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GRICULTURAL systems across the world are increasingly under pressure because of abiotic 

stresses like drought, extreme temperatures, and salinity, which have adverse effects on crop 

yields and food security in the world. Traditional farming activities tend to increase these pressures by 

impoverishing soils and making ecosystems weaker. This review examines the importance of 

conservation agriculture (CA) as a sustainable method of abiotic stress mitigation through these 

fundamental principles of minimum soil disturbance, crop rotation, and cover cropping. CA can help 

to alleviate the negative impact of abiotic stresses, as well as increase agricultural productivity and 

sustainability by improving soil structure, nutrient balance, moisture retention, and supporting 

biodiversity, resulting in a beneficial microclimate in the root zone. This review summarizes the 

existing body of knowledge on how CA can be used to increase agricultural productivity sustainably 

and provide case studies showing successful experiences of CA use in various crops to counter abiotic 

stresses. The eco-physiological mechanisms associated with the impacts of CA on the mitigation of 

abiotic stress in plants are also discussed in this analysis. The implications of these insights 

underscore the necessity of integrating CA into comprehensive strategies to ensure food security 

amidst evolving global climate conditions. 
Keywords: Biodiversity, CO2 emissions, Crop residues, Crop rotation, Organic carbon, Climate 

change, Vulnerability. 

1. Introduction 

Abiotic stresses refer to non-living environmental factors that adversely affect the growth, development, and 

yield of plants. These stresses encompass various conditions like drought, salinity, extreme temperatures (both 

heat and chilling), flooding, and heavy metal toxicity. As essential components of the environment, these factors 

can significantly hinder the physiological and biochemical processes vital for plant survival, thereby threatening 

agricultural productivity and ecosystem stability worldwide (Mareri et al., 2022; Khan et al., 2025). Abiotic 

stress conditions significantly reduce global agricultural production, with the impacts ranging from 54% to 82%. 

Abiotic stressors have an adverse effect on crop growth, particularly during the reproductive stage, which leads 

to reduced global crop yield (Oshunsanya et al., 2019). Through disturbance of seed germination, vegetative 

growth, dry matter generation, and its transport to reproductive organs, abiotic stresses also cause a variety of 

biotic challenges that result in low crop productivity (Mareri et al., 2022). About 90% of all arable land 

worldwide is susceptible to one or more of the above stressors, causing annual losses of 70 percent of the yields 

of major food crops (Waqas et al., 2019). With increasing climate change, there is a necessity to have effective 

management practices that can make the agricultural systems more resilient. 

Conservation agriculture (CA) is a system of agronomic technology management that offers the ability to 

minimize soil disturbance, ensure long-term soil cover, and promote spatiotemporal crop species diversity. One 

study showed that some of the positive effects of CA are the reduction of greenhouse gas emissions due to labor, 

energy, and mineral nitrogen savings in agricultural production (Alam et al., 2019), an increase in the biological 

activity of soils (Bohoussou et al., 2022), and, consequently, long-term yield and productivity (Thierfelder & 

Mhlanga, 2022). CA approaches have contributed to the production of abundant harvests in addition to 

augmenting gross margins in agricultural crops (Bell et al., 2018). Applications of CA systems are now 
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widespread on all continents, and the agricultural activities exposed to CA treatment are broad (Farooq et al., 

2024). Some of them include rainfed and irrigated crops, annual crops, perennial plantations, orchards, integrated 

crop-livestock systems, agroforestry, rangeland and pasture management, rice-based crops, and organic farming 

(Kassam et al., 2022). Nevertheless, certain obstacles remain, such as low adoption rates, inefficient equipment 

among small-scale farmers, competition with crop residues, and the necessity to overcome traditional 

preconceptions against tillage (Dev et al., 2023; Savari et al., 2025). In spite of these challenges, CA has been 

opined to provide a potential solution to sustainable farming practices and food security (Joshi et al., 2021). It is 

also one of the solutions to problems with abiotic stress since it makes farming sustainable, brings health to the 

soil, and provides robustness to the ecosystem. With the growing number of environmental strains threatening 

agricultural productivity, the potential of CA to reduce soil erosion and degradation and increase carbon 

sequestration is massive. 

This review attempts to provide a critical discussion of the importance of CA in managing abiotic stress. It will 

discuss how CA practices can make soil and plants more resilient to abiotic stress and present case studies of 

how CA practices have been successfully applied in abiotic stress management under various agroecological 

conditions. Finally, the review will conclude on the relevance of CA as a key approach to sustainable agricultural 

systems, given the perpetually increasing abiotic stressors. 

2. Various Abiotic Stresses and Their Impact on Plants 

Climatic stresses are rapidly becoming a threat to global food production, and they have substantial 

consequences on food supply. About 90% of arable land is vulnerable to a single or a combination of abiotic 

stress (Nehra et al., 2024). Stressors such as salinity, drought, high heat and cold, and floods have a negative 

impact on the lifespan, yield, and biomass accumulation of crops (Yadav et al., 2020). These environmental 

stresses can also cause crop yield losses of between about 51% and 82% in significant food staples that are vital 

in the achievement of global food security (Nehra et al., 2024). Abiotic stresses, including inadequate water 

availability, severe temperatures, a lack of soil amendments, and/or an increase in harmful ions, soil hardness, 

and excessive light, can limit plant growth in various ways (Zhang et al., 2022). Specifically, these stresses 

induce oxidative damage, disrupt nutrient uptake, and impair photosynthesis, ultimately reducing biomass, crop 

quality, and crop yield (Kumari et al., 2022; Zhang et al., 2023) (Figure 1). 

 

 
 

Fig. 1. Effects of various abiotic stresses on plants, spanning from cellular responses to phenotypic changes 
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2.1. Salinity 

Salinity is considered the most harmful abiotic stress impacting the plant life cycle. Around 7% of the global soil 

surface is affected by salinity (Hopmans et al., 2021). It is estimated that salinity stress contributes to roughly 

20% of the potential decrease in crop yields (Pandit et al., 2024). Salinity stress, along with the resulting harm to 

the plant, can occur as a result of excessive buildup of soluble ions (such as Na
+
, Ca

2+
, K

+
, Mg

2+
) in the 

rhizosphere (Shams et al., 2023). When the concentration of ions in the plant is lower than that of the original 

irrigation water, ions can build up in the water (Shams et al., 2023). Salinity stress leads to metabolic and 

physiological disturbances in plants, impacting their growth, development, productivity, and overall quality 

(Shrivastava & Kumar, 2015). It hampers plant growth by reducing the water potential in leaves, resulting in 

physiological and morphological alterations, the production of reactive oxygen species (ROS), ion toxicity, 

heightened osmotic stress, and modifications in biochemical activities (Rana et al., 2019; Pandit et al., 2024; 

Bayoumi et al., 2025). Salt stress influences seed germination, survival rates, morphological traits, 

photosynthesis, and respiration in plants (Atta et al., 2023; Ikbal et al., 2024). An EC level below 1 dS m
-1

 is 

generally considered suitable for optimal growth for many crops. However, as EC levels increase, the tolerance 

of crops to salinity decreases (Machado & Serralheiro, 2017). To give an example, barley (Hordeum vulgare) is 

fairly tolerant to salinity, with a decrease in yield observed at EC values exceeding 4 dS m
-1 

(Dhima et al., 2021). 

Wheat (Triticum aestivum) possesses a salinity tolerance of up to approximately 3 dS m
-1

 (Gheisary et al., 

2025 ). Conversely, rice (Oryza sativa) is more susceptible to salinity, and its negative impact can be 

observed at an EC level of approximately 6 dS m
-1

, in particular, during the stage of the onset of the 

reproductive phase (Rana et al., 2019).  

Irrigation water salinity poses serious risks to agricultural productivity and sustainability (Demo et al., 2025). 

Using saline water for irrigation leads to the buildup of salts and alkaline substances in farmland. This buildup 

can cause soil salinization and alkalinity. It also raises the osmotic pressure in the soil solution, making it hard 

for plants to absorb water through their roots. Additionally, toxic ions in the water can cause damage (Yavuz et 

al., 2022). Higher salt concentrations in irrigation sources directly reduce water quality. This reduction can lead 

to lower crop yields, slower plant growth, decreased nutrient uptake, and increased vulnerability to pests and 

diseases (Yavuz et al., 2023). Elevated salt levels cause osmotic stress in plants, which limits their ability to take 

in water and leads to nutrient imbalances (Tarolli et al., 2024). This stress can result in lower germination rates, 

stunted growth, and reduced harvests, ultimately threatening food security (Machado & Serralheiro, 2017). In 

addition, increased salinity can harm soil structure and disrupt microbial activity, which further affects plant 

health (Demo et al., 2025). Sensitive crops often face physiological and metabolic issues, resulting in symptoms 

like chlorosis and necrosis (Atta et al., 2023). Overall, salinity stress poses a significant threat to crop growth and 

yield, and ways of limiting negative effects and maximizing crop resilience are required (Acharya et al., 2024). 

2.2. Drought  

One of the significant environmental issues caused by temperature changes, light intensity, and the decrease in 

precipitation is drought stress (Seleiman et al., 2021). It is one of the most intense stresses that impacts plant 

productivity. Water is very important in most physiological processes in a plant, as it constitutes about 80 to 95 

percent of the fresh biomass of a plant (Ahluwalia et al., 2021). As a result, drought has been considered the 

major abiotic stress in most plants, particularly in areas that are likely to experience water deficits (Ahluwalia et 

al., 2021). Bista et al. (2018) reported that even in fertilized areas, environmental variables like lack of moisture 

can result in nutrient deficits because the physiochemical characteristics of the soil can affect the mobility and 

uptake of particular nutrients. Additionally, stomatal closure brought on by drought lowers transpiration (Bista et 

al., 2018). As a result, the reduction in transpiration rate, imbalance in active transport, and membrane 

permeability all restrict the amount of nutrients that can be transported from the roots to the shoot, which lowers 

the roots' capacity for absorption. In short, water scarcity adversely affects both crop yield and quality (Salehi-

Lisar et al., 2016). Various practices can be implemented to mitigate the issue, including water conservation, soil 

management, and the use of drought-resistant crops (Wang & Ren, 2025). 

2.3. Elevated Temperature 

It is projected that worldwide air temperatures will increase by approximately 0.2 °C every ten years, resulting in 

a rise of 1.8 to 4.0 °C above current levels by the year 2100 (IPCC, 2007). Scientists are becoming increasingly 

concerned about this forecast, as elevated temperature is known to impact the vital functions of living organisms, 

either directly or by altering their surrounding environment. Plants, being sessile, cannot relocate to better 

conditions; therefore, their growth and development are significantly impaired, often to the point of death, due to 

elevated temperatures (Ding & Yang, 2022; Omran et al., 2025). Both prolonged and sudden heat waves have a 

negative effect on the growth and development of crop plants. It is anticipated that heat waves and other extreme 

temperature conditions will have a greater detrimental impact on plant growth than rises in the mean temperature 

will (Ding & Yang, 2022). Heat stress (HT) in various cultivated plant species leads to lower germination rates, 
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poor plant emergence, weak seedlings, and stunted radicle and plumule growth. High temperatures cause water 

loss from cells, which reduces cell size and overall growth (Moore et al., 2021; Ding & Yang, 2022). When 

plants face HT during the reproductive and grain filling stages, it can lower cereal crop yield by decreasing the 

number of fertile spikelets, shortening the grain filling period, and harming sink activity (Shrestha et al., 2022). 

Heat stress (HT) can lead to reduced photosynthesis, impaired metabolism, and increased production of ROS, 

ultimately resulting in cellular damage and reduced plant performance (Yu et al., 2024). Photosynthesis is very 

sensitive to heat. High temperatures can significantly reduce its effectiveness, particularly in C3 plants, by 

damaging chloroplast structures like thylakoid membranes and decreasing photosystem II activity (Moore et al., 

2021). HT causes changes in chloroplasts, such as thylakoid disorganization and pigment loss, which disrupt the 

photosynthesis process (Dhokne et al., 2022; Yu et al., 2024). Extreme high temperatures can quickly damage or 

kill cells, leading to a breakdown of cellular structures (Dhokne et al., 2022). It disrupts proteins, membranes, 

RNA, and cytoskeleton components in different ways. This instability interferes with enzymatic activities and 

creates metabolic imbalances that affect overall physiological functions (Moore et al., 2021; Kim et al., 2023). 

To mitigate heat stress in plants, management strategies such as using shade, adjusting sowing time, mulching, 

adjusting irrigation, and employing heat-tolerant plant varieties can be used. 

2.4. Chilling Stress 

Chilling stress is the exposure of crops to temperatures that are below their threshold level, which differs across 

species. This temperature tends to be between 0 °C and 5 °C, but in some hardier varieties, including some 

winter wheat, temperatures of up to –15 °C can also be tolerated (Devi et al., 2023). At temperatures below these 

threshold levels, the physiological processes of the plants are disturbed, causing poor growth, ineffective 

photosynthesis, and high susceptibility to diseases (Mukhopadhyay et al., 2018). It limits productivity by 

slowing down metabolic reactions and reducing water uptake. Chronic cold stress may result in direct damage to 

plant tissues—it can lead to cell death and growth suppression (Wu et al., 2022). Furthermore, cold stress may 

cause a delay in flowering and fruit set, leading to a shortened growing season and reduced yield (Shi et al., 

2022). Low temperatures can make cell membranes rigid. This rigidity reduces fluidity, causes electrolyte 

leakage, and disrupts cellular functions (Qari et al., 2022; Qian et al., 2025). Damage to roots and weakened 

membrane integrity hinder a plant's ability to take in water and essential nutrients, causing wilting and stunted 

growth (Yu et al., 2025). It also increases harmful signaling molecules like MDA and ROS, leads to osmolyte 

accumulation such as proline, and changes the activities of antioxidant enzymes like SOD, CAT, and POD (Song 

et al., 2021). 

3. Impact of Abiotic Stresses on Soil Health and Productivity 

Among stress factors, salinity, drought, excessive heat, and pollution have a significant impact on the health of 

global soil (Kumari et al., 2022). Such abiotic environmental stresses disrupt the soil ecosystem, soil structure, 

the availability of microbial populations and nutrients, production, and plant growth (Rahim et al., 2025) (Table 

1). Recent research findings show that abiotic stresses play a major part in crop production sustainability with 

respect to soil dynamics (Kumari et al., 2022; Rahim et al., 2025). The physico-chemical properties of the soil 

are negatively impacted since excess quantities of soluble salts accumulate as a result of salinity stress (Devkota 

et al., 2022). High levels of salinity subject the plant to osmotic stress and alter the diversity of microbes, which 

play a key role in the mineralization of nutrients (Devkota et al., 2022). Extreme salinity also leads to 

degradation of soil structure by breaking up clay particles, leading to low infiltration and aeration, which further 

reduces the growth of plants (Devkota et al., 2022). Abiotic stresses can include drought stress or lack of water, 

which are the most common agricultural stresses. These factors contribute to a decrease in soil moisture level, 

which means that the processes of organic matter degradation and the activity of microorganisms are lowered 

(Lin et al., 2025). Drought stress results in unstable soil aggregates through long-evolution stress and is linked 

with soil aeration and water-holding capacity (Jat et al., 2020). This leads to poor cycling of nutrients, which 

limits the availability of nutrients that plants need and reduces productivity (Li, 2024). HT increase evaporation 

rates and deplete soil moisture content (Mikó et al., 2025). HT harms soil health by raising soil temperature, 

which leads to less moisture and affects root-soil contact. This ultimately lowers nutrient uptake and crop 

productivity (Mishra et al., 2023). For example, in Lens culinaris, exposure to 37 °C resulted in lower levels of 

Zn and Fe compared to ambient temperature conditions (El Haddad et al., 2021). Excessive temperature (high 

and low) affects soil microbial populations and chemical rates ((Bas & Killi, 2024). Specifically, enhanced 

temperatures can encourage organic matter decomposition but can also cause water loss, further aggravating 

climate-like drought in the area (Tang et al., 2024). On the one hand, low temperatures slow down the speed of 

microbial activity, reducing the rates of microbial nutrient mineralization, hence limiting plant nutrition 

(Schnecker et al., 2023). Changes in temperature alter enzymatic activities in soils, and these have a general 

effect on soil fertility. In summary, the basic mechanisms that maintain soil health (i.e., organic matter 

decomposition, nutrient recycling, and biological variety) are harmed through abiotic stresses. These shifts lower 

soil productivity, threaten food security, and represent a challenge to sustainable agriculture. Knowledge about 
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such effects is therefore vital in devising adaptive management, including soil amelioration, crop selection, and 

sustainable irrigation, in order to overcome the negative consequences and make soil resilient to current 

environmental changes and dynamics (Teng et al., 2024). 

Table 1. Impacts of different abiotic stresses on soil properties and soil health. 

Indicators Effects References 

Soil texture 
In a saline condition, dispersion of clay particles occurred due to the 

presence of Na
+
. 

Luo et al., 2024 

Soil structure 

and porosity 

Na
+
 and Cl

-
 ions disrupt soil aggregates, leading to a decrease in 

porosity of 10-30%. 
Demo et al., 2025 

Bulk density 

Bulk density can increase from 1.2 to 1.6 g/cm³ in saline soils due to 

dispersion. 
Wang et al., 2024 

Generally increases (by 10–20%) due to soil compaction during 

drought periods. 
Jat et al., 2020 

Nutrient 

availability 

N, P, and K availability is reduced by 20-50% in saline soils due to 

precipitation and complexation. 
Theresa et al., 2025 

Drought stress decreased mineralization, leading to a reduction in N 

(3.78%), P (9.18%), and K availability. 
Bista et al., 2018 

Under anaerobic conditions, NO3 levels decrease by 50–70%; 

available P and K can decline by 20–40% with the accumulation of 

certain nutrients. 

El-Latif, 2015 

Soil organic 

carbon (SOC) 

Salinity reduces the breakdown of organic material and nutrient 

cycling. Organic carbon can decline by 10-30% in saline conditions. 
Zhou et al., 2025 

Declines by 3.3% over prolonged drought periods. Deng et al., 2021 

Elevated temperatures accelerate microbial respiration, decomposing 

organic carbon. SOC can decrease by 8.7 %–14.8 % after prolonged 

exposure to high temperature. 

Tang et al., 2024 

Microbial 

biomass 

Osmotic stress and toxicity inhibit beneficial microbial populations. 

Microbial biomass can decrease by 40-60% in saline soils. 
Rath et al., 2019 

Shortage of moisture significantly limits microbial activity and growth 

(up to 22%); cell lysis due to osmotic stress. 
Qu et al., 2023 

In waterlogging conditions, O2 deprivation inhibits microbial activity; 

microbial biomass carbon is reduced. 
Das et al., 2025 

 

4. Principles of CA 

CA is a management approach to farming systems that is considered one of the primary ways to achieve 

sustainable agriculture and protect the environment and land more effectively (Cárceles Rodríguez, 2022; Farooq 

et al., 2024). According to FAO, CA is a method that integrates long-term soil cover (at least 30% soil cover 

between planting and harvesting), minimal or no tillage (NT), and crop species mixtures, including legumes 

(FAO, 2015). Developed in the 1930s in the United States to overcome soil degradation caused by water and 

wind erosion (Holland et al., 2004), CA is characterized by the use of three interrelated principles that are 

adopted along with regionally specific agricultural management (FAO, 2015; Cárceles Rodríguez et al., 2022; 

Ahmed et al., 2024). These three tenets include permanent soil cover, minimum soil disturbance, and crop 

rotation. These components have a synergistic effect in promoting soil health, water management, and 

agricultural system sustainability (Jat et al., 2020; Farooq et al., 2024) (Figure 2). CA systems are established 

worldwide and cover a diverse array of agricultural practices. This includes both rainfed and irrigated farming, 

such as annual crop cultivation, perennial and orchard systems, plantation and agroforestry systems, combined 

crop-livestock operations, pasture and rangeland management, rice-based systems, and organic farming methods 

(Kassam et al., 2022; Farooq et al., 2024). 
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Fig. 2. Three core principles of CA. 

4.1. Crop Residue Management 

Crop residue management is a technique that involves covering at least 30% of the soil surface with organic 

leftover material from the previous crop during planting (Erenstein, 2002). Returning crop residues to the field 

following harvest is a widely recognized beneficial practice worldwide for enhancing soil health indicators 

(Sarker et al., 2022). Three reasons make a permanent soil cover necessary: it shields the soil from the 

destructive effects of rain and sunlight; it provides "food" to the soil's microorganisms on a constant basis; and it 

alters the microclimate in the root zone to encourage the growth of soil microbes (Sharma et al., 2023). 

Additionally, residues left from harvested crops significantly influence crop yields by affecting the soil's 

physical, chemical, and biological properties, as well as enhancing the quality of both water and soil (Sarker et 

al., 2022).  

4.2. No-till Farming 

No-till farming is an agricultural method where crops are cultivated without disturbing or turning over the soil 

through plowing or tillage. As of now, the no-till systems are numerous and include: pure no-till (no tillage), 

strip tillage (tillage restricted to narrow strips where the seed is planted), and mulch tillage (minimal disturbance 

and cover crops) (Dang et al., 2020; Dev et al., 2023). The most common ones are direct sowing of crops on 

undisturbed soil with special equipment and no-till seed drills to reduce soil erosion and the loss of water (Ma et 

al., 2025). The area under no-till farming has increased to around 20–30% of the total crop area globally, 

especially in North America, South America, and Australia (FAO, 2015). It has been well documented that no-

till farming enhances soil quality in various aspects, such as soil fertility, soil structure, and soil biological 

properties. As a comparison, it has been demonstrated that mulch no-till enhances yield, reduces runoff, and 

enhances water infiltration compared to tilled soils (Du et al., 2022). 

4.3. Crop rotation and Diversification 

Other CA practices that can be employed to increase sustainable farming systems include crop rotation and crop 

diversification (Sun et al., 2018). Crop rotation involves the production of different crops in a particular order 

over a variety of growing seasons, and crop associations are the production of two or more crops simultaneously 

(Shah et al., 2021). Simple rotation, i.e., cereals to legumes; complex crop rotation systems, i.e., utilization of 

diverse crops, including maize, beans, and potatoes; and cover cropping, i.e., planting of crops that are not 

harvested to fertilize and preserve the soil, are the simplest forms of crop rotation (Sun et al., 2018; Shah et al., 

2021). The practice interrupts the pest and disease cycle, reduces soil erosion, and improves soil health as a 

result of a greater range of use and resupply of nutrients (Kassam et al., 2022). As an example, the biological 

binding of nitrogen in the soil can be done by alternating legumes with cereals, which decreases the need to 
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implement chemical fertilisers (Kebede et al., 2021). Crop rotation can increase crop yields by 10–20% and 

reduce chemical inputs, and as such, environmental impact (Sehgal et al., 2023). Diversification is synonymous 

with crop rotation in that it brings in new crops into a farming system. This reduces economic risk and enhances 

adaptability to climatic fluctuations because it is not based on a monoculture (Ahmed et al., 2024). Diversity also 

increases biodiversity, which activates beneficial insects and microorganisms in the soil that aid the health of 

crops (Rahman et al., 2024). Together, crop rotation and diversification enhance the stability of the soil, organic 

matter, and water-holding capacity and lead to higher yields using less input.  

5. Role of CA for Sustainable Agricultural Productivity 

5.1. Agronomic and Economic Benefits 

Sustainable intensification is also becoming accepted as an activity that must be adopted to achieve sustainable 

agriculture (Asante et al., 2025). In contrast to conventional agriculture, there are several significant differences 

between CA and conventional agriculture as a means of less harmful agriculture (Tables 2 & 3). CA is supposed 

to help improve the soil sustainability and decrease its negative effect on the ecosystem and the long-term 

sustainability of agricultural land. It is believed that in the world, the overall farmland operated using CA 

practices is about 180 million ha or about 12.5 percent of worldwide arable land (Kassam et al., 2022). The most 

developed countries where CA is implemented are the USA, Brazil, Argentina, Australia, and Canada. Practices 

of CA are also increasingly attracting interest in India and Pakistan in South Asia (Kassam et al., 2022). 

Concisely, CA is increasingly gaining popularity in most parts of the globe as an alternative to traditional and 

organic farming.. Statistics indicate that no-till farming can increase soil organic carbon to 5.85 Mg ha
-1

 over 

conventional tillage within 11 years, contributing to reducing the impacts of climate change (Wang et al. 2020). 

Additionally, farmers adopting no-till practices often experience a fuel saving of 3.9 gallons acre
-1

 (Dang et al., 

2020) and a 50% decrease in labor (Corbeels et al., 2015) compared to traditional methods. 

Table 2. Key agronomic and economic benefits of CA. 

Parameter Agronomic/Economic output References 

Yield 
CA practices can lead to higher (10-20%) or comparable 

yields over time. 
Su et al., 2021 

Irrigation needs 
Promotes better water retention, reducing irrigation needs. 

Water savings of 25-30%. 
Nandan et al., 2021 

Labor requirements 
CA can reduce labor requirements by 20-50%, primarily due 

to decreased tillage and fewer passes over the field. 
Dev et al., 2023 

Fuel requirements 
Fuel savings of approximately 25-30% when adopting zero 

tillage compared to conventional tillage methods. 

Aravindakshan et al., 

2015 

Time savings 

Reducing multiple tillage passes shortens planting and harvest 

times. CA could reduce planting time by 15-20 days during 

the planting season. 

Nyagumbo et al., 2017 

Fertilizer expenditures 

CA practices augment soil health and organic matter, 

improving nutrient availability. Reports showed that with 

better soil structure and microbial activity, farmers could 

reduce fertilizer inputs by 10-20% without sacrificing yields. 

Feng et al., 2022 

Weed control 

CA relies on integrated weed management techniques, 

including cover crops and residue management, which 

suppress weeds. A reduction in weed biomass was found 

under CA systems compared to conventional tillage. 

Cordeau, 2022 

Disease outbreaks 
Crop diversification in CA practice can reduce the 

reproduction of soil-borne diseases. 
Zhang et al., 2025 

Insect outbreaks 

Diversified plants reduce the severity and frequency of insect 

outbreaks, such as the BPH in rice, by maintaining proper 

ecological balance. 

Ali et al., 2021 
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Table 3. Key environmental/ecological benefits of CA. 

Parameter Environmental/ecological benefits References 

Soil organic carbon 

CA practices enhance soil organic content and facilitate 

nutrient recycling. Implementing no-till farming can raise 

soil organic carbon levels by up to 5.85 Mg ha
-1

 over 

conventional tillage within 11 years. 

Wang et al. 2020 

Soil erosion 
Maintains soil cover and reduces runoff, preventing erosion 

rates (up to 80%). 
Savari et al., 2025 

Nitrate leaching 

Cover crops significantly reduce nitrate leaching by up to 

56% in comparison to conventional practices through 

improving soil structure and increasing nitrogen uptake 

efficiency. 

Thapa et al., 2018 

Surface runoff 

reductions 

CA practices improve soil water retention and infiltration, 

leading to reduced surface runoff of 16%. 
Du et al., 2022 

CO2 emissions 

Reduced/no tillage and organic matter retention increase 

soil carbon sequestration, reducing net CO₂ emissions. The 

no-till practices can sequester about 0.2–0.5 t ha
-1

 of carbon 

annually. 

Karki et al., 2025 

Increase in soil 

biodiversity 

CA improves soil biodiversity by offering essential habitats 

and nutrients. No-till and cover cropping can increase 

earthworm populations by up to 196% compared to 

conventional tillage. 

Seibutis et al., 2025 

Increase in microbial 

activity 

A 71% increase in microbial biomass was observed in no-

till systems due to higher microbial activity and improved 

nutrient cycling. 

Srour et al., 2020 

Downstream water 

pollution 

CA minimizes sediment, nutrients, and agrochemicals in 

downstream water pollution by reducing runoff and 

leaching. 

Shivendra et al., 2023 

 

5.2. Soil Health Improvement 

One of the key advantages of CA is the significant enhancement of soil health. By reducing tillage, CA 

minimizes soil erosion and maintains soil structure, leading to increased organic matter content (Ma et al., 2025). 

According to Lal (2015), no-till systems can increase soil organic carbon stocks by 0.2 to 0.5 t ha
-1

 annually, 

promoting nutrient retention and soil fauna. Additionally, retaining crop residues shields the soil surface from 

compaction and compaction-related yield losses, which, in conventional systems, can decrease yields by up to 

30% (Sarker et al., 2022). CA also leads to better soil health through increased soil aggregation, organic carbon, 

and enzymes, which have a positive effect on the carbon-nitrogen cycle, soil stability, and crop productivity. 

When integrated practices such as crop rotation and residue management are combined with conservation tillage, 

there is a high likelihood of long-term sustainability of soil management (Sangotayo et al., 2023).  In Mexico, 

Kabiri et al. (2016) revealed that after a long-term of NT maize (six years), microbial biomass (MBM), soil 

enzymes, and soil organic carbon (SOC) were all increased relative to conventional tillage. Overall, CA 

contributes to making soil management sustainable by sustaining a biologically active, resistant soil ecosystem.  

5.3. Water Conservation 

CA increases the efficiency of water use. Retaining crop residues particularly enhances water infiltration and 

decreases evaporation, thus leading to better soil moisture storage (Sarker et al., 2022). Research has shown that 

CA practice may lead to 20–30% greater water use efficiency than conventional tillage (Ghosh et al., 2025). 

Also, the ability of CA to increase soil porosity allows crops to access deeper soil moisture when it is dry (Eze et 

al., 2020). Such practices have been proven to increase yields by 15–25% due to improved water availability in 

semi-arid regions (Lal, 2015). There is also less surface runoff and soil erosion that contributes to water 

conservation, and that is why CA can be adopted as a possible solution in water-limited realities, especially in 

the world affected by climate change (Ghosh et al., 2025). 

5.4. Enhanced Biodiversity 

CA also promotes biodiversity on many levels. The conservation of crop residues on the land and reduced soil 

plowing could create an optimum environment for soil inhabitants such as earthworms, insects, and beneficial 

microbes that contribute substantially to nutrient cycling and soil health (Ma et al., 2025). Superficially, the 

multi-cropping system and cover of residues provide food and homes to pollinators and beneficial insects, which 
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create more robust agro-ecosystems (Ali et al., 2021). When crop rotation is diversified, fauna and flora in the 

soil are also diversified (Sharma et al., 2023). Legumes have also been included in crop rotations and mixtures 

due to their capability to interrupt the life cycles of pest species, reduce off-site pollution, and elevate 

biodiversity (Mng’ong’o et al., 2025). The research study by the IITA has found that the population of beneficial 

insects is 40% higher on farms where CA is practiced than on conventional farms (IITA, 2019). This increased 

biodiversity decreases chemical input requirements and escalates ecosystem services, which ultimately facilitates 

sustainable farming systems. 

5.5. CA on Soil Microbial Activity 

Microbial communities play a critical role in the breakdown of organic matter and the release of key nutrients, 

including nitrogen and phosphorus, back to plants. An augmented SOM due to CA practices is also 

advantageous to soil microbes because it serves as a food source. This can lead to an increase in microbial 

biomass and diversity, and eventually, general soil health (Sangotayo et al., 2023; Enebe et al., 2025) (Table 

4).  CA practices, by promoting microbial activity and increasing soil enzyme production, lead to better nutrient 

mineralization, thereby improving soil fertility (Al-Shammary, 2024; Shultana et al., 2025). Diverse crop 

rotations and cover crops in California enhance soil microbial diversity, which in turn improves soil health and 

resilience. Crop rotation is crucial because it allows soil microorganisms to have a diversified "diet" and can be 

"recycled" by crops that are grown alternately. Different crops release different types and amounts of carbon and 

other resources into the soil through their roots and residues. This variety of resources supports a wider range of 

microbes, including fungi, bacteria, and other microorganisms (Sun et al., 2024). Reduced tillage practices 

enhance soil health by maintaining soil structure, which in turn supports beneficial organisms. This approach 

minimizes soil disturbance, leading to improved soil aggregation and reduced compaction. The resulting better 

aeration and increased pore space create a more favorable environment for the proliferation of these beneficial 

microbes (Sher et al., 2024).  

Table 4. Microbial activity under different CA practices. 

Sl. No. CA Microbial activity Reference 

1 

Crop residue 

retention under no 

tillage 

 

No-tillage promotes a richer variety of bacterial and fungal 

communities, supporting the proliferation of beneficial 

microbes like arbuscular mycorrhizal fungi that enhance 

nutrient availability and overall plant growth. 

Srour et al., 2020 

2 
Mulch (30% crop 

residue) 

Applying crop residue mulches resulted in enhanced 

bacterial functional capabilities, particularly those related to 

amino acid transport and metabolism, along with improved 

energy generation and transformation processes. 

Zhang et al., 

2020 

3 

Ridge tillage (RT) 

with residue 

management on 

the ridges and 

furrows. 

RT increased the population of Acidobacteria, 

Gemmatimonadetes, and Proteobacteria compared to 

conventional tillage. The increments were 10.85%, 2.95%, 

and 3.21%, respectively. Similarly, the populations of 

Chytridiomycota, Ascomycota, and Cercozoa increased by, 

27%, 38% and 77%, respectively. 

Liu et al., 2022 

4 Strip tillage (ST) 

ST was identified as the most effective cultivation method 

for enhancing the microbial biomass in Chernozem soil. The 

fungi, arbuscular mycorrhiza, and bacterial biomasses were 

significantly higher in the ST compared to the plowing 

tillage. 

ST elevated the overall bacterial population by 49.0%, 

enhanced the number of active bacteria by 27.0%, and 

boosted both active and total fungi by 37.0%. 

 

Kovács et al., 

2024. 

 

5 
Reduced tillage & 

alley cropping 

RT and alley cropping increased the proportion of beneficial 

bacteria. RT practice exhibited a greater proportion of the 

Solirubrobacteraceae family, along with increased presence 

of the genera Streptomyces and Solirubrobacter. 

Özbolat et al., 

2023 
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6. Role of CA Practices on Mitigating Abiotic Stress in Important Crops 

Abiotic stresses, such as salinity, drought, cold, elevated temperatures, and waterlogging, significantly reduce 

crop yields globally, with potential losses ranging from 50 to 82% in major food crops (Nehra et al., 2024). CA, 

characterized by agronomic methods such as cover cropping, residue management, and zero tillage, offers 

sustainable solutions to boost crop resilience against these stresses (Michler et al., 2019). At its core, CA 

encompasses minimizing soil disturbance by practicing reduced tillage, preserving soil cover with crop residues 

or cover crops, and implementing crop rotation or diversification (FAO, 2015; Rodríguez et al., 2022). All these 

principles enhance the health of the soil, water retention, and biodiversity, which in turn enhance plant resistance 

to abiotic stresses (Jat et al., 2020). The use of legume cover crops can increase soil moisture content, suppress 

weeds and soil erosion, alleviate drought, and improve soil fertility (Kassam et al., 2022). Residue management 

has the capability of sustaining soil moisture, soil temperature, and soil organic matter, which have the capacity 

to enhance the abiotic stress endurance of plants (Sarker et al., 2022). In the meantime, no-till also minimizes 

soil disturbance, maintains soil integrity, and enhances water infiltration and water-holding capacity, hence 

abating drought- and heat-related susceptibility (Ma et al., 2025). These practices have been applied in different 

agro-ecological zones and crops across the world. In India, the zero-tillage rice-wheat cropping system has 

contributed to the conservation of water, along with a decrease in input costs, hence making it resistant to 

drought and heat (Vashisht et al., 2025). In America, reduced tillage of soybean and maize has been extensively 

employed, and this has brought about improvements in soil health and alleviated drought (Khangura et al., 

2023). In Australia, it is also a natural component of dryland farming systems that leads to the preservation of 

residue and cover cropping, enhancing moisture retention and crop yield in arid conditions (Kelly et al., 2020). 

The adoption of CA practices not only permits maintaining the level of productivity but also contributes to the 

mitigation of climate change due to the capture of carbon and greenhouse gas emissions (Rahman et al., 2021). 

The scope also addresses smallholder farmers in Africa and Southeast Asia, where cost-effective CA practices 

can help maintain resilience against erratic rainfall patterns and variations in temperature, which in turn can 

ensure livelihoods (Kassam et al., 2022). 

6.1. Salinity Management 

It is projected that about 10.7% of the global land area under irrigation is influenced by salinity, much of which 

is in developing nations (FAO, 2024). Salinity can also cause negative impacts on crop growth, yield, soil 

structure, and soil fertility (Tarolli et al., 2024). Tillage (reduced tillage or no-till) can prevent salinization of the 

soil because it minimizes soil disturbance and the formation of capillary action that promotes the movement of 

salts to the soil surface (Yao et al., 2023; Tarolli et al., 2024). Moreover, conservation of crop residues helps 

increase water intake and reduce water evaporation, thus diluting soil salts and promoting a favorable 

environment that stimulates the growth of healthy plants (Sarangi et al., 2020). The protective barriers also 

contribute to cover crops because they assist in regulating the concentration of salt by preventing the surface of 

the soil from being exposed to direct sunlight and minimizing evaporation (Quintarelli et al., 2022). Researchers 

have established that retention of residue can significantly reduce soil salinity by increasing infiltration of water 

and reducing evaporation of water on the surface (Shawkhatuzamman et al., 2023). Kundu et al. (2022) asserted 

that salinity can be alleviated through crop rotation, introduction of salt-tolerant crops to boost biological activity 

and nutrient cycling in the soil. An example is CA-based practices in cotton-wheat systems; it enhances 

sustainability measures such as an increase in yields, water productivity, and energy use efficiency in irrigated 

drylands and alleviates soil salinity (Devkota et al., 2022). Research has demonstrated that reduced tillage 

enhances soil aggregation and reduces soil evaporation, which restricts the salt concentration at the soil surface 

(Lal, 2015) (Table 5). CA-based practices such as no-tillage and residue retention combined with optimal 

nitrogen application per hectare demonstrated the highest potential for enhancing sustainability and resilience. In 

short, CA decreased the salt level in the cotton-wheat system (Devkota et al., 2022). Moreover, CA systems 

increase SOM, which helps in binding salts, avoiding their build-up within the root zone (Figure 3). Soil erosion 

exacerbates salinity by removing the topsoil layer and exposing saline subsoil. CA practices, like reduced tillage 

and retention of crop residues, minimize erosion and protect the soil surface. Research by Kundu et al. (2022) 

highlighted that reduced tillage and soil cover significantly lower erosion rates, thereby mitigating salinity. In 

sum, the use of salt-tolerant crop varieties combined with CA practices further enhances resilience to salinity 

stress. 
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Table 5. CA practices to alleviate the adverse effects of salt stress in important crops. 

Crop CA practice Mitigation effect Reference 

Rice 
Crop residue mulch (5600 

kg ha−1 straw mulching) 

Reduces evaporation, minimizes exchangeable Na+ 

buildup, and improves soil moisture retention. 
Yuan et al., 2022 

Wheat 
Sub-soil plastic film mulch 

(PMF) 

PMF more effectively reduced salinity in shallow soils, 

leading to a substantial increase in crop yield compared 

to the control.. 

Wang et al., 2024 

Barley 
Cover cropping (legumes, 

grasses) 

Enhances leaching of salts, improves soil organic 

matter, and reduces salinity stress. 

Cabello-Leiva et 

al., 2015 

Soybean 

Biodiversification through 

the use of cover crops, such 

as grasses or a combination 

of grasses and legumes. 

Improves soil quality and boosts soybean production by 

10%. 
Souza et al., 2025 

Maize 

Traditional tillage combined 

with comprehensive straw 

mulching throughout the 

fallow period. 

An increase of 10.3% in soil moisture, 17.8% in soil 

organic matter, and 11.3% in grain yield was achieved. 

Applying straw mulch throughout the fallow period is 

advised as an effective method to maintain soil health 

in saline rain-fed agricultural systems. 

Zhang et al., 2022 

Sunflower 

Deep tillage with straw 

mulch  and burying of a 

maize straw layer (12 t 

ha−1) (SM + SL) 

SM + SL considerably increased the soil moisture at the 

0–40 cm depth. SM + SL increased the sunflower shoot 

biomass by 4.8% compared to conventional practice in 

a salt-affected area. 

Zhao et al., 2014 

Wheat & 

sorghum 

Deficit irrigation at 60% of 

crop water needs, combined 

with rice straw mulching 

under reduced tillage 

practices. (CWR+RT) 

CWR+RT showed the potential in preserving soil 

health and conserving fresh irrigation water while 

sustaining the yield of the sorghum-wheat cropping 

system. 

Soni et al., 2021 

Sugarcane Cover crops 
Improves soil structure and minimizes the buildup of 

surface salts. 

Kishore et al., 

2024 

Cotton 
Wheat straw mulch, farm 

yard manure mulch. 

Mulching significantly increased soil water contents by 

32% and decreased soil salt contents by 67% compared 

to the control. 

Iqbal et al., 2024 

Wheat-Alfalfa 

Crop rotation 

 

 

Crop rotation by alternating salt-resistant crops with 

salt-sensitive crops helps to disrupt the salt 

accumulation cycle. 

Cuevas et al., 

2019 

 

 

Fig. 3. A schematic diagram showing the eco-physiological processes underlying the effects of CA on 

salinity stress mitigation in plants. 
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6.2. Drought Management 

CA helps crops withstand drought stress by creating an ecosystem that is more robust and moisture-conserving. 

In spite of shifting climatic trends, maintaining soil structure and organic matter also makes it possible to use 

water resources more efficiently, which increases agricultural production. These methods increase soil water 

retention, lower evaporation, and improve soil health in general (Table 6). CA practices improve soil properties, 

increase water infiltration by 0.7-7.9 times, and enhance soil moisture retention by 11-31% in comparison with 

conventional tillage (Thierfelder and Steward, 2022). These improvements lead to greater adaptive capacity 

during dry spells and heat stress, particularly on light-textured soils (Thierfelder and Steward, 2022). Studies in 

Mozambique, Zimbabwe, and Zambia have shown that CA practices can boost maize and legume yields 

compared to conventional tillage, especially in drought-prone environments (Thierfelder et al., 2016). Applying 

a mulch layer on the soil surface reduces evaporation and helps sustain an optimal water balance (Ramos et al., 

2024). The synergistic effect of minimal soil disturbance, retention of crop residues, and diverse crop rotations 

can gradually enhance soil carbon levels, thereby increasing water retention capacity, particularly in sandy soils 

(Xiao et al., 2025). It has been noted that the use of CA techniques increases infiltration and the accessibility of 

water in the soil, thereby increasing the resistance of crops to dry spells during the season and reducing the 

possibility of crop failure (Ramos et al., 2024). In addition, soil-water management strategies like CA have been 

observed to conserve water and reduce the risk of drought, which results in significantly higher yields of maize 

and wheat in the semi-arid regions of Kenya and Ethiopia (Cornelis et al., 2019). Crop residue mulch, cover 

crops (forages), and bare-fallow avoidance can also help retain soil and water and enhance surface SOC levels 

(Lal, 2015). Crop rotation with deep-rooted cover crops enhances soil porosity and organic matter content, which 

collectively improve the soil’s water-holding capacity. Overall, CA provides a sustainable agricultural method 

that lessens the effects of water shortage, which is crucial for the proper management of drought stress. 

Table 6. Strategies implemented by CA to alleviate the negative impacts of drought stress on important crops. 

Crop CA practice Mitigation effect Reference 

Rice 

 

Biodegradable film 

mulching in dry direct-

seeded conditions (BFM) 

BFM significantly improved soil moisture regulation, 

expanded leaf area, and boosted rice productivity and 

water use efficiency relative to the control. 

Zhao et al., 2024 

Straw mulching under 

non-flooded conditions 

Non-flooded cultivation combined with straw mulching 

enhances growth and physiological responses under 

drought conditions. 

Ria et al., 2025 

Potato, Sweet 

Pepper, Eggplant, 

Tomato, Legumes 

Mulching 

Both organic and plastic mulching improve soil structure, 

aeration, and aggregation, which enhances soil 

infiltration capacity, increases water holding and 

retention capacity, and stimulates better root growth. 

Saputra et al., 2025 

Spring wheat 

 

No tillage and straw 

mulching 

No-tillage combined with straw mulching improves dry 

matter accumulation of spring wheat by enhancing soil 

physicochemical characteristics and regulating stress-

tolerance compounds, thereby promoting yield 

development. 

Du et al., 2023 

Efficient irrigation 

Sprinkler and drip irrigation optimize the microclimate, 

thus lowering soil and canopy temperature and 

optimizing transpiration, which helps mitigate drought 

stress. 

Yadav et al., 2022 

Maize 

 

No–tillage and straw 

(NTS) 

NTS can improve the soil structure and soil fertility 

across various depths, and reduce drought effects and 

grain yield reduction. 

Deng et al., 2023 

Faba bean 

 
Non-tillage 

The higher levels of mycorrhizal colonization in roots, 

especially under no-till practices, may be beneficial for 

plants in coping with drought stress. 

Madejón et al., 2023 

Pearl millet, 

Cowpea, Potato, 

Pea, Barley, Maize, 

Wheat, Soyabean, 

Legumes 

Reduced tillage 

Reduced tillage through ploughing, harrowing, or 

disking, which enhances soil structure, soil moisture, and 

better root penetration. 

Wittwer et al., 2023 

Wheat, Legumes 
Timely sowing or 

planting 

Early maturing variety in sowing early can escape 

drought stress in the flowering stage. Early sowing 

increases 0.4 t ha-1 yield. 

Deihimfard et al., 

2023 

Cowpea-babycorn, 

Potato-Legume, 

Maize-Soyabean 

Inter-cropping 

Intercropping increases crop growth rate, relative water 

content, and chlorophyll content of both crops and 

significantly reduces canopy temperature and soil 

temperature due to shading and increased soil cooling 

through moisture retention. The yield of cowpea and 

babycorn increased 28% and 17%, respectively. 

Bijarnia et al., 2024 
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6.3. Heat Stress Management 

CA offers several benefits for temperature management, primarily through its influence on soil and local climate 

conditions. By altering soil properties and processes, CA can mitigate temperature extremes and improve soil 

health, which in turn supports sustainable agricultural practices (Figure 4) (Table 7). Mulching with crop 

residues insulates the soil, reducing temperature fluctuations and maintaining a stable microclimate around the 

root zone (Acharya et al., 2019; Li et al., 2021). This temperature reduction is caused by the presence of stubble 

on the surface of the soil and the soil being wetter as a result of less evaporation. This temperature stabilization 

of the soil is important to crops such as maize, which need particular temperature ranges to germinate and grow 

well. Also, conservation activities support an increase in microbial levels required to maintain soil health and 

nutrient cycling, which further boosts agricultural productivity (Ma et al., 2025). High-temperature stress had 

adverse impacts on the yields of non-stress-tolerant maize varieties in cropping systems that do not involve 

legume rotation. Nonetheless, the practice of CA contributed to reducing this negative effect in comparison with 

conventional control practices (Komarek et al., 2021). CA has been found to reduce local warming during 

extreme temperature events by about 1 °C in mid-latitude areas through increased transpiration and increased 

soil moisture retention (Hirsch et al., 2018). It was found that CA enhances soil health through elevated soil 

organic carbon and microbial biomass that are essential in maintaining soil structure and fertility under warming 

conditions, which contributes to improved resilience to climate warming, as indicated by higher crop yields and 

microbial diversity (Teng et al., 2024). Even though the use of CA can be highly beneficial in terms of 

temperature control, it may not be effective depending on the climate in a particular region and the type of 

farming activities used. 

6.4. Cold Stress Management 

CA practices can successfully reduce the adverse impacts of cold stress on different crops (Karki & Gyawaly, 

2021). Cover crops provide an insulating layer that buffers soil and plant tissues against low temperatures, 

reducing plant damage (Yang et al., 2021) (Figure 5). Additionally, organic mulches, like straw or leftover crop 

materials, insulate the soil surface, moderating temperature fluctuations and protecting root systems (Mamun et 

al., 2013). Crop diversification and rotation help select cold-tolerant varieties and break pest and disease cycles, 

further strengthening crop growth under cold stress conditions (Sehgal et al., 2023). Timing of planting is 

optimized to avoid peak cold periods, and conservation tillage facilitates better soil warming (Du et al., 2023). 

Implementing these CA practices not only reduces cold-induced damage across a variety of crops, such as wheat, 

maize, soybeans, and vegetables, but also promotes sustainable production systems (Qu & Feng, 2022) (Table 8). 

 

 
 

Fig. 4. A schematic diagram showing the eco-physiological processes underlying the effects of CA on 

heat/drought stress mitigation in plants. 
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Table 7. CA practices to alleviate the adverse impacts of high temperature stress in important crops. 

Crops CA practice Impacts on heat stress mitigation Reference 

Wheat, Lentil, 

Faba bean, 

Chick pea, 

Legumes 

Raised bed 

systems and zero 

tillage, adjusting 

planting time 

15-20 days of early sowing or planting helps to 

escape the heat stress during the flowering to 

post-flowering stage. Moreover, Furrow irrigated 

raised bed techniques and zero tillage systems 

have the potential to lower the canopy 

temperature by 1.5 to 3.0 °C. 

Dubey et al., 2019 

Wheat 

Irrigation 

Sprinkler and drip irrigation optimize the 

microclimate, thus lowering soil and canopy 

temperature and optimizing transpiration, which 

helps mitigate heat stress. Wheat yield increased 

by 22–59% due to irrigation. 

Yadav et al., 2022 

Adjusting 

mulching 

practices and 

sowing schedules 

for late planting 

Farmyard manure (10 t ha
-1

) combined with rice 

straw mulch (4 t ha
-1

) mitigates the negative 

impact of terminal heat stress, and enhances the 

wheat grain yield and water use efficiency under 

late planting. 

Balwinder-Singh et 

al., 2016 

Cover crop 

(sorghum ) 

Stimulate growth under heat stress. During the 

sowing period of winter wheat, surface soil 

moisture experienced a 4% rise when grown 

with an optimal summer cover crop. 

Zhang et al., 2023 

Maize Cover crops 
Improves heat tolerance by increasing the 

absorption of nitrogen and zinc. 

Mariscal-Sancho et 

al., 2023 

Wheat, Potato, 

Cotton 
Mulching 

Soil surface mulching promotes better aeration, 

resists temperature fluctuation, maintains the soil 

moisture, and improves root growth, thus 

helping to minimize canopy temperature via 

transpiration cooling and reducing heat stress. 

Acharya et al., 2019 

Cowpea-

babycorn, 

Potato-Legume, 

Maize-

Soyabean 

Inter-cropping 

Intercropping increases crop growth rate, relative 

water content, and chlorophyll content of both 

crops and significantly reduces canopy 

temperature and soil temperature due to shading 

and increased soil water content and soil cooling. 

The yield of cowpea and babycorn increased 

28% and 17% respectively. 

Nyawade et al., 2020 

 

Citrus Straw Mulching 

Straw mulching techniques can enhance citrus 

fruit production even under severe temperature 

extremes. 

Visconti et al., 2024 

 

 

Fig. 5. A schematic diagram showing the eco-physiological processes underlying the effects of CA on   

heat/drought stress mitigation in plants. 



ABIOTIC STRESS MANAGEMENT IN AGRICULTURE: INSIGHTS FROM CONSERVATION PRACTICES   

Egypt. J. Soil Sci. 65, No. 3 (2025) 

1759 

Table 8. CA practices for alleviating the adverse effects of cold stress in different crops. 

Crops CA method Mitigation effects Reference 

Rice 

25% rice husk as tray 

media with 75% 

loamy soil 

The husk acted as an insulator and increased the 

temperature in the root zone, resulting in improved 

seedling growth under low temperature conditions. 

Mamun et al., 

2013 

 

Wheat 

 

Plastic film mulching 

(PFM) 

Soil temperature prior to the jointing stage was 

elevated by PFM application, leading to an 

increase in winter wheat yield in semiarid rainfed 

regions experiencing cold stress. 

Li et al., 2021 

80% surface of straw 

mulching  (SSM) 

SSM increased the yield of buckwheat due to the 

improvement of soil organic matter and 

temperature use efficiency. 

Qu & Feng, 2022 

Wheat 

Planting and sowing 

time in reduced tillage 

conditions 

Early sowing or planting of short-duration varieties 

helps to escape the cold stress during the flowering 

to post-flowering stage.  

Hassan et al., 

2021 

Sweet 

Pepper 
Mulching 

Mulching improves soil temperature, leaf 

membrane stability, relative water and chlorophyll 

content, and photosynthesis, reduces leaf water 

loss, which mitigates cold stress. Yield of 

capsicum increased 82-87%. 

Singh et al., 2019 

 

6.5. Waterlogging Stress Management 

The management of agricultural land to alleviate flood risks and surface runoff is essential for ensuring both 

economic viability and environmental integrity. Various CA practices such as straw mulching, no-tillage 

practices, ridge-farming, contour farming, and the implementation of bunds and buffer strips have consistently 

demonstrated efficacy in curtailing surface runoff by improving infiltration, decelerating water flow, and 

capturing sediments and nutrients (Singh et al., 2025). Cover crops have proven to be quite effective in 

mitigating the effects of recurrent floods. It has been empirically shown that cover crops, specifically those 

planted after the main harvest, are effective at controlling peak flow during winter and early spring floods (Hovis 

et al., 2021). In post-flooding situations, rapid establishment of cover crops has shown the potential to improve 

the growth of beneficial soil microbes, accelerate the cycling of nutrients, and improve the condition of the soil 

(Basche et al., 2016). It has also been documented that straw mulch has aided in enhancing the infiltration rate 

and establishing adhesive properties against erosive forces (Wang et al., 2023). According to Singh et al. (2025), 

runoff can be mitigated through cover crops as they provide a sort of shield over the surface of the soil, which 

can help in lessening the extent of surface runoff as well as the velocity of water flow. When applied in 

conservation methods such as no-tillage, ridge farming, and stubble mulch farming, the reduction in surface 

runoff has been proven to be very significant (Du et al., 2022). The study concluded that no-till practices disrupt 

soil, leading to minimal disturbance of the soil, improvement of filtration mechanisms, and reduced flooding (by 

up to 16%). Likewise, creating ridges and performing tillage along the contours formed barriers that slowed 

overland flow. This extension of surface detention time subsequently enhanced the period available for water to 

infiltrate the soil. Contour farming resulted in a 10% decrease in runoff compared to planting crops at a right 

angle to the incline (Farahani et al., 2016). Bunds were also recognized as effective in runoff management due to 

their capacity to retain water across slopes.  

7. Mechanisms of Plants’ Acclimation to Abiotic Stress Through CA Practices 

CA has emerged as a sustainable approach to mitigate the adverse effects of different abiotic stresses, including 

salinity, drought, heat, cold, and waterlogging by promoting resource-efficient and resilient farming systems 

(Michler et al., 2019; Kumara et al., 2020). Key mechanisms include improvements in soil structure, water 

retention, and nutrient balance, aided by CA practices such as reduced tillage, cover cropping, and crop 

diversification, though creating a favorable microclimate in the root zone (Figures 3, 4 & 5). Reduced tillage, 

minimizing soil disturbance and promoting the development of stable soil aggregates. These aggregates increase 

soil porosity, creating a porous matrix that facilitates better water infiltration and retention (Schlüter et al., 2020). 

The better the soil structure, the less sealing and crusting occur on the surface, and the more rainwater can 

percolate into the soil profile. This enhanced infiltration decreases surface runoff and erosion, preserves the 

integrity of the topsoil, and prevents the loss of nutrients (Sittig & Sur, 2024). In addition, stable aggregates 

enrich the air in the soil, creating positive microbial activity that further stabilizes the soil and makes it fertile, 

which leads to resiliency to abiotic stresses like drought (Jat et al., 2023). Such soil moisture dynamics are 

critical for plant survival during dry spells and have a large influence on CA practices. In this regard, cover crops 
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and additions of organic matter are important. The cover crops shade the soil surface from direct sunlight and 

wind and hence minimize the rate of evaporation (Çerçioğlu et al., 2025). Their root systems also facilitate water 

retention and soil porosity, originally adequately sustaining water over a longer duration (Farmaha et al., 2021). 

The incorporation of organic matter into soil, in the form of crop residues and compost, increases the level of 

organic carbon in the soil, thus increasing the water-holding capacity because it enriches the soil structure and 

porosity (Parewa et al., 2023). This organic matter functions as a sponge, retaining water in the pores of the soil 

and supplying plants during periods of water deficiency. 

The preservation of soil moisture is also achieved through crop rotation since it disrupts the pest cycle and limits 

the occurrence of diseases, causing healthier root systems that can seek moisture in lower soil levels (Shah et al., 

2021). A multiplicity of root systems exists between different types of cropping systems, which increases the 

porosity and water-retaining abilities of the soil across depths, thus cushioning crops against drought (Liang et 

al., 2023; Zou et al., 2024). In conclusion, it is possible to surmize that the primary mode of action of CA 

practices in alleviating abiotic stresses is by enhancing soil structure and water management. Reduced tillage 

improves aggregation and infiltration in the soil, and cover crops, organic amendments, and crop diversification 

have a synergistic impact to enhance soil moisture retention. These processes contribute to a resilient agro-

ecosystem that is capable of withstanding the ill effects of abiotic stress and leading to sustainable agricultural 

productivity and a healthy environment. 

8. Conclusion 

Conservation agriculture has become an innovative method of contemporary agricultural operations, providing 

lasting solutions to the adverse impacts of abiotic stress factors on crops such as salinity, drought, high 

temperature, and soil erosion. Limited soil disturbance, maintaining soil cover year-round, crop rotation or 

alternation, and diversification are all examples of how farmers can vary the agricultural system in place to 

minimize abiotic stress and enhance the soil, use fewer water resources, and enhance biodiversity on the farm. 

The mechanisms through which CA reduces abiotic stress demonstrate the complexity of the interconnection of 

soil chemistry and water-holding capacity with nutrient cycling. The outcome of CA practices is healthier crops 

able to better tolerate climatic variations due to the ability of the soil to infiltrate and retain water. Not only do 

these practices enhance the physical, chemical, and biological characteristics of the soil, but they also result in 

better cycling of nutrients and buildup of organic matter, which are vital in crop stress resistance. Along with 

this, CA reduces erosion, retains both moisture and modulates soil temperature, which offers a more stable 

growing environment, allowing plants to thrive under stressed growing conditions. The initiation of CA 

principles is becoming extremely vital to the attainment of food security, improvement of agricultural yields, and 

the realization of environmental sustainability due to the rising abiotic stresses that have been prompted by 

climate change. Incorporation of CA in farming systems will enable farmers to manage abiotic stresses better, 

hence ensuring the long-term viability and sustainability of agriculture in the face of the changing climate. 
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