al. (2021) [8], Li C. et al. (2020) [23], Noshi and Schubert (2019) [15], 

Li and Samuel (2019) [24], and Abdulmalek et al. (2018) [1]) none of them used D-exponent 

for during their studies except El-Sayed et al. (2023) [9] who used this parameter and they did 

not analysed the impact or the correlation of their features to ROP to optimize prediction 

performance. Therefore; it is decided to calculate D-exponent and MSE in our data for three 

directional wells in order to check their importance on predicting ROP. 

 

2.3 Computational intelligence techniques 

Machine Learning analysis can serve as a critical phase in knowledge discovery within 

databases, including the extraction of non-relationships between features in datasets. Drilling 

operations, for instance, generate vast and irregularly distributed data characterized by inherent 

relationships. This complexity necessitates advanced methods capable of interpreting such 

challenges. Machine Learning models can identify these hidden relationships and guide 

solutions for tackling real-world problems that defy conventional approaches (Siddique & 

Adeli, 2013 [27]). This section outlines previous studies of ML techniques for predicting ROP. 

 

2.4 Machine Learning for ROP 

Shaygan K. et al. (2023) [16] applied Random Forest (RF) and Multilayer Perceptron Neural 

Networks (MLPNN) to forecast the ROP in directional wells. They concluded that indirect 

parameters including Weight on Bit (WOB) and cutting transport efficiency are significantly 

influenced. The absence of these features in input datasets was noted to degrade model 

performance. Hazbeh O. et al. (2021) [11] used hybrid algorithms combining Multilayer 

Perceptron (MLP) with optimization techniques such as Artificial Bee Colony (MLP-ABC), 

Gravitational Search Algorithm (MLP-GSA), and Firefly Algorithm (MLP-FF). The MLP-

ABC hybrid outperformed others and indicated that integrating MLP with optimizers enhances 

prediction the prediction. Ehsan B. et al. (2021) [8] optimized three neural network models, 

Multilayer Perceptron (MPNN), Cascade-Forward (CFNN), and Radial Basis Function 

(RBFNN) using backpropagation and biogeography-based algorithms. Their findings showed 
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that computational intelligence drastically improved ROP prediction compared to traditional 

neural networks. Li C. et al. (2020) [23] merged Artificial Neural Networks (ANN) with an 

Integrated Genetic Algorithm (IGA) to predict ROP and WOB in China’s complex shale gas 

formations. After testing ANN and IGA separately, their hybrid approach achieved superior 

accuracy and real-time optimization during drilling. Kloucha C.K. et al. (2022) [14] used 

Dataiku Data Science Studio software which has machine learning techniques to recommend 

optimal drilling equipment for future scenarios. Their analysis showed that using ML 

techniques from this software outperformed conventional statistical approaches, streamlining 

equipment selection with greater precision. 

These studies demonstrated the effectiveness of data-driven approaches for ROP modelling. 

However, they still challenge in programming advanced ML models which are relatively hard to 

be achieved from scratch (Naser M.Z. 2023) [38]. Our work will use Dataiku DSS platform as it 

is free and produces the most consistent performance models (Naser M.Z. 2023) [38]. The 

expected highest models performance in this study will be ensemble models and SVM due to 

their effective in both bagging and possessing boosting techniques which reduce training time, 

better generalization, and minimizing the multiclass error rate (Ganaie M.A. Et al. (2022) [39], 

Huang F. (2018) [40]), Tabik S. et al. (2020) [41]). 

 

3. Methodology 

 

In order to build ML models using Dataiku DSS, this flowchart shows steps of predicting 

ROP.  

 

 

4. Data Collection 
  

In this research, an actual data from an offshore three directional gas wells in sand reservoirs in 

the eastern portion of the West Delta Deep Marine concession, which lies offshore in the deep 

water of Nile Delta, Egypt. The exploratory well was targeting a thick Pliocene channel levee 

complex trends in a NNE-SSW orientation in which no wells have been penetrated the central 

Channel (Fahmy R. et al. 2025) [37]. Stratigraphically the central Channel can be correlated to 

the main channel, in which there are several development wells in the same field. Three 

deviated wells were being drilled with J-shape design with different depths based on reservoir 

intervals. Well-1 penetrating the previously undrilled central channel, while Wells-2 and -3 

developed flanking intervals. All wells were drilled with similar BHAs and mud systems but 

varied in measured depth (MD) due to reservoir architecture. They also share common drilling 

parameters in addition to calculated D-exponent and Mechanical Specific Energy, see table-2. 

These data were available from the field, open-hole wireline logs data were unavailable for 

these wells. However, unavailable these data will not invalidate the models on ROP prediction 

for this study. Core predictors (WOB, RPM, MSE, D-exponent) were prioritized based on 

established physical relationships with ROP as per recommendations from Teale et al. (1965) 
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[30] and Jorden et al. (1966) [29]. The non-shared parameters (Pore pressure est. and pit 

volume) were being collected from available sensors data permitted cross-well consistency. 

 

 

Figure 2: Data workflow procedures for predicting ROP. 

 

Table 2: wells and their features used. 

Well 

number 
Target Common shared Parameters 

Non-shared 

parameters 

Total number 

of parameters 

Well-1 ROP 

Measured depth (m), Inclination (degree), 

Surface WOB (klb), RPM, Surface Torque 

(lb.ft), Stand Pipe Pressure (psi), Mud Wieght 

(ppg), Flow in Pum (gpm), Hours On Bit 

(min), Downhole Revs On Bit (Krev), Bit 

Diameter (inch), D-Exponent, Mechanical 

Specific Energy (psi) 

Pit volume 

(bbl), Pore 

Press Est. 

(ppg) 

15 

Well-2 ROP 

Measured depth (m), Inclination (degree), 

Surface WOB (klb), RPM, Surface Torque 

(lb.ft), Stand Pipe Pressure (psi), Mud Wieght 

(ppg), Flow in Pum (gpm), Hours On Bit 

(min), Downhole Revs On Bit (Krev), Bit 

Diameter (inch), D-Exponent, Mechanical 

Specific Energy (psi) 

Pore 

pressure Est. 

(ppg) 

14 

Well-3 ROP 

Measured depth (m), Inclination (degree), 

Surface WOB (klb), RPM, Surface Torque 

(lb.ft), Stand Pipe Pressure (psi), Mud Wieght 

(ppg), Flow in Pum (gpm), Hours On Bit 

(min), Downhole Revs On Bit (Krev), Bit 

Diameter (inch), D-Exponent, Mechanical 

Specific Energy (psi) 

Pit volume 

(bbl) 
14 

 
 

5. Data filtering and smoothing 
 

5.1 Model Building  

Dataiku DSS offers fourteen in-memory Machine Learning (ML) models which don’t require 

python coding. Other advanced or customized ML techniques such as hybrid technology or 

Genetic Algorithms require special Python or Scala coding for complex data tasks to get better 
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results (Dataiku DSS 2025 [34]). To assess performance differences in this study, we calculated 

ROP using all in-memory ML models, then we filtered top three ML models based on R2 score. 

These ML models are Extreme Gradient Boosted Machine (XGBoost), Gradient Boost Trees, and 

Support Vector Machine (SVM). The results will be shown as comparisons of predicted ROP 

versus actual ROP for both training and testing datasets, feature importance rankings, and their 

numerical effects on accuracy of ROP (SHAP values). Notably, the platform does not display 

regression plots for training dataset (Dataiku DSS 2025 [35]). The platform supports training and 

testing dataset through learning curves only. In order to validate normal data distribution and 

interpretability, we calculated Cumulative Distribution Functions (CDFs) through the software 

built in code, as illustrated in table-6. The table-3, 4, and 5 show the list of calculated 

statistical parameters of the case study. These tables demonstrated that parameter characteristics 

of ROP, WOB, and MSE refer to tight clustering and confirm operational consistency. The 

Well-1 has ROP variability with 15% greater mean than in Wells-2/3, which attributes to 

central channel lithology.  The shared 13 inputs will enable us to cross-well model 

comparisons. The skewness and kurtosis values in these tables refer to data distribution 

normality and quantitative indication for any deviation from symmetry. For the Well-1 ROP 

(skewness=4.58) means strong right-skewness which refer to intermittent high-ROP drilling 

phases. For the Well-2 RPM (skewness = -2.9) means left- skewness bias from frequent low-

RPM operations. Kurtosis measures tailedness in normal distribution, with values greater than 3 

(Leptokurtic) refer to outlier-prone distributions. The Kurtosis values with less than 3 

(platykurtic) refer to light tails. For Wells-1/2 ROP (kurtosis = 67.04 and 88.7 respectively) are 

considered highly leptokurtic, which confirms outlier-prone events, whereas Well-3 ROP 

(kurtosis = -0.1) is Mesokurtic which indicates both limited outliers’ existence and smooth 

drilling operations. These distributions will justify models’ performance in this study. 

 

Table 3: Statistical characterization summary of the Well-1 
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Table 4:  Statistical characterization summary of the Well-2 
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Table 5: Statistical characterization summary of the Well-3 
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To optimize ROP prediction, each ML technique has its own hyperparameters tuning or control 

parameters. These parameters were designed to reduce overfitting and avoiding excessive underfitting. 

This will help for a particular model to perform best results possible. To optimize tuning values, the 

platform offers “hyperparameters optimization” which makes several trials for values regularization 

parameter. Based on the tested results, the software recommended to keep control parameters for 

XGboost and Gradient Boost Trees with default values. These default values will help the model to 

adapt automatically with input data’s variance to reduce overfitting, bias, unnecessary computation, 

preventing excessive computation time, and avoiding severe imbalance regression problems. On the 

other hand, control parameters of SVM have been customized as seen in table-7. The table- 8, and 9 

are control parameters for XGBoost and Gradient Boost Trees respectively. 

 

 

 

 

 

 



JES, Vol. 54, No. 2, Pp. 13-38, March 2026            DOI: 10.21608/JESAUN.2025.397652.1574 Part  D: Mining and Metallurgical Engineering 

 

25 

Table 6: CDFs data input variables for the three wells  

Statistic 

Well-1 Well-2 Well-3 

XGBoost 

Gradient 

Boosted 

Trees 

SVM XGBoost 

Gradient 

Boosted 

Trees 

SVM XGBoost 

Gradient 

Boosted 

Trees 

SVM 

Min. 

(raw) 
-7.3413 -4.9380 

-

2.1960 
-6.0974 -10.0190 

-

11.2970 
-1.6548 -1.8241 

-

1.6756 

Min. - 2.1853 -3.0287 -

0.8733 

-2.6350 -2.4373 -1.2206 -1.1010 -1.1609 - 

0.3379 25th 

perc. 
-0.5201 -0.5378 

-

0.2687 
-0.4872 -0.4521 -0.1901 -0.2446 -0.2833 

-

0.0735 

Median 0.0530 -0.0165 0.0046 0.0436 0.0839 
- 

0.0300 
0.0026 -0.0431 0.0165 

75th 

perc. 
0.4738 0.5128 0.3195 0.6947 0.5952 0.2721 0.2184 0.2224 0.0497 

90th 

perc. 
0.9325 1.1785 0.7836 1.3664 1.1010 1.2036 0.4291 0.5523 0.1467 

Max. 2.7666 4.1201 3.0256 2.8054 3.3827 5.3283 0.8106 1.2578 0.4287 

Max. 

(raw) 
6.1368 19.3410 34.271 12.5510 10.7280 18.4570 2.3131 3.1107 1.0498 

Average 0.0037 -0.0027 0.1305 0.0965 0.1142 0.2363 -0.0230 -0.0378 
- 

0.0041 

Standard 

Deviation 
0.9384 1.1955 0.6960 1.0929 1.0625 1.0975 0.3901 0.4817 0.1307 

 

 

Table 7: Control parameters for SVM model applied to the three wells 
 Well-1 Well-2 Well-3 

Kernel rbf rbf rbf 

Kernel coefficient (gamma) scale scale scale 

Regularization parameter C 15 15 15 

Stopping tolerance 0.001 0.001 0.001 

Max iterations -1 -1 -1 

Rows (before preprocessing) 1293 953 1300 

Rows (after preprocessing) 1293 953 1300 

Columns (before preprocessing) 15 15 15 

Columns (after preprocessing) 14 14 14 

Matrix type dense dense dense 

Policy Split the dataset Split the dataset Split the dataset 

Sampling method First records First records First records 

Partitions All partitions All partitions All partitions 

Record limit 100000 100000 100000 

Split mode Randomly Randomly Randomly 

Train ratio 0.8 0.8 0.8 

Number of Training 1293 953 1300 

Number of Testing 315 220 320 

Random seed 1337 1337 1337 
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Table 8: Control parameters for XGBoost model applied to the three wells. 
 

Objective Reg_linear 

Time Method Automatic-CPU only 

Max number of trees 300 

Early stopping rounds 4 

Max depth of tree 3 

Eta (learning rate) 0.2 

Max delta step 0 

Alpha (L1 regularization) 0 

Lambda (L2 regularization) 1 

Gamma (Min loss reduction to split a leaf 0 

Min sum of instance weight in a child 1 

Subsample ratio of the training instance 1 

Columns subsample ratio for splits / levels 1 

Columns subsample ratio for splits 1 

Balancing of positive and negative weights 1 

Value treated as missing NaN 

Matrix type dense 

 

Table 9: Control parameters for Gradient Boost Trees model for the three wells. 
 Well-1 Well-2 Well-3 

Number of Boost stages 100 100 100 

Feature sampling strategy Fixed Proportion Fixed Proportion Fixed Proportion 

Proportion of features to sample  1 1 1 

Learning rate 0.1 0.1 0.1 

Loss Try least square Try least square Try least square 

Max depth of trees 3 3 3 

 

All the above were processed and filtered data offline. However, real-time data processing will require 

addressing several operational challenges, including data latency from surface and downhole sensors, 

sensors’ reliability (e.g. defected sensors, deviated data) and data filtration time. The platform can address 

these limitations after obtaining real-time data and processing them with low hardware feasibility. 

 

6. Results and Discussion 

Dataiku offers eight in-memory evaluation metrics, we selected three metrices, R2 score, Mean 

Absolute Error (MAE), and Root Mean Square Error (RMSE) as indicators of each model’s 

performance. The Table-10 shows R2 score of the predicted ROP for both the training and testing 

datasets, under conditions before and after using the D-exponent and MSE, applied to three directional 

wells for three machine learning (ML) techniques. The Table-10 represents guidelines for R2 scores 

(Sarjana K. et al. 2021) [36]. 

 

Table 10: Guidelines for R2 scores 
R2 Evaluation 

0.00 – 0.199  Very Low 

0.20 – 0.399  Low 

0.40 – 0.599  Medium 

0.60 – 0.799  Strong 

0.80 – 1.00 Very Strong 
 

The table-12, and 13 follow the same structure but present results using MAE and RMSE, respectively. 

Regression plots of the predicted ROP are provided for the testing data, while training results are 

accessible exclusively through learning curves. Based on these tables, it is observed that XGBoost and 
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Gradient Boosted Trees achieve strong overall performance for three wells for approximately all 

metrics used. In contrast, SVM underperforms compared to the ensemble models, particularly in Well-

1, where its R² score and RMSE are poorer, and training scores are lower than testing scores (both 

before and after applying MSE and D-exponent). SVM also struggles in Well-2, exhibiting high RMSE 

values regardless of preprocessing (Table-13). Additionally, in the R² scores, SVM shows a 

pronounced gap between training and testing scores just after addition of MSE and D-exponent 

calculations (Table-11). These discrepancies suggest issues such as suboptimal hyperparameter tuning, 

data quality limitations, dataset complexity, and insufficient training data volume, all of which 

constrain SVM’s effectiveness relative to ensemble models. In this case, the performance of SVM can 

be improved for well-2 through filtering outliers by customizing numerical values and rescaling 

methods which are in Dataiku's features handling to remove automatically potential of outliers. In 

general, the improvement of ROP prediction across all metrics highlights the value of integrating MSE 

and D-exponent calculations with diverse ML models.  

The Well-3 R² score (0.999) for SVM in training data seems overfitting due to kernel's excessive 

flexibility in modelling as the Well-3 has low-variance drilling parameters (see Table-5). In addition to 

its larger data inputs (rows=1300) which could increase the model overfitting. In order to limit 

overfitting, it is suggested to optimize cross validation approaches through tuning training/testing 

ratios, modifying number of K-folds based on number of intervals or formations (i.e. K>5) for better 

evaluation, and optimizing number of regularization parameter (i.e. C<15) to limit generalization and 

overfitting. However, the testing R² score (0.997) remains valid as it reflects performance on unseen 

data, and the near-identical training/testing scores which confirm this behaviour.  

The Figures-3-20 show regression plot of the predicted ROP vs actual ROP for testing dataset applied on the 

three wells using the three models. These plots were taken from the software directly and cannot be 

customized. Every figure and what’s directly under it represent ROP prediction with inclusion and exclusion 

of D-exponent and Specific Energy respectively with same technique. By reviewing the mentioned tables and 

figures, it is clear that using both D-exponent and MSE have enhanced ROP prediction significantly for all 

three wells and that emphasise the importance of using calculated features which evaluate drilling 

performance and formation rock toughness. To understand the contribution of each feature and their quantity 

importance on ROP prediction, Dataiku offers this advantage in form of features importance percentage on its 

platform, so we calculated features importance percentage and summarized in Table-14, 15, and 16 for well-

1, 2, and 3 respectively. Feature importance means contribution percentage of each feature to predict the 

required target (ROP). In other words, the accuracy of the predicted target will be changed when adding or 

neglecting these features. Based on these tables, we can conclude that adding these features significantly 

enhanced performance across all models and wells as confirmed by all metrics. The dramatic increase of R² 

scores to exceed 90% indicate very strong alignment with actual ROP. On the other hand, reduction in RMSE 

and MAE (e.g., Well-1’s XGBoost RMSE drops by 80%) as it confirms lower absolute error magnitudes, 

demonstrated robust performance post-feature inclusion and effectiveness of handling complex data. 

Ensemble models (XGBoost and Gradient Boosted Trees) outperformed SVM, primarily because they 

inherently rank features based on their contribution to minimizing prediction error. This allows these 

models to prioritize the most informative features, such as MSE and put them to top ranks, then 

marginalize other features (e.g. D-exponent) to avoid under or overfitting predictions. In contrast, SVM 

has other mechanism, which it tries to classify data patterns differently and priorities features which has 

direct relationship with ROP. Thus, SVM considers D-exponent as top priority comparing to rest of 

features. The inclusion of MSE and D-Exponent strengthened their relationships with rock properties 

and drilling efficiency, and ensemble models will increase focusing on using these parameters and put 
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them with highest priority and rest of features will be less important and deprioritized. SVM showed 

also very good performance for all wells. However, due to be sensitivity to complex data and outliers, 

this model performed less precise than rest of techniques. In case exclusion of MSE and D-exponent, all 

models reconfigured features importance and their ranking have been changed. All features don’t have 

same ranking except Surface torque which is the top importance compared to rest of features. The 

reasons behind non-uniform of features ranking for all wells are mainly due to quality of data, data 

complexity, presence of outliers, and/or lack of training data for the three wells. In general, it does not 

mean that weak features with importance below 4% have negligible effects or negative effects on ROP 

prediction. When utilizing these weak features, the accuracy of predicted ROP will be slightly increase.  

However, the improvement of ROP is related to numerical values of each feature data and their 

contribution to the required target. In other words, some high numerical values for a particular feature 

could have either positively or negatively impact on ROP prediction and vice versa. In order to 

understand behaviors of features used for ROP, we extracted features effects (or SHAP values) which 

are automatically calculated through Dataiku’s platform and put in this study, see figures-21-38 were 

every figure and what’s directly under it represent features effect after and before inclusion of D-

exponent and MSE respectively with same technique. For each data point, a SHAP value for a 

particular feature quantitates how much that feature's actual value contributed to pushing the model's 

prediction from the average prediction to its final predicted value. For better illustration, a positive 

SHAP value means that feature pushed the prediction higher while negative SHAP value means that 

feature pushed the prediction lower. The figures-21,22,23,27,28,29,33,34, and 35 demonstrated that all 

three wells share that MSE, D-exponent, Bit diameter, and flow in pump with low numerical values are 

positively impact ROP prediction. As an example for figure-21, low MSE values has span range 34 

units that strongly contribute to pushing the predicted ROP higher. For D-exponent, it has span range 

greater than 10 units for SVM which also contribute better prediction for ROP unlike ensemble models 

which have lower span range due to their different prioritizing mechanism. For Surface Torque, surface 

RPM, surface WOB, and measured depth, all techniques showed that high numerical values have 

positively impact on ROP prediction and vice versa. Other features, such as mud weight, standpipe 

pressure (Omogbolahan S. et al. (2019) [28]), well inclination, bit revolutions, and pore pressure 

estimation, showed least influence on ROP prediction due to their low importance and span range. 

Thus, variations in their numerical values had no statistically significant effect on model outputs. The 

rest of figures-24,25,26,30,31,32,36,37, and 38 are exclusion of Mechanical Specific Energy and D-

exponent, the models reconfigured features effects and focused on weak features (e.g. Standpipe 

Pressure, Flow in Pump, well inclination etc.) and decreased degree of overfitting data. Additionally, it 

is observed that numerical values for the three wells are not uniformly distributed. In other words, some 

features with high numerical values such as surface WOB and surface RPM may either have positive or 

negative impact on ROP prediction due to lack of normalization. We can deduct that inclusion of MSE 

and D-exponent have significant effect on distributing numerical values of other features. 

While all models showed robust ROP prediction using our data from three wells, it is believed that this 

study will warrant further investigation for other fields with different formations. However, the 

variation effect of drilling parameters, geological properties, and data scalability on ROP prediction 

will be mitigated through augmenting data training data by simulating varied drilling conditions, while 

preserving physical relationships encoded in MSE and D-exponent. Future work should validate these 

models against larger datasets and other formations to assess broader applicability. 
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Table 11: Results of predicted ROP using coefficient R2 score 

 

Before using Specific Energy and D-Exponent After using Specific Energy and D-Exponent 

XGBoost 

Gradient 

Boosted 

Trees 

SVM XGBoost 
Gradient 

Boosted Trees 
SVM 

 
Train

ing 

Testi

ng 

Train

ing 

Testi

ng 

Train

ing 

Tes

ting 

Traini

ng 

Testi

ng 

Train

ing 

Testi

ng 

Train

ing 

Testi

ng 

Well-1 0.570 0.373 0.745 0.520 0.342 
0.38

3 
0.995 0.974 0.989 0.946 0.791 0.903 

Well-2 0.589 0.216 0.752 0.311 0.240 
0.12

3 
0.995 0.945 0.994 0.956 0.752 0.896 

Well-3 0.944 0.862 0.914 0.846 0.868 
0.81

5 
0.997 0.983 0.990 0.978 0.999 0.997 

 
 

Table 12: Results of predicted ROP using Mean Absolute Error (MAE) 

 

Before using Specific Energy and D-Exponent After using Specific Energy and D-Exponent 

XGBoost 

Gradient 

Boosted 

Trees 

SVM XGBoost 
Gradient 

Boosted Trees 
SVM 

 
Train

ing 

Testi

ng 

Train

ing 

Testi

ng 

Train

ing 

Tes

ting 

Traini

ng 

Testi

ng 

Train

ing 

Testi

ng 

Train

ing 

Testi

ng 

Well-1 3.501 3.776 2.822 3.143 3.220 
3.33

6 
0.413 0.748 0.600 0.898 0.557 0.614 

Well-2 3.81 4.499 2.920 4.122 3.720 
4.50

8 
0.441 0.959 0.459 0.867 0.514 0.798 

Well-3 0.595 0.947 0.753 1.002 0.873 
1.03

6 
0.132 0.311 0.260 0.371 0.082 0.104 

 

Table 13: Results of predicted ROP using Root Mean Square Error (RMSE) 

 

Before using Specific Energy and D-Exponent After using Specific Energy and D-Exponent 

XGBoost 

Gradient 

Boosted 

Trees 

SVM XGBoost 
Gradient 

Boosted Trees 
SVM 

 
Train

ing 

Testi

ng 

Train

ing 

Testi

ng 

Train

ing 

Testi

ng 

Trai

ning 

Testi

ng 

Train

ing 

Testi

ng 

Train

ing 

Testi

ng 

Well-1 5.600 5.801 4.137 5.077 6.656 
5.75

8 
0.550 1.172 0.800 1.710 3.75 2.287 

Well-2 5.23 6.524 4.04 6.117 7.066 
6.88

0 
0.593 1.727 0.626 1.541 4.05 2.381 

Well-3 0.810 1.269 1.00 1.341 1.240 
1.46

7 
0.210 0.439 0.350 0.529 0.130 0.186 
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Table 14: Feature importance percentages for predicting ROP in Well-1 

Feature Name 

Well-1 

After Using D-exponent and Specific Energy Before using D-exponent and Specific Energy 

XGBoost 
Gradient  

Boost Trees 
SVM XGBoost 

Gradient  

Boost Trees 
SVM 

MSE 39 % 40 % 8 % - - - 

D-exponent 10 % 9 % 34 % - - - 

Surface Torque 22 % 24 % 5 % 32 % 33 % 35 % 

MD (Measured 

Depth) 
12 % 10 % 7 % 

36 % 32 % 5 % 

Surface RPM 6 % 6 % 8 % 2 % 4 % 5 % 

Surface WOB 6 % 6 % 27 % 6 % 5 % 6 % 

Hours on Bit 2 % 1 % 1 % 8 % 9 % 8 % 

Pit volume 1 % <0.5% 1 % 3 % 5 % 2 % 

Inclination 1 % 1 % 2 % 1 % 3 % 5 % 

SPP (Stand 

Pipe P.) 

<0.5% 
<0.5% 2 % 

5 % 2 % 9 % 

Flow in Pump <0.5% <0.5% 1 % <0.5% 2 % 4 % 

Pore Pressure 

Est. 

<0.5% <0.5% 
1 % 

4 % 2 % 4 % 

Revs. on Bit <0.5% 1 % 2 % 4 % 2 % 10 % 

Mud density <0.5% 2 % 2 % <0.5% <0.5% 8 % 
 

Table 15: Feature importance percentages for predicting ROP in Well-2 

Feature Name 

Well-2 

After Using D-exponent and Specific Energy Before using D-exponent and Specific Energy 

XGBoost 
Gradient Boost 

Trees SVM XGBoost 
Gradient  Boost 

Trees SVM 

MSE 49 % 50 % 7 % - - - 

D-exponent 1 % 1 % 38 % - - - 

Surface Torque 13 % 1 % 2 % 25 % 26 % 25 % 

MD (Measured 

Depth) 
<0.5% 3 % 1 % 

<0.5% 6 % 13 % 

Surface RPM 10 % 14 % 7 % 19 % 14 % 9 % 

Surface WOB 1 % 1 % 32 % 12 % 14 % 9 % 

Hours on Bit 7 % 1 % 1 % 23 % 14 % 6 % 

Bit Diameter 17 % 17 % 6 % <0.5% <0.5% 8 % 

Inclination <0.5% 1 % 3 % 6 % 5 % 4 % 

SPP (Stand 

Pipe P.) 

<0.5% <0.5% 
1 % 

4 % 8 % 13 % 

Flow in Pump <0.5% <0.5% 1 % 4 % 4 % 3 % 

Pore Pressure 

Est. 

<0.5% <0.5% 
1 % 

7 % 3 % 5 % 

Revs. on Bit <0.5% 3 % 1 % <0.5% 8 % 5 % 

Mud density <0.5% <0.5% 1 % <0.5% <0.5% 1 % 
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Table 16: Feature importance percentages for predicting ROP in Well-3 

Feature Name 

Well-3 

After Using D-exponent and Specific Energy Before using D-exponent and Specific Energy 

XGBoost 
Gradient Boost 

Trees SVM XGBoost 
Gradient Boost 

Trees SVM 

MSE 31 % 30 % 21 % - - - 

D-exponent 2 % 1 % 15 % - - - 

Surface Torque 3 % 23 % 11 % 40 % 41 % 33 % 

MD (Measured 

Depth) 
18 % 23 % 8 % 

7 % 8 % 6 % 

Surface RPM <0.5% 4 % 3 % 1 % 4 % 2 % 

Surface WOB 3 % 2 % 14 % 4 % 4 % 6 % 

Hours on Bit 5 % 3 % 3 % 14 % 12 % 9 % 

Pit volume 3 % 4 % 1 % 14 % 12 % 8 % 

Inclination 3 % 3 % 1 % 9 % 9 % 6 % 

SPP (Stand 

Pipe P.) 

1 % 
<0.5% 2 % 

7 % 5 % 7 % 

Flow in Pump 10 % 7 % 5 % 2 % 2 % 9 % 

Bit Diameter 1 % <0.5% 12 % <0.5% <0.5% 6 

Revs. on Bit 1 % 4 % 3 % 3 % 6 % 9 % 

Mud density 1 % <0.5% 2 % <0.5% <0.5% <0.5% 

 

 

 
Figure 3: Predicted ROP vs actual 

ROP for XGBoost after using  

D-exponent & MSE (Well-1 R² = 

0.974). 

 
Figure 4: Predicted ROP vs actual 

ROP for Gradient Boosted Trees after 

using D-exponent & MSE (Well-1 R²= 

0.946). 

 
Figure 5: Predicted ROP vs actual 

ROP for SVM after using  

D-exponent & MSE (Well-1 R²= 

0.903). 

 
Figure 6: Predicted ROP vs actual 

ROP for XGBoost before using  

D-exponent & MSE (Well-1 R² = 

0.373). 

 
Figure 7: Predicted ROP vs actual 

ROP for Gradient Boosted Trees 

before using D-exponent & MSE 

(Well-1 R² = 0.52). 

 
Figure 8: Predicted ROP vs actual 

ROP for SVM before using  

D-exponent & MSE (Well-1 R² = 

0.383). 
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Figure 9: Predicted ROP vs actual 

ROP for XGBoost after using  

D-exponent & MSE (Well-2 R²= 

0.945). 

 
Figure 10: Predicted ROP vs actual 

ROP for Gradient Boosted Trees after 

using D-exponent & MSE (Well-2 R² = 

0.956). 

 
Figure 11: Predicted ROP vs actual 

ROP for SVM after using  

D-exponent & MSE (Well2 R² = 

0.896). 

 
Figure 12: Predicted ROP vs actual 

ROP for XGBoost before using  

D-exponent & MSE (Well-2 R² = 

0.216). 

 
Figure 13: Predicted ROP vs actual 

ROP for Gradient Boosted Trees before 

using D-exponent & MSE (Well-2 R² = 

0.311). 

 
Figure 14: Predicted ROP vs actual 

ROP for SVM before using  

D-exponent & MSE (Well-2 

R²=0.128). 

 
Figure 15: Predicted ROP vs actual 

ROP for XGBoost after using  

D-exponent & MSE (Well-3 

R²=0.983). 

 
Figure 16: Predicted ROP vs actual 

ROP for Gradient Boosted Trees after 

using D-exponent & MSE (Well-3 R²= 

0.976). 

 
Figure 17: Predicted ROP vs actual 

ROP for SVM Boosted Trees after 

using D-exponent & MSE (Well-3 

R²= 0.997). 

 
Figure 18: Predicted ROP vs actual 

ROP for XGBoost before using  

D-exponent & MSE (Well-3 

R²=0.862). 

 
Figure 19: Predicted ROP vs actual 

ROP for Gradient Boosted trees 

before using D-exponent & MSE 

(Well-3 R² = 0.846) 

 
Figure 20: Predicted ROP vs 

actual ROP for SVM before using 

D-exponent & MSE (Well-3 R² = 

0.815) 
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Figure 21: Features Effect for ROP 

prediction using XGBoost technique 

after using D-exponent & MSE (Well-

1) 

 
Figure 22: Features Effect for ROP 

prediction using Gradient Boosted 

Trees technique after using D-

exponent & MSE (Well-1) 

 
Figure 23: Features Effect for ROP 

prediction using SVM technique 

after using D-exponent & MSE 

(Well-1) 

 
Figure 24: Features Effect for ROP 

prediction using XGBoost technique 

before using D-exponent & MSE 

(Well-1) 

 
Figure 25: Features Effect for ROP 

prediction using Gradient Boosted 

Trees technique before using D-

exponent & MSE (Well-1) 

 
Figure 26: Features Effect for ROP 

prediction using SVM technique 

before using D-exponent & MSE 

(Well-1) 

   

Figure 27: Features Effect for ROP 

prediction using XGBoost technique 

after using D-exponent & MSE (Well-

2) 

Figure 28: Features Effect for ROP 

prediction using Gradient Boosted 

Trees technique after using D-

exponent & MSE (Well-2) 

 
Figure 29: Features Effect for ROP 

prediction using SVM technique 

after using D-exponent & MSE 

(Well-2) 
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Figure 30: Features Effect for ROP 

prediction using XGBoost technique 

before using D-exponent & MSE 

(Well-2) 

Figure 31: Features Effect for ROP 

prediction using Gradient Boosted 

Trees technique before using D-

exponent & MSE (Well-2) 

Figure 32: Features Effect for ROP 

prediction using SVM technique 

before using D-exponent & MSE 

(Well-2) 

Figure 33: Features Effect for ROP 

prediction using XGBoost technique 

after using D-exponent & MSE (Well-

3) 

Figure 34: Features Effect for ROP 

prediction using Gradient Boosted 

Trees technique after using D-

exponent & MSE (Well-3) 

Figure 35: Features Effect for ROP 

prediction using SVM technique after 

using D-exponent & MSE (Well-3) 

Figure 36: Features Effect for ROP 

prediction using XGBoost technique 

before using D-exponent & MSE 

(Well-3) 

Figure 37: Features Effect for ROP 

prediction using Gradient Boosted trees 

technique before using D-exponent & 

MSE (Well-3) 

Figure 38: Features Effect for ROP 

prediction using SVM technique 

before using D-exponent & MSE 

(Well-3) 
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7. Conclusions 
 
 

• The ROP was predicted using Dataiku DSS with built-in ML tools. This approach minimizes reliance 

on Python scripting, streamlining the workflow for users without advanced programming skills. While 

domain expertise remains critical for tasks such as model selection, hyperparameter tuning, and 

interpretation, the software reduces dependency on external consultants for routine coding tasks. 

However, the built-in ML tools in the software are constrained with flexibility such as algorithm 

modifications for advanced or hybrid technology so, the alternatives will require to add custom 

python scripting in the software for creating new model. 

• All models showed results with very strong performance after incorporating Mechanical Specific 

Energy and D-exponent, where significant improvement of all metrics indicates a strong performance 

across the three wells. An example quantitative improvement to support this study that XGBoost 

showed increase R² from 0.373 to 0.974 for Well-1, from 0.216 to 0.945 for Well-2, and from 0.862 to 

0.983 for Well-3. 

• The significant improvement of ROP prediction for all models is due to using calculated parameters 

Mechanical Specific Energy and D-exponent which represent formation rock roughness and energy 

required for enhancing drilling performance. 

• The use of features importance percentage helped us to identify and highlight the most significant 

features that dominate ROP prediction. All three wells have varied in features percentages and their 

sorting due to data quality and complexity. However, they share that Mechanical Specific Energy and 

D-exponent are the most important feature importance. 

• The use of features effect or SHAP values highlighted that using calculated parameters (MSE and D-

exponent) which evaluate drilling performance indicated that weak features (e.g., mud density, SPP) 

don’t have influence on predicted ROP regardless of their numerical values either high or low. In 

contrast, strong features e.g. MSE and D-exponent have positively impact on ROP prediction when 

having low numerical values across all models specially SVM and vice versa. This analysis will help 

engineers to enhance data quality and to identify relevant relationship between drilling parameters 

used and ROP in order to reach the optimum performance.  

• Future works will focus on using new approaches (e.g. advanced and/or hybrid models, modified 

MSE equations) for predicting ROP with comparative analysis to enhance transparency and 

interpretability of model predictions. In addition to their implications on other fields. 

 

List of abbreviations  
ROP Rate of Penetration MLP-NN Multilayer Perceptron-Neural 

Network 

ML Machine learning MLP-FF Multilayer Perceptron-Firefly 

algorithm 

WOB Weight on bit CFNN Cascade-Forward Neural Network 

RPM Revolution per minute RBFNN Radial Basis Function Neural 

Network 

T Surface Torque IGA Integrated Genetic Algorithm 

SPP Standpipe pressure MNR Multiple Nonlinear Regression 

Q Pumping rate ELM Extreme Learning Machine 

HOB Hours on bit MD Measured depth 

TFA Total flow area MD Well measured depth 

KNN K-nearest neighbors D Drill Bit diameter 

R² Coefficient of determination PP Pump pressure 
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MAE Mean Absolute Error BFR Bit flow rate 

RMSE Root mean squared error M.wt Mud weight 

MSE Mechanical Specific Energy PV Plastic viscosity 

AAPRE Average Absolute Percentage Relative Error Dbit Bit diameter 

ANN Artificial neural networks PP Pore pressure estimation 

MLP Multilayer Perception OVB Over-burden pressure 

MPNN Multilayer Perceptron Neural Network Inc. Inclination 

MLP-

GSA 

Multilayer Perceptron-Gravitational Search 

Algorithm 

CDF Cumulative Distribution 

Functions 
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