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AVERAGING PRINCIPLE FOR BACKWARD STOCHASTIC

DIFFERENTIAL EQUATIONS DRIVEN BY BOTH STANDARD

AND FRACTIONAL BROWNIAN MOTIONS

Y. SAGNA, S. AIDARA, I. FAYE

Abstract. In this paper, we study the stochastic averaging principle for back-

ward stochastic dierential equations driven by both standard and fractional

Brownian motions (SFrBSDEs in short). An averaged SFrBSDEs for the orig-

inal SFrBSDEs is proposed, and their solutions are quantitatively compared.

Under some appropriate assumptions, the solutions to original systems can be

approximated by the solutions to averaged stochastic systems in the sense of

mean square.

1. Introduction

Backward stochastic dierential equations (BSDEs in short) were rst introduced
by Pardoux and Peng [11] with Lipschitz assumption under which they proved the
celebrated existence and uniqueness result. This pioneer work was extensively used
in many elds like stochastic interpretation of solutions of PDEs and nancial
mathematics. Few years later, several authors investigated BSDEs with respect to
fractional Brownian motion


BH

t


t≥0

with Hurst parameter H . This process is a

self-similar, i.e. BH
at has the same law as aHBH

t for any a > 0, it has a long range
dependence for H > 1

2 . For H = 1
2 we obtain a standard Wiener process, but for

H ̸= 1
2 , this process is not a semimartingale. These properties make this process

a useful driving noise in models arising in physics, telecommunication networks,
nance and other elds.

Bender [3] gaves one of the earliest result on fractional BSDEs (FrBSDEs in
short). The author established an explicit solution of a class of linear FrBSDEs
with arbitrary Hurst parameter H . This is done essentially by means of solution of
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a specic linear parabolic PDE. There are two major obstacles depending on the
properties of fractional Brownian motion: Firstly, the fractional Brownian motion
is not a semimartingale except for the case of Brownian motion (H = 1

2 ), hence
the classical Itô calculus based on semimartingales cannot be transposed directly to
the fractional case. Secondly, there is no martingale representation theorem with
respect to the fractional Brownian motion. Studing nonlinear fractional BSDEs, Hu
and Peng [7] overcame successfully the second obstacle in the case H > 1

2 by means
of the quasi-conditional expectation. The authors prove existence and uniqueness
of the solution but with some restrictive assumptions on the generator. In this
same spirit, Maticiuc and Nie [9] interesting in backward stochastic variational
inequalities, improved this rst result by weakening the required condition on the
drift of the stochastic equation. Fei et al [5] introduced the following type of BSDEs
driven by both standard and fractional Brownian motions (SFrBSDEs in short)

Yt = ξ+

 T

t

f(s, ηs, Ys, Z1,s, Z2,s)ds−
 T

t

Z1,sdBs−
 T

t

Z2,sdB
H
s , 0 ≤ t ≤ T, (1)

where (Bt)t≥0 is a standard Brownian motion,

BH

t


t≥0

is a fractional Brownian

motion and ηt0≤t≤T is a solution of a stochastic dierential equation driven by

both standard and fractional Brownian motions. In [5], the authors abtained the
existence and uniqueness of the solution of SFrBSDEs under Lipschitz assumptions.
Recently, new classes of BSDEs driven by two mutually independent fractional
Brownian motions were introduced by Aidara and Sagna [1]. They established the
existence and uniqueness of solutions.

Stochastic averaging principle, which is usually used to approximate dynamical
systems under random uctuations, has long and rich history in multiscale prob-
lems (see, e.g.,[10]). Recently, the averaging principle for BSDEs and one-barrier
reected BSDEs, with Lipschitz coecients, were rst studied by Jing and Li [8].
In the present paper, we study a stochastic averaging technique for a class of the
SFrBSDEs (1). We present an averaging principle, and prove that the original
SFrBSDEs can be approximated by an averaged SFrBSDEs in the sense of mean
square convergence and convergence in probability, when a scaling parameter tends
to zero.

The rest of the paper is arranged as follows. In Section 2, we recall some deni-
tions and results about fractional stochastic integrals and the related Itô formula.
In Section 3, we investigate the averaging principle for the SFrBSDEs under some
proper conditions.

2. Fractional Stochastic calculus

Let Ω be a non-empty set, F a σ−algebra of sets Ω, P a probability measure
dened on F and Ft, t ∈ [0, T ] a σ−algebra generated by both standard and
fractional Brownian motions. The triplet (Ω,F ,P) denes a probability space and
E the mathematical expectation with respect to the probability measure P.

The fractional Brownian motion

BH

t


t≥0

with Hurst parameter H ∈ (0, 1) is a

zero mean Gaussian process with the covariance function

E[BH
t BH

s ] =
1

2


t2H + s2H − t− s2H


, t, s ≥ 0
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Suppose that the process

BH

t


t≥0

is independent of the standard Brownian motion

(Bt)t≥0. Throughout this paper it is assumed that H ∈ (12, 1) is arbitrary but
xed.

Denote ρ(t, s) = H(2H − 1)t − s2H−2, (t, s) ∈ R2 Let ξ and η be measurable
functions on [0, T ]. Dene

⟨ξ, η⟩t =
 t

0

 t

0

ρ(u, v)ξ(u)η(v)dudv and ∥ξ∥2t = ⟨ξ, ξ⟩t

Note that, for any t ∈ [0, T ], ⟨ξ, η⟩t is a Hilbert scalar product. Let H be the
completion of the set of continuous functions under this Hilbert norm ∥·∥t and
(ξn)n be a sequence in H such that ⟨ξi, ξj⟩T = ij . Let PH

T be the set of all

polynomials of fractional Brownian motion. Namely, PH
T contains all elements of

the form

F (ω) = f

 T

0

ξ1(t)dB
H
t ,

 T

0

ξ2(t)dB
H
t ,    ,

 T

0

ξn(t)dB
H
t



where f is a polynomial function of n variables. The Malliavin derivative DH
t of F

is given by

DH
s F =

n

i=1

∂f

∂xi

 T

0

ξ1(t)dB
H
t ,

 T

0

ξ2(t)dB
H
t ,    ,

 T

0

ξn(t)dB
H
t


ξi(s) 0 ≤ s ≤ T 

Similarly, we can dene the Malliavin derivative DtG of the Brownian functional

G(ω) = f

 T

0

ξ1(t)dBt,

 T

0

ξ2(t)dBt,    ,

 T

0

ξn(t)dBt




The divergence operatorDH is closable from L2(Ω, F,P) to L2(Ω, F,P, H). Hence
we can consider the space D1,2 is the completion of PH

T with the norm

F 21,2 = EF 2 + EDH
s F 2T 

Now we introduce the Malliavin ρ-derivative DH
t of F by

DH
t F =

 T

0

ρ(t, s)DH
s Fds

and denote by L1,2
H the space of all stochastic processes F : (Ω,F ,P) −→ H such

that

E


∥F∥2T +

 T

0

 T

0

DH
s Ft2dsdt


< +∞

We have the following (see[[6], Proposition 6.25]):

Theorem 2.1. Let F : (Ω,F ,P) −→ H be a stochastic processes such that

E


∥F∥2T +

 T

0

 T

0

DH
s Ft2dsdt


< +∞

Then, the Itô-Skorohod type stochastic integral denoted by
 T

0
FsdB

H
s exists in

L2 (Ω,F ,P) and satises

E

 T

0

FsdB
H
s


= 0 and E

 T

0

FsdB
H
s

2

= E


∥F∥2T +

 T

0

 T

0

DH
s FtDH

t Fsdsdt



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Let us recall the fractional Itô formula (see[[5], Theorem 3.1]).

Theorem 2.2. Let σ1 ∈ L2([0, T ]) and σ2 ∈ H be deterministic continuous func-
tions.
Assume that ∥σ2∥t is continuously dierentiable as a function of t ∈ [0, T ]. Denote

Xt = X0 +

 t

0

α(s)ds+

 t

0

σ1(s)dBs +

 t

0

σ2(s)dB
H
s ,

where X0 is a constant, α(t) is a deterministic function with
 t

0
α(s)ds < +∞.

Let F (t, x) be continuously dierentiable with respect to t and twice continuously
dierentiable with respect to x. Then

F (t,Xt) = F (0, X0) +

 t

0

∂F

∂s
(s,Xs)ds+

 t

0

∂F

∂x
(s,Xs)dXs

+
1

2

 t

0

∂2F

∂x2
(s,Xs)


σ2
1(s) +

d

ds
∥σ2∥2s


ds, 0 ≤ t ≤ T 

Let us nish this section by giving a fractional Itô chain rule (see[[5], Theorem
3.2]).

Theorem 2.3. Assume that for i = 1, 2, the processes µi, αi and ϑi, satisfy

E

 T

0

µ2
i (s)ds+

 T

0

α2
i (s)ds+

 T

0

ϑ2
i (s)ds


< ∞

Suppose that Dtαi(s) and DH
t ϑi(s) are continuously dierentiable with respect to

(s, t) ∈ [0, T ]2 for almost all ω ∈ Ω. Let Xt and Yt be two processes satisfying

Xt = X0 +

 t

0

µ1(s)ds+

 t

0

α1(s)dBs +

 t

0

ϑ1(s)dB
H
s , 0 ≤ t ≤ T,

Yt = Y0 +

 t

0

µ2(s)ds+

 t

0

α2(s)dBs +

 t

0

ϑ2(s)dB
H
s , 0 ≤ t ≤ T 

If for i = 1, 2, the following conditions hold:

E

 T

0

Dtαi(s)2dsdt

< +∞, E

 T

0

DH
t ϑi(s)2dsdt


< +∞,

then

XtYt = X0Y0 +

 t

0

XsdYs +

 t

0

YsdXs

+

 t

0


α1(s)DsYs + α2(s)DsXs + ϑ1(s)DH

s Ys + ϑ2(s)DH
s Xs


ds,

which may be written formally as

d (XtYt) = XtdYt+YtdXt+

α1(t)DtYt + α2(t)DtXt + ϑ1(t)DH

t Yt + ϑ2(t)DH
t Xt


dt

In order to present a stochastic averaging principle, we need the following [12,
Lemma 1].
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Lemma 2.1. Let BH
t be a fractional Brownian motion with 1

2 < H < 1, and

u(s) be a stochastic process in L1,2
H . For every T < +∞, there exists a constant

C0(H,T ) = HT 2H−1 such that

E



 T

0

u(s) dBH
s

2

 ≤ C0(H,T )E

 T

0

u(s)2 ds

+ C0T

2

We are now in position to move on to study our main subject.

3. Averaging Principle for SFrBSDEs

3.1. SFrBSDEs. Let us consider the following process

ηt = η0 + b(t) +

 t

0

σ1(s)dBs +

 t

0

σ2(s)dB
H
s , 0 ≤ t ≤ T,

where the coecients η0, b, σ1 and σ2 satisfy:

• η0 is a given constant,
• b,σ1,σ2 : [0, T ] → R are deterministic continuous functions, σ1 and σ2 are

dierentiable and σ1(t) ̸= 0, σ2(t) ̸= 0 such that

σ2t =

 t

0

σ2
1(s)ds+ ∥σ2∥2t , 0 ≤ t ≤ T, (2)

where ∥σ2∥2t = H(2H−1)

 t

0

 t

0

u−v2H−2σ2(u)σ2(v)dudv

Let σ2(t) =

 t

0

ρ(t, v)σ2(v)dv, 0 ≤ t ≤ T 

The next remark will be useful in the sequel.

Remark 1. The function σ2t dened by eq.(2) is continuously dierentiable with
respect to t on [0, T ], and

a) d
dt σ2t = σ2

1(t) +
d
dt ∥σ2∥2t = σ2

1(t) + σ2(t)σ2(t) > 0, 0 ≤ t ≤ T 

b) for a suitable constant C1 > 0, inf0≤t≤T
σ2(t)
σ2(t)

≥ C1

Given ξ a measurable real valued random variable and the function

f : Ω× [0, T ]× R× R× R× R → R,

we consider the BSDEs driven by both standard and fractional Brownian motion
(FrBSDEs)

Yt = ξ+

 T

t

f(s, ηs, Ys, Z1,s, Z2,s)ds−
 T

t

Z1,sdBs−
 T

t

Z2,sdB
H
s , 0 ≤ t ≤ T  (3)

We introduce the following sets (where E denotes the mathematical expectation
with respect to the probability measure P) :

• C1,2

pol
([0, T ]× R) is the space of all C1,2-functions over [0, T ] × R, which

together with their derivatives are of polynomial growth,

• V[0,T ] =

Y = ψ(·, η) : ψ ∈ C1,2

pol
([0, T ]× R), ∂ψ

∂t is bounded, t ∈ [0, T ]

,
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• V[0,T ] the completion of V[0,T ] under the following norm

∥Y ∥ =

 T

0

EYt2dt
1/2

=

 T

0

Eψ(t, ηt)2dt
1/2



Denition 3.1. A triplet of processes (Yt, Z1,t, Z2,t)0≤t≤T is called a solution to

SFrBSDE (3), if (Yt, Z1,t, Z2,t)0≤t≤T ∈ V[0,T ] × V[0,T ] × V[0,T ] and satises eq.(3).

We have the following (see [[5], Theorem 5.3]).

Theorem 3.4. Assume that σ1 and σ2 are continuous and σ2t dened by eq.(2) is
a strictly increasing function of t. Let the SFrBSDE (3) has a solution of the form
(Yt = ψ(t, ηt), Z1,t = −φ1(t, ηt), Z2,t = −φ2(t, ηt)), where ψ ∈ C1,2([0, T ] × R).
Then

φ1(t, x) = σ1(t)ψ
′
x(t, x), φ2(t, x) = σ2(t)ψ

′
x(t, x)

The next proposition will be useful in the sequel.

Proposition 1. Let (Yt, Z1,t, Z2,t)0≤t≤T be a solution of the SFrBSDE (3). Then
for almost t ∈ [0, T ],

DtYt = Z1,t, and DH
t Yt =

σ2(t)

σ2(t)
Z2,t

Proof. Since (Yt, Z1,t, Z2,t) satises the SFrBSDE (3) then we have Y = ψ(·, η)
where
ψ ∈ C1,2([0, T ]× R). From Theorem 3.4, we have

Z1,t = σ1(t)ψ
′
x(t, x), Z2,t = σ2(t)ψ

′
x(t, x)

Then we can write DtYt = σ1(t)ψ
′
x(t, x) = Z1,t and

DH
t Yt =

 T

0

ϕ(t, s)DH
s ψ(t, ηt)ds = ψ′

x(t, ηt)

 T

0

ϕ(t, s)σ2(s)ds

= σ2(t)ψ
′
x(t, ηt) =

σ2(t)

σ2(t)
Z2,t

□
3.2. An averaging principle. In this section, we are going to investigate the
averaging principle for the FrBSDEs under Lipschitz coecients. Let us consider
the standard form of equation (3): for all t ∈ [0, T ]

Y ε
t = ξ+2H

 T

t

f

r, ηεr , Y

ε
r , Z

ε
1,r, Z

ε
2,r


dr−H

 T

t

Zε
1,rdBr−H

 T

t

Zε
2,rdB

H
r , (4)

where ηεt = η0 + 2H
 t

0

b(s)ds+ H
 t

0

σ1(s)dBs + H
 t

0

σ2(s)dB
H
s 

According to the second part, equation (4) also has an adapted unique and square
integrable solution. We will examine whether the solution Y ε

t can be approximated
to the solution process Y t of the simplied equation: for all t ∈ [0, T ]

Y t = ξ+2H
 T

t

f

ηεr , Y r, Z1,r, Z2,r


dr−H

 T

t

Z1,rdBr−H
 T

t

Z2,rdB
H
r , (5)

where

Y t, Z1,t, Z2,t


has the same properties as


Y ε
t , Z

ε
1,t, Z

ε
2,t


.
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We assume that the coecients f and f are continuous functions and satisfy the
following assumption:

• (A1) There exists L > 0 such that, for all (t, x, y, z1, z2, y
′, z′1, z

′
2) ∈ [0, T ] × R7,

we have

f(t, x, y, z1, z2)− f(t, x, y′, z′1, z
′
2)

2 ≤ L

y − y′2 + z1 − z′1

2
+ z2 − z′2

2



• (A2) For any t ∈ [0, T1] ⊂ [0, T ] and for all (x, y, z1, z2) ∈ R×R×R×R, we have

1

T1 − t

 T1

t

f(s, x, y, z1, z2)− f(x, y, z1, z2)
2 ds ≤ ϕ(T1−t)


1 + y2 + z12 + z22


,

where ϕ is a bounded function.

In what follows, we establish the result which will be useful in the sequel.

Lemma 3.2. Suppose that the original SFrBSDEs (4) and the averaged SFrBSDEs
(5) both satisfy the assumptions (A1) and (A2). For a given arbitrarily small
number u ∈ [0, t] ⊂ [0, T ], there exist L1 > 0 and C2 > 0 such that

E

 T

u

Zε
1,s − Z1,s

2 +
Zε

2,s − Z2,s

2

ds


≤ L1E

 T

u

Y ε
s − Y s

2 ds

+C2 (T − u) 

(6)

Proof. Let us dene ∆
ε
= ε −  for a process  ∈ Y, Z1, Z2.

It is easily seen that the pair of processes

∆Y

ε

t ,∆Z
ε

1,t,∆Z
ε

2,t


0≤t≤T

solves the

SFrBSDE

∆Y
ε

t = 2H
 T

t


f(s, ηεs , Y

ε
s , Z

ε
1,s, Z

ε
2,s)− f(ηεs , Y s, Z1,s, Z2,s)


ds− H

 T

t
∆Z

ε

1,sdBs

−H
 T

t
∆Z

ε

2,sdB
H
s 

Applying Itô’s formula to
∆Y

ε

t


2

, we obtain

∆Y
ε

t


2

+ H
 T

u

Ds∆Y
ε

s∆Z
ε

1,sds+ H
 T

u

DH
s ∆Y

ε

s∆Z
ε

2,sds

=22H
 T

u

∆Y
ε

s


f(s, ηεs , Y

ε
s , Z

ε
1,s, Z

ε
2,s)− f(ηεs , Y s, Z1,s, Z2,s)


ds

− 2H
 T

u

∆Y
ε

s∆Z
ε

1,sdBs − 2H
 T

u

∆Y
ε

s∆Z
ε

2,sdB
H
s  (7)

Using the fact that

∆Y

ε

s,∆Z
ε

1,s,∆Z
ε

2,s


t≤s≤T

∈ V[0,T ]× V[0,T ]× V[0,T ] and V[0,T ] ⊂
L1,2
H (see Lemma 8 in [9]) which implies in fact Fi,s = ∆Y

ε

s∆Z
ε

i,s ∈ L1,2
H , (where

i = 1, 2). Then by Theorem 2.1, we have

E

 T

0

∆Y
ε

s∆Z
ε

1,sdBs +

 T

0

∆Y
ε

s∆Z
ε

2,sdB
H
s


= 0



8 Y. SAGNA, S. AIDARA, I. FAYE JFCA-2025/16(2)

Hence we deduce from (7)

E
∆Y

ε

t


2

+ HE

 T

u

Ds∆Y
ε

s∆Z
ε

1,sds


+ HE

 T

u

DH
s ∆Y

ε

s∆Z
ε

2,sds



= 22HE

 T

u

∆Y
ε

s


f(s, ηεs , Y

ε
s , Z

ε
1,s, Z

ε
2,s)− f(ηεs , Y s, Z1,s, Z2,s)


ds



≤ 22HE

 T

u

∆Y
ε

s


f(s, ηεs , Y

ε
s , Z

ε
1,s, Z

ε
2,s)− f(s, ηεs , Y s, Z1,s, Z2,s)


ds



+ 22HE

 T

u

∆Y
ε

s


f(s, ηεs , Y s, Z1,s, Z2,s)− f(ηεs , Y s, Z1,s, Z2,s)


ds



(8)

= E1 + E2,

where E1 = 22HE

 T

u

∆Y
ε

s


f(s, ηεs , Y

ε
s , Z

ε
1,s, Z

ε
2,s)− f(s, ηεs , Y s, Z1,s, Z2,s)


ds



and E2 = 22HE
 T

u
∆Y

ε

s


f(s, ηεs , Y s, Z1,s, Z2,s)− f(ηεs , Y s, Z1,s, Z2,s)


ds



For E1, by using the condition (A1) and Holder’s inequality, for any α > 0,
2ab ≤ αa2 + b2α, we deduce that

E1 ≤α2HE

 T

u

∆Y
ε

s


2

ds


+

2H

α
E

 T

u

f(s, ηεs , Y ε
s , Z

ε
1,s, Z

ε
2,s)− f(s, ηεs , Y s, Z1,s, Z2,s)

2 ds


≤2H

α+

L

α


E

 T

u

∆Y
ε

s


2

ds


+

L2H

α
E

 T

u

∆Z
ε

1,s


2

+
∆Z

ε

2,s


2

ds




(9)

For E2, by using assumption (A2), Holder’s inequality and Young’s inequality,
we have

E2 ≤ 22HE



 T

u

∆Y
ε

s


2

ds

 1
2
 T

t

f(s, ηεs , Y s, Z1,s, Z2,s)− f(ηεs , Y s, Z1,s, Z2,s)
2 ds

 1
2




≤22HE




(T−u)

 T

u

∆Y
ε

s


2

ds

 1
2


1

T−u

 T

u

f(s, ηεs , Y s, Z1,s, Z2,s)− f(ηεs , Y s, Z1,s, Z2,s)
2 ds

 1
2




≤ 22HC2E



 T

u

∆Y
ε

s


2

ds

 1
2




≤ 2HC2E

 T

u

∆Y
ε

s


2

ds+ T − u



≤ 2HC2E

 T

u

∆Y
ε

s


2

ds


+ 2HC2 (T − u) , (10)
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where C2 =


(T−u) sup

u≤s≤T
ϕ(s−u)


1 + sup

u≤s≤T
E(

Y s

2) + sup
u≤s≤T

E(
Z1,s

2) + sup
u≤s≤T

E(
Z2,s

2)



By the stochastic representation given in Proposition 1 and the Remark 1, we
have

E

 T

u

Ds∆Y
ε

s∆Z
ε

1,sds


=E

 T

u

∆Z
ε

1,s


2

ds


and E

 T

u

DH
s ∆Y

ε

s∆Z
ε

2,sds


≥C1E

 T

u

∆Z
ε

2,s


2

ds




Putting pieces together, we deduce from (8) that

E
∆Y

ε

t


2

+ HE

 T

u

∆Z
ε

1,s


2

ds


+ C1

HE

 T

u

∆Z
ε

2,s


2

ds



≤ 2H

α+

L

α
+ C2


E

 T

u

∆Y
ε

s


2

ds


+ 2HC2 (T − u)

+
L2H

α
E

 T

u

∆Z
ε

1,s


2

+
∆Z

ε

2,s


2

ds


 (11)

Hence if we choose α= α0 satisfying
H

α0
min


α0 − LH ,α0C1 − LH


= 2H ,

then we obtain

2HE

 T

u

∆Z
ε

1,s


2

+
∆Z

ε

2,s


2

ds


≤ 2H


α0 +

L

α0
+ C2


E

 T

u

∆Y
ε

s


2

ds


+ 2HC2 (T−u) 

Thus,

E

 T

u

Zε
1,s − Z1,s

2 +
Zε

2,s − Z2,s

2

ds


≤ L1E

 T

u

Y ε
s − Y s

2 ds+ C2(T − u),

where L1 = α0 +
L

α0
+ C2. This completes the proof. □

Now, we claim the main theorem showing the relationship between solution
processes Y ε

t to the original (4) and Y t to the averaged (5). It shows that the
solution of the averaged (5) converges to that of the original (4) in mean square
sense.

Theorem 3.5. Under the assumption of Lemma 3.2 are satised. For a given
arbitrarily small number 1 > 0, there exists 1 ∈ [0, 0] and β ∈ [0, 1] such that for
all  ∈ [0, 1] having

sup
Tε1−β≤t≤T

E
Y ε

t − Y t

2 ≤ 1
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Proof. With the help of Lemma 3.2, now we can prove the Theorem 3.5. Using the
elementary inequality and the isometry property, we derive that

E
∆Y

ε

s


2

≤24HE





 T

u


f(s, ηεs , Y

ε
s , Z

ε
1,s, Z

ε
2,s)−f(ηεs , Y s, Z1,s, Z2,s)


ds



2



+ 2E





H

 T

u

∆Z
ε

1,sdBs + H
 T

u

∆Z
ε

2,sdB
H
s



2



≤ 44HE





 T

u


f(s, ηεs , Y

ε
s , Z

ε
1,s, Z

ε
2,s)− f(s, ηεs , Y s, Z1,s, Z2,s)


ds



2



+ 44HE





 T

u


f(s, ηεs , Y s, Z1,s, Z2,s)− f(ηεs , Y s, Z1,s, Z2,s)


ds



2



+ 44HE





 T

u

∆Z
ε

1,sdBs



2

+ 44HE





 T

u

∆Z
ε

2,sdB
H
s



2



= I1 + I2 + I3 + I4 (12)

Applying Holder’s inequality and the assumption (A1), we obtain

I1 ≤ 4(T − u)4HE

 T

u

f(s, ηεs , Y ε
s , Z

ε
1,s, Z

ε
2,s)− f(s, ηεs , Y s, Z1,s, Z2,s)

2 ds


≤ 4(T − u)L4HE

 T

u

∆Y
ε

s


2

+
∆Z

ε

1,s


2

+
∆Z

ε

2,s


2

ds


 (13)

Then, together with Holder’s inequality and the assumption (A2), we get

I2 ≤4(T − u)4HE

 T

u

f(s, ηεs , Y s, Z1,s, Z2,s)− f(ηεs , Y s, Z1,s, Z2,s)
2 ds



≤4(T − u)24HE


1

T − u

 T

u

f(s, ηεs , Y s, Z1,s, Z2,s)− f(ηεs , Y s, Z1,s, Z2,s)
2 ds



≤C3(T − u)24H , (14)

where C3 = 4 sup
u≤s≤T

[ϕ(s−u)]


1 + sup

u≤s≤T
E
Y s

2

+ sup

u≤s≤T
E
Z1,s

2

+ sup

u≤s≤T
E
Z2,s

2


.

By the Lemma 2.1, we obtain

I3 + I4 ≤ 22HHT 2H−1E

 T

u

∆Z
ε

1,s


2

+
∆Z

ε

2,s


2

ds


+ 42HC0T

2 (15)
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Using above inequalities, from (12), we deduce

sup
u≤t≤T

E
∆Y

ε

t


2

≤

4(T − u)L4H + 22HHT 2H−1


sup

u≤t≤T
E

 T

u

∆Z
ε

1,s


2

+
∆Z

ε

2,s


2

ds



+ 4(T−u)L4H sup
u≤t≤T

E
 T

u

∆Y
ε

s


2

ds+ C3(T − u)24H + 42HC0T
2

Applying Lemma 3.2 to the above inequality we get

sup
u≤t≤T

E
∆Y

ε

t


2

≤


4(T−u)L4H (L1 + 1) + 2L1

2HHT 2H−1
  T

u

sup
u≤s1≤s

E
∆Y

ε

s1


2

ds

+ 2H

4(T−u)L2H + 2HT 2H−1


C2(T−u) + C3(T−u)22H + 4C0T

2


(16)

Thanks to Gronwall’s inequality, we obtain

sup
u≤t≤T

E
∆Y

ε

t


2

≤2H

4(T−u)L2H + 2HT 2H−1


C2(T−u) + C3(T−u)22H + 4C0T

2


× e(T−u)[4(T−u)Lε4H(L1+1)+2L1ε
2HHT 2H−1]

Obviously, the above estimate implies that there exist β ∈ [0, 1] and K > 0 such
that for evry t ∈ (0, K−2Hβ ] ⊆ [0, T ],

sup
Kε1−β≤t≤T

E
Y ε

t − Y t

2 ≤ C4
1−2Hβ , (17)

in which

C4 =

4(T−K−2Hβ)L2H + 2HT 2H−1


C2(T−K−2Hβ) + C3(T−K−2Hβ)22H + 4C0T

2


× 2H(1+β)−1e(T−Kε−2Hβ)[4(T−Kε−2Hβ)Lε4H(L1+1)+2L1ε
2HHT 2H−1]

is constant.
Consequently, for any number 1 > 0, we can choose 1 ∈ [0, 0] such that for

every 1 ∈ [0, 0] and for each t ∈ (0, K−2Hβ ]

sup
Kε−2Hβ≤t≤T

E
Y ε

t − Y t

2 ≤ 1 (18)

This completes the proof. □

With Theorem 3.5, it is easy to show the convergence in probability between
solution processes Y ε

t to the original (4) and Y t to the averaged (5).

Corollary 3.1. Let the assumptions (A1) and (A2) hold. For a given arbitary
small number 2 > 0, there exists 2 ∈ [0, 0] such that for all  ∈ (0, 2], we have

lim
ε→0

P


sup

Kε1−β≤t≤T

Y ε
t − Y t

 > 2


= 0, (19)

where β dened by Theorem 3.5 such that β < 1
2H .

Proof. By Theorem 3.5 and the Chebyshev inequality, for any given number 2 > 0,
we can obtain

P


sup

Kε1−β≤t≤T

Y ε
t − Y t

 > 2


≤ 1

22
E


sup

Kε1−β≤t≤T

Y ε
t − Y t

2


≤ C4
1−2Hβ

22

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Let  → 0 and the required result follows. □

Remark 2. Corollary 3.1 means the convergence in probability between the original
solution


Y ε
t , Z

ε
1,t, Z

ε
2,t


and the averaged solution


Y t, Z1,t, Z2,t


.

4. Conclusion

Backward stochastic dierential equations are widely used in nance and optimal
control problems. In this paper, we compare a traditional and an averaged backward
stochastic dierential equations driven by both standard and fractional Brownian
motions. Under some appropriate assumptions, the solution to original systems is
approximated by the solutions to averaged stochastic systems in the sense of mean
square.
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Email address: ibou.faye@uadb.edu.sn


