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Abstract

Recent research has increasingly concentrated on the
transformation of lifetime distributions employing the
Dinesh-Umesh-Sanjay (DUS) technique. This study
presents an innovative model that is based on the
exponentiation of the DUS transformation, resulting in a
distribution derived from the exponentiated gamma (EG)
distribution. We conducted a rigorous examination of the
statistical properties of the DUS-EG distribution. Utilizing
the maximum likelihood estimation approach, we
estimated the model parameters and performed a
simulation study to evaluate the efficacy of the
estimators. The proposed model was validated through a
comprehensive analysis of empirical data.

Keywords: DUS transformation; exponentiated
gamma distribution; Moments; Residual analysis; Entropy;
Maximum likelihood estimation; Monte-Carlo simulation.
1. Introduction

Modeling and analyzing lifetime distributions are

essential in various domains, including engineering and
statistics, making the selection of suitable distributions
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critical for effective data analysis. The gamma distribution
is a widely recognized lifetime distribution frequently
employed to model waiting times, product lifespans, and
applications in quality engineering and image analysis.
Nonetheless, traditional hazard rate forms of this
distribution often fail to adequately represent the bathtub
curves commonly observed in real-world systems. Recent
advancements have enhanced model flexibility by
introducing additional parameters to existing distributions
or by integrating multiple distributions, thereby improving
goodness-of-fit and augmenting the efficacy of data
analysis. The exponentiated gamma (EG) distribution has
been introduced by Gupta et al. (1998), which has a
versatile model that includes the gamma distribution as a
particular case. Shawky and Bakoban (2008) conducted a
comprehensive study on the EG distribution as a model for
lifetime data, formulating both Bayesian and non-Bayesian
estimators for the shape parameter, reliability, and failure
rate functions in contexts of complete and type Il censored
samples, they further investigated order statistics derived
from the EG distribution and their implications for
statistical inference. Ghanizadeh, et al. (2011) focused on
parameter estimation of the EG distribution while
accounting for the presence of outliers, they employed
moment and maximum likelihood estimation techniques to
derive the estimates of distribution parameters. A Bayesian
analysis of the EG distribution utilizing type Il censored data
has been studied by Singh et al. (2011). Nasiri et al. (2013)
formulated Bayesian estimators for the parameters of the
EG distribution based on censored samples, applying a
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general entropy loss framework. Hussian (2014) introduced
a transmuted EG distribution as a novel lifetime model.
Feroze and Elbatal (2016) generated Beta-EG as a four
parameters lifetime model. Recently, Ragab et al. (2024)
leveraged the type Il Topp-Leone-G class of distributions to
establish a flexible lifespan distribution (TIITL-EG).

A multitude of methodologies has been proposed for
the derivation of new classes of distributions from existing
ones, as evidenced by the research conducted by Eugene et
al. (2002), Nadarajah and Kotz (2004), Cordeiro and Castro
(2011), and Cordeiro et al. (2013). Additionally, Kumar et al.
(2015) presented the Dinesh-Umesh—Sanjay (DUS)
transformation, which contributed to the creation of a new
and efficient class of distributions. The DUS transformation
associated with an exponential distribution is analyzed in
Maurya et al. (2017). Building upon this foundation,
Deepthi and Chacko (2020) introduced the DUS-Lomax
distribution, while the DUS-Kumaraswamy is studied by
Karakaya et al. (2021). the DuUS-inverse Weibull
distributions is derived by Gauthami et al. (2021). Recently,
Nayana et al. (2022) employ a similar methodology to
introduce presented the DUS-Weibull distribution.

This study employs the DUS transformation applied to
the exponentiated gamma distribution for evaluating the
DUS-EG distribution, which is a novel lifetime model. The
structure of the paper is organized as follows: Section 2
describes the formulation of the DUS-EG distribution.
Section 3 explores the main statistical Properties the of the
DUS-EG distribution as: ordinary moments, inverse
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moments, moment generating function, incomplete
moments, mean deviation, conditional moments, mean
residual life, mean inactivity time and Rényi entropy
associated with the distribution. Section 4 presents a
comprehensive overview of the maximum likelihood
estimation methodology employed in the analysis, while
Section 5 delineates a Monte-Carlo simulation study
designed to assess the performance of the proposed
distribution. Section 6 provides a numerical example that
illustrates the practical applicability of the distribution to
aircraft windshields data. Finally, Section 7 concludes with
a summary of the key findings derived from the research.

2. Model Formulation

If #(y;r) is the baseline cumulative distribution function
(cdf), the DUS transformation generates a new cdf, 7 (y;7),
as follows:

T(y;r)=%{eXp[H(y;r)]—1} ;v >0.

o—
The appropriate probability density function (pdf) is as
follows:
1
1050 =——{h(vsr)exp[H (v37) ]

This section applies the DUS transformation to the
exponentiated gamma distribution, defined by its cdf and
pdf:

H(y:6.2)=[1-(1+5y)e™ ] i 5206150,
and
h(y:6.4)=28"y e [1-(+6y)e™ | ; »206.4>0,
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Equations (3) and (4), combined with Equations (1) and (2),
yield the established cdf and pdf of the DUS-EG
distribution:
T(y;é,ﬁ):Ll{exp[(l—(nay)e-ﬁy )1}—1}; y 20,6150,
e—
and
187y e

. (et

(6)The hazard rate (hr) function, also called the failure
rate or hazard function, is a key concept in reliability
theory and survival analysis. It represents the
instantaneous failure rate at a specific time, given
survival until that time. Mathematically, it is defined as:

2 (v36,) = A
1-H(y;6,4)

A6%y (1—(l+5y)e_§y )/I exp[(l—(l+5y)e_5y )q

(1+6x —e™ )(exp[(l—(l+5y)e_5y )l}—ej

Figure 1 (a) presents the DUS-EG density function for
various attribute values of the model. The pdf of the
proposed model exhibits a rightward slope, demonstrates a
monotonically decreasing nature, and is characterized as
unimodal.

Figure 1 (b) illustrates the hazard rate function patterns for
various distribution parameters. The DUS-EG distribution's
hazard rate resembles a bathtub or an upside-down

bathtub shape.
e
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Figure 1: (a) The pdf plots of DUS-EG (b) The hr plots for DUS-EG
distribution

2.1. Linear represnetation

This subsection enhances the DUS-EG distribution using an
exponential series:

exp(w)=>w*/k!. Consequently, Equation (6) can be
k=0

expressed as:

52)} e_5y - (1_(1+5y )e—é‘y )l(kJrl)*l

P k!
By applying the generalized binomial theorem, we find that
for any positive integer 9, we have:

t(y;é,/‘t)=/1

e—1
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m=0

(1-6) = Z( 1)” ( Jek , for |9|<1. Hence, the pdf of DUS-

EG is derived as:

Ak +1)—1 n g-omy
(o= Z(l)[ (’;) j(1+5y)e |

k ,m=0 k'

Again, using the generalized binomial theorem for the term
(1+6y)", yields:

o[ A +D=1Ym\(S5y) e
(8.4 = 20V Z(l)[ T e
k,m=0 .
A = ( 1) 51+2 Ak +1)=1)\( m 14 _—S(m+l)y
h -1, z m l o ’

o0
_ 1+1 75(m+l)y
- Z "gk ,m,l y

k ,m,[=0

g (D" A8 Ak +1D) -1 m
LT (e =1k ! m 1)

3. Statistical Properties

where,

This section analyzed key statistical features of the DUS-
EG distribution, such as the quantile function, median,
moments, moment generating function, and conditional
moment.

3.1. The ordinary moments

Moments are essential for understanding a distribution.
This section highlights key moments and their implications:
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Mean (First Moment: i, = 1 ): Reflects the distribution's
central tendency and indicates the average value of the
dataset.

Variance (Second Moment:o? =1, —(1,)" ): Assesses
data dispersion; a higher variance signifies greater
spread from the mean.

Skewness (Third Moment:n, = (=34 11, +214) /o) ):
Measures distribution asymmetry. A positive skew
suggests a longer or fatter right tail, while a negative
skew indicates the opposite.

Kurtosis (Fourth Moment:
n, =, — 4 p 1, +6 147 11, —3,u]4)/0‘;1 ): Evaluates the
distribution's peakedness.

High kurtosis signifies heavy tails and a sharp peak,
whereas low kurtosis indicates light tails and a rounded
peak. These moments collectively offer a comprehensive
understanding of a distribution's characteristics, making
them essential in statistical analysis and probability theory.
The n:w moment concerning the origin of the DUS-EG
distribution can be calculated as:

v, (v)=[ v 18, 4) dy

o0
_ n+l+l —6(m+1)y
- Z 191( ,m,l y € dy

k,m,I=0 }[
> g T(y S(m+1)
0 (5(7’)1 +1) )n+l+2
2 C(n+1+2)
= D 2 n=123,.
k=0 (5(m +l))
where, T'(p) = Joy ?Je~*dy denotes the gamma function.

)n +1+1

e’ d S (m +1)y
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Figure 2: The mean, variance, skewness and kurtosis of
DUS-EG Model

Table 1: displays the first four ordinary moments, variance,
skewness, and kurtosis of the DUS-EG distribution at
various parameter choices. As parameters § and A
increase, the first four raw moments and variance rise,
while skewness and kurtosis decrease. Figure 2 depicts
these general patterns.

Table 1: displays the ordinary moments, variance,
skewness, and kurtosis of the DUS-EG model
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2

o A H Hy Hs Hy o, m m,
0.5 0.5 3.36847 19.3715 152.943 1522.57 8.02493 1.47922 6.12422
0.5 1 4.76822 32.0224 274.713 2865.63 9.28654 1.18243 5.14446
0.5 1.5 5.65896 41.7389 378.666 4087.32 9.71501 1.07375 4.86476
0.5 2.5 6.82447 56.5608 553.443 6276.29 9.98739 0.986219 4.67777
0.5 3 7.24751 62.5554 629.397 7275.09 10.0291 0.96515 4.63951
0.5 5 8.44218 81.3101 885.421 10829.7 10.0397 0.926474 4.58091

1 0.5 1.68424 4.84289 19.1179 95.1605 2.00623 1.47922 6.12422

1 1 2.38411 8.00561 34.3391 179.102 2.32163 1.18243 5.14446

1 1.5 2.82948 10.4347 47.3333 255.458 2.42875 1.07375 4.86476

1 2.5 3.41224 14.1402 69.1804 392.268 2.49685 0.986219 4.67777

1 3 3.62375 15.6389 78.6746 454.693 2.50728 0.96515 4.63951

1 5 4.22109 20.3275 110.678 676.853 2.50993 0.926474 4.58091
15 0.5 1.12282 2.15239 5.66457 18.7971 0.891659 1.47922 6.12422
1.5 1 1.58941 3.55805 10.1745 35.3781 1.03184 1.18243 5.14446
15 1.5 1.88632 4.63765 14.0247 50.4608 1.07945 1.07375 4.86476
1.5 2.5 2.27482 6.28454 20.4979 77.4851 1.10971 0.986219 4.67777
15 3 2.41584 6.9506 23.311 89.8159 1.11435 0.96515 4.63951
1.5 5 2.81406 9.03446 32.7934 133.699 1.11552 0.926474 4.58091
2.5 0.5 0.67369 0.774862 1.22355 2.43611 0.320997 1.47922 6.12422
2.5 1 0.95364 1.2809 2.1977 4.585 0.371461 1.18243 5.14446
2.5 1.5 1.13179 1.66956 3.02933 6.53972 0.3886 1.07375 4.86476
2.5 2.5 1.36489 2.26243 4.42754 10.0421 0.399495 0.986219 4.67777
2.5 3 1.44950 2.50222 5.03518 11.6401 0.401165 0.96515 4.63951
2.5 5 1.68844 3.2524 7.08337 17.3274 0.401588 0.926474 4.58091

5 0.5 0.336847 0.193715 0.152943 0.152257 0.080249 1.47922 6.12422

5 1 0.476822 0.320224 0.274713 0.286563 0.092865 1.18243 5.14446

5 1.5 0.565896 0.417389 0.378666 0.408732 0.09715 1.07375 4.86476

5 2.5 0.682447 0.565608 0.553443 0.627629 0.099874 0.986219 4.67777

5 3 0.724751 0.625554 0.629397 0.727509 0.100291 0.96515 4.63951

5 5 0.844218 0.813101 0.885421 1.08297 0.100397 0.926474 4.58091
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3.2. The inverse moments

Assume Y is a non-negative random variable following
the DUS-EG distribution. The nw inverse moment is
expressed as follows:

=j°°y*" t(y;8,4)dy

n!

—n+l+1 —ﬁ(m +1)y d
y

—n+l+1 —5(m+1)y d

»Co

s |
wi [V
0

(l —-n +2)
- k,m,l (5(m+1) )l —-n+2 )
The harmonic mean is a measure of central tendency that is
especially useful for rates or ratios. In contrast to the
arithmetic mean, which sums values and divides by their
count, the harmonic mean takes the reciprocal of each
value. It is calculated using Equation (10) for » =1:

& r(/-1)
= E 9 _—

n=1273,.

I
,Mg“
Va)

k

E

k,m,l=0

3.3. Moment generating function
The moment generating function (mgf) is a valuable tool
in probability theory and statistics as it encapsulates all
moments of a probability distribution. For a random
variable (Y), the mgf is defined as:

0

K(z)=[e 1(v38,2) dy
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I+1 —6(m+1)y
Z ‘9k,m,1 Iy © dy
0

i 9. L(7+2)

L (S +Sm - z)’”’

z<o(m+1).
(11)

k,m

3.4. Incomplete moments

Incomplete moments provide insights into a random variable's
distribution within a specific range, rather than its entire domain,
making them particularly useful for analyzing distribution behavior in
a defined scope. They can be categorized as follows:

e Lower-Incomplete Moment (LIM): This particular term refers to
the moments of a statistical distribution that are computed only up
to a certain defined threshold. The s LIM of random variable that
follows DUS-EG is defined as:

V) =E (V1Y <z)= [y 1038, 2) v
0

V4

l//s (Z ) = z Lgk,m A J.y‘y+l+l e_‘s(’”‘*’l)y dy

k ,m =0 0
> l+s+2 o(m+1)z
Z l9k m,l [+s+2 )
1=0 (5(711 +l))

k,m

a-1

where y(a,z )= J.OZ x 7 exp(—x) dx is the lower incomplete gamma

function.

e Upper-Incomplete Moment (UIM): Upper-Incomplete Moment
(UIM): This measure assesses the moments of a distribution that
begin at a specified threshold. The si UIM of random variable that
follows DUS-EG is defined as:

n()=E (Y Y >z)=TySz<y;5,A)dy ,

z

o0 o0

— z lgk’m’[ jys+l+1 e—é‘(erl)y dy
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2 l+s+2 o(m+1)z
z 19k .l [+s5+2 )
1=0 (5(m +l))

k,m

where y(a,z) = K x“" exp(—x)dx is the upper incomplete gamma

function.

These moments are valuable for risk management and reliability
analysis because they highlight distribution behavior relative to set
criteria.

3.5. Mean deviation

Mean deviation (MD), or mean absolute deviation, measures the
average distance between each data point in a set and the mean. It is
useful for assessing variability: a small mean deviation indicates that
data points are closely clustered around the mean, while a large mean
deviation suggests they are more dispersed. The MD about the mean is
derived as:

MD (1) =E [ |y —#I]=T|y —pl1(y:8. )y

= [lu=y1t(; M)dy+[y 1 1(y;35,4) dy

)7
=247 (8. 4)=2p+2[y 1(y:8. D)y

u
The first UIM can be calculated using the Equation (13) with s =1 as:

2 F(l+3,5(m +1)Z)
n(z)= 9 " g
1 k,;_o T (Bm 1)

Using Equation (5) and (15) into Equation (14), yields:

MD(ﬂ)—el{exp{(l (146 p)e ‘5") }—1}—2u+2 i S F(l(;éjf;;;}})z)
(16)

Similarly, we can obtain the MD about the median ( mo0 ) as:
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MD(mU):EUy —-m t(y;0,4)dy

=]y =m,
0

=—u+2 [ yt(y;8,A)dy =—pu+2m,(m,)

my

L(1+3,6(m+1)m,)
=—u+2 ” n
k ; o (5(m +1))[ ’

3.6. Conditional moments

Conditional moments are key statistical measures that describe a
distribution's characteristics under specified conditions or events. The
DUS-EG distribution's conditional moments are as follows:
E(ye|y >z)=— 2t
1-T(z;0,4)

-1

1-

{GXP{(I_(”gz)e_&)q—l} Zw: p T(l+s+2,6(m+1)z)
e-1 km1=0 o ( (m +1))I+Y+2

(18)
Conditional moments hold significant importance in the fields of
finance, economics, and machine learning, as they facilitate a
comprehensive analysis of a variable's behavior under designated
conditions.
3.7. The mean residual life

The mean residual life (MRL) is a fundamental concept in
probability theory and statistics, especially within the domains of
survival analysis and reliability engineering. It quantifies the expected
remaining lifespan of an entity that has already endured up to a
designated point in time. The MRL of the DUS-EG distribution is
determined as:

P [y irio Ay ¢ 2 >0

1-T(z;6,2) *
:”."_\z
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__mE)
1-T(z;0,4)
Inserting Equations (5) and (15) into Equation (19) results in:
F(l +3,0(m +1)z )

{exp{(l—(l+5z)e5‘")1—l} 71 i o N

e-1 k70 (8(m +1))

plz)=|1-

(20)
The MRL function provides vital insights into a component or
system's expected future performance, making it a valuable tool for
preventive maintenance and risk assessment.

3.8. The mean inactivity time

Mean Inactivity Time (MIT) is a concept in reliability theory and
survival analysis, akin to mean residual life, but it specifically
measures the duration a system or component remains inactive or fails
before resuming operation. The MIT of the DUS-EG distribution is
derived as:

l 4
=z—— [ yt(:8,)dy ; z>0
o(z)=z T(Z;M)ly (v;6,)dy ; z
. v, (z)
T(z;5,2)

The first LIM can be calculated applying the Equation (12) for s =1
as:

2 }/(l+3,5(m +l)z)
z)= 4
w,(z) k,%_o e m 1 (5(’” +1))1+3

Applying Equations (5) and (22) into Equation (21) produces:
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Fxp[ﬁ-(l+5z)e”ZY}-4} ji , y(l+34ﬂn1+DZ).

e-1 k=0 (5(}11 -I-l))l+3

(23)

The MIT plays a critical role in understanding system downtime and
developing maintenance schedules, providing significant insights into
projected outages and improving operational efficiency for systems
with intermittent activity.

Figure 3: Illustrates how changes in distribution parameters affect
MRL and MIT. The left panel reveals a notable decrease in MRL,
while the right panel indicates a significant increase in MIT.

1.0 1.0
6=3A=05
e 0=05A=1 = §=3A=15
L 0=35A1=25 | [ ' 6=254=05
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Figure 3: shows the MRL (a) and MIT (b) of the DUS-EG model

Table 2: shows the MRL and MIT of the DUS-EG distribution for
various parameter settings. As the parameter values rise the MRL
increases and the MIT goes down.

Table 2: The MRL and MIT functions of the TIIHLA distribution
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57T A7 MRL?T MiT |
0.5 3.22613 0.25020

1 433872 0.17282

1.5 5.17231 0.13128

05 2 5.81342 0.10571
2.5 6.32490 0.08846

3 6.74758 0.07606

0.5 1.55192 0.25154

1 2.00397 0.17788

1.5 2.36955 0.13733

! 2 2.66872 0.11158
2.5 2.91652 0.09389

3 3.12512 0.08102

0.5 0.99954 0.25386

1 1.24686 0.18239

1.5 1.45597 0.14297

= 2 1.63478 0.11741
2.5 1.78866 0.09949

3 1.92194 0.08626

3.9. The Rényi entropy

Rényi entropy provides a more flexible framework for assessing
uncertainty and information content in diverse scenarios. Its versatility
makes it valuable in fields like physics, information theory, and
machine learning. The Rényi entropy of a random variable Y follows
the DUS-EG distribution is given by:

lglog{jt‘g(y;é,l) dy} :9>0, 91
B 0

R(9)=1

The term ¢°(y;5,4) can be derived as:

7 N




t'(v38,4) = [W] {(1—(l+§y )e )Q(H) exp[&(l—(l+§y)e-<>‘y )‘}}’

applying an exponential series: exp Zw [k !, yields:

k=0

A8y e = 9k o \Ak+9)-8
fg(y;5,ﬂ,):|:%:| Zkl(l (1+5y) JY) ,

k=1
using the generalized binomial theorem, we have:

A8ty e Ak +9)-9 .
£(y30,4) = { - } >y k,[ ](My) e
ke ,m=0
i 7z' 1+9 75(m+9)y
k ,m =0

where,

219 5129 1,9 090y I Mk +H -9\ m
7’ = Y (-1 —[ .
. (e-1) k! m I

The integral of Equation (24) is derived as:

[e'e]

J‘t (v;8,2) dy = Z 7[ J‘y1+3 —b(m+9)ydy

k ,m =0 0

S g r@+1+1
= Z 7 e+
ke m 1=0 ((19+m)5)
Substituting by Equation (25) in the Rényi entropy formula:
RO =—log| 3 »* LEHED T.9.0 921
1-9 komi=o " ((8+m)5)
4. Parameter Estimation

The Maximum Likelihood Estimation (MLE) technique is commonly
recognized as one of the most reliable methods for parameter
estimation. The objective of MLE is to identify the parameter values
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that maximize the likelihood function, which assesses how well the
model describes the observed data. MLE generally seeks the
parameter configuration that maximizes the probability of the

observed data. Let y,,v,,..,y, be random samples of size
n selected from the DUS-EG distribution with density function given

in Equation (6). Therefore, the log-likelihood function of the proposed
model states as:

T= Z[ (0y, +]) '5"} +(A- 1210g[ (0y, +1)e }+nlog(ﬂ)—nlog(e—l)

+zlog[5(5y +1)e =5 |

Differentlatmg Eq. (26) with regard to parameters o andA
respectively, allows one to derive the likelihood equations for the
desired model as:

hadpyy 5)/ +1) _y e—&y,- \ 2(1_ A
(A )z "oy e +3 8y 1=y, +De™ ) e

i=l

+i 26y, e =8y, (Oy, +1)e™ —e™® +(5y, +1)e
Sy, +1)e " —5e '

(27)

i=l

n

a_f% 12[1 Sy, +1)e ]1og[1 Sy +1)e ]+Zlog[ Gy, +De™ ]

(28)
The MLEs of parameters 6 and A can be obtained by equating the
system of nonlinear equations (27-28) to zero and solving them
simultaneously. Due to these equations are nonlinear, we need to solve
them analytically using Newton-Raphson method.
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5. Monte-Carlo Simulation

Monte Carlo simulation is a computational technique that employs
random sampling to tackle complex mathematical problems. It
generates random data points by periodically sampling a probability
distribution, which are then used to estimate the distribution's
parameters. This methodology is particularly advantageous in
scenarios where deriving an accurate analytical solution is difficult or
unfeasible. It is frequently utilized in finance, scientific research, and
various other disciplines to evaluate intricate systems or models. In the
present study, we intend to employ this approach to the DUS-EG
distribution and leverage maximum likelihood estimation (MLE) to
derive parameter estimates.
Main steps of a simulation study:
e The simulation examination included 1000 iterations, with
Equation (5) generating sample sizes of 100, 150, 200, 300,

400, and 500.
e The simulated anticipates are based on actual parameter
values:
Case I: (0=0.5,1=0.5), Case II: (06=1,0=2) and Case III:

(6=3,1=4).

e To evaluate the accuracy of MLE at a 95% confidence level,
we use the mean of parameter estimates, mean squared error
(MSE), average bias, coverage probability (CP), and average
length of the confidence interval (ACI).

e The following formulas can be used to calculate the average
MSE:s and biases of the simulated estimates:

1 1000 1000

where, y =(5, 1).

A

and L _‘//)

(!/71- _‘//)2

In Tables (3-8), the MLEs attain optimal dimensionality as the sample
size n increases, while the mean squared errors (MSEs) and bias terms
converge towards zero, as anticipated. Furthermore, the CP closely
approximate the target assurance level of 95%. As the sample size n
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expands, the approximate confidence intervals (ACI) for each
parameter exhibit a tendency to stabilize.

Table 3: The simluation rsults of & Case [

A

5=05 F) Bias MSE 95% CP | 95% ACI
=25 0.54225 | 0.04225 | 0.01626 0.933 0.47190
1 =50 0.52138 | 0.02138 | 0.00715 0.937 0.32077
=75 0.51483 | 0.01483 | 0.00460 0.943 0.25949
=100 0.51155 | 0.01155 | 0.00321 0.945 0.21749
n =125 0.50936 | 0.00936 | 0.00257 0.947 0.19556
=150 0.50766 | 0.00766 | 0.00201 0.947 0.17339
n=200 | 050595 | 0.00595 | 0.00153 0.947 0.15163
Table 4: The simluation rsults of 4 Case |
1=05 y) Bias MSE 95% CP | 95% ACI
n=25 0.57629 | 0.07629 | 0.04214 0.925 0.74747
n =50 0.53860 | 0.03859 | 0.01497 0.944 0.45543
n=75 0.52821 0.02821 | 0.00982 0.939 0.37251
n =100 0.52106 | 0.02106 | 0.00680 0.938 0.31273
n =125 0.51675 | 0.01675 | 0.00507 0.946 0.27136
n =150 0.51459 | 0.01459 | 0.00424 0.948 0.24890
n=200 | 0.51100 | 0.01100 | 0.00311 0.942 0.21444
Table 5: The simluation rsults of 4 Case II

o=1 ) Bias MSE 95% CP | 95% ACI
n =25 1.05982 | 0.05982 | 0.03527 0.932 0.69818
n =50 1.03107 | 0.03107 | 0.01653 0.936 0.48933
n=175 1.02107 | 0.02107 | 0.01080 0.946 0.39921
n =100 1.01644 | 0.01644 | 0.00757 0.947 0.33510
n =125 1.01289 | 0.01289 | 0.00609 0.945 0.30180
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n =150 1.01030 0.01030 0.00470 0.948 0.26594
n =200 1.00783 0.00783 0.00361 0.946 0.23360
Table 6: The simluation rsults of & Case II
A=2 1 Bias MSE 95% CP | 95 % ACI
n=25 2.48055 0.48055 1.37179 0912 4.18908
n =50 2.23703 0.23703 0.48201 0.931 2.55930
n=75 2.16532 0.16532 0.30248 0.938 2.05724
n =100 2.12137 0.12137 0.19829 0.94 1.68034
n=125 2.09378 0.09378 0.14685 0.942 1.45722
n =150 2.07807 0.07807 0.11750 0.942 1.30904
n =200 2.05740 0.05740 0.08566 0.948 1.12561
Table 7: The simluation rsults of & Case III
o=3 S Bias MSE 95% CP | 95 % ACI
n=25 3.07847 0.07847 0.15450 0.946 1.51056
n =50 3.05734 0.05734 0.09205 0.946 1.16847
n=75 3.04375 0.04375 0.06715 0.948 1.00176
n =100 3.03995 0.03995 0.05205 0.949 0.88094
n=125 3.03222 0.03222 0.04307 0.95 0.80410
n =150 3.02713 0.02713 0.03429 0.95 0.71840
n =200 3.02111 0.02111 0.02690 0.946 0.63791
Table 8: The simluation rsults of 4 Case III
A=4 y) Bias MSE 95% CP | 95 % ACI
n=25 4.49569 0.49569 1.91461 0.985 5.06662
n =50 4.37867 0.37867 1.33373 0.999 4.277895
n=75 4.30344 0.30344 1.05154 0.956 3.84164
n =100 4.25975 0.25975 0.85924 0915 3.48981
n=125 4.20802 0.20803 0.67496 0.922 3.11711
n =150 4.18134 0.18134 0.57672 0.924 2.89224
n =200 4.13688 0.13688 0.43240 0.941 2.52247
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6. Application to aircraft windshields

The complexity of aircraft windshields is impressive. Their design
allows them to endure extreme conditions, from high-altitude
pressures to severe weather. A heated layer beneath the outer skin is
essential for preventing ice formation, a significant flight hazard.
Although damage to the outer ply or heating system failure may
necessitate replacement, such issues do not compromise the aircraft's
structural integrity. Aviation's stringent standards ensure the safety
and reliability of these components. We analyze a real dataset on the
service times of 63 aircraft windshields provided in Murthy et al.
(2004).

To illustrate the DUS-EG distribution's flexibility, the goodness of fit
for the proposed model is compared with several lifetime
distributions: exponentiated gamma (EG), gamma (Gamma),
exponentiated exponential (EE) by Gupta and Kundu (2001), weighted
exponential (WE) by Gupta and Kundu (2009), and the DUS-
exponential (DUS-E).

We employ the MLE method to estimate the unknown parameters of
each distribution, and subsequently apply these estimates to calculate
the following information criterion (IC): Akaike IC (AIC), Bayesian
IC (BIC), and Hannan-Quinn IC (HQIC). In general, the optimal
model for fitting the data is the one with the lowest metric values.

We compared the models using three additional criteria:

- Kolmogorov-Smirnov test statistics (K-S): a lower value is better.
- Anderson-Darling (A*) and the Cramer-von Mises (W*) goodness
of-fit statistics; a lower value is better for these measures.

- Negative log-likelihood; a lower value is desirable.

Tables 9: provides the maximum likelihood estimates (MLEs) and
distributions for each dataset, with standard errors (SE) in parenthesis.
The goodness of fit criteria for all fitted models are listed in Tables
(10 &11). Figures (4 & 5) demonstrate the fitting of the aircraft
windshields dataset to the DUS-EG model using estimated density,
survival function and the QQ-plots for all fitted models. These
graphics align with the numerical results, indicating a superior fit of
the suggested model compared to other comparable distributions.
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Table 9: The MLE and their SEs are in parentheses for the aircraft
windshields data

Model Estimates
DUS-EG(6,1) $5=0.810769 A=1.04221
(0.155137) (0.123583)
EG(6,4) 5=0.919072 4=0.919244
(0.16034) (0.117505)
Gamma(a, j3) 4 =1.90846 =1.09265
(0.314839) (0.205964)
EE(7.7) 71 =0.692049 7 =1.89776
(0.094202) (0.340169)
WE(6,7) 6=0.000612 £=0.958815
(0.68597) (0.339858)
DUS-E(5) 5=0.617824 -
(0.066547) -

Table 10: The Log, AIC, BIC, and HQIC metrics for the aircraft
windshields data

Log AIC BIC HQIC

DUS-EG  -101.045 206.289 210.375 207.775
EG  -102.755 209.509 213.796 211.195
Gamma  -102.833 209.665 213.951 211.351
EE  -103.547 211.093 215.38 212.779

WE  -102.873 209.747 214.033 211.433
DUS-E  -105.067 212.134 214.278 212.977

Table 11: The A*, W*, KS and p-value of K-S statistics for the
aircraft windshields data
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Model A* W# K-S P-Value
DUS-EG 0.829733 0.146264 0.125168 0.27704
EG 1.20763 0.215276 0.14066 0.165243
Gamma 1.17725 0.202315 0.138652 0.177317
EE 1.33158 0.234749 0.143753 0.147928
WE 1.13274 0.18327 0.135293 0.199056
DUS-E 2.56559 0.51421 0.169901 0.052653
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Figures 4 (I): The estimated density for the aircraft windshields data
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Figures 4 (II): The estimated survival function for the aircraft
windshields data
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Figures 5: The Q-Q plots for the aircraft windshields data

7. Conclusions and remarks

This study utilizes the DUS transformation on the exponentiated
gamma distribution to evaluate the DUS-EG distribution, a novel
lifetime model. The principal statistical characteristics of the DUS-EG
distribution, encompassing ordinary moments, inverse moments, the
moment generating function, incomplete moments, mean deviation,
conditional moments, mean residual life, mean inactivity time, and
Rényi entropy, are derived. We use maximum likelihood estimation to




estimate the two parameters of the DUS-EG distribution and perform
a thorough numerical evaluation of its effectiveness. By analyzing
aircraft windshield data, we assess the model's applicability and
significance. Furthermore, we compare the DUS-EG distribution with
several established statistical distributions, including: exponentiated
gamma, exponentiated exponential, gamma, weighted exponential
models, employing multiple metrics. The numerical and graphical
analysis demonstrates that the DUS-EG model provides the best fit for
the data in comparison to the competing models.

On the DUS-exponentiated gamma distribution
with application
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