10.21608/avmj.2025.375025.1659

Assiut University web-site: www.aun.edu.eg

AMELIORATION OF PHYSICO-CHEMICAL FEATURES AND ANTIBACTERIAL ACTIVITY OF BALADY YOGHURT USING PECTIN

EMAM, ZEINAB AND HENETER ASMAA MOHAMMED

Certified Food Hygiene Department, Animal Health Research Institute (AHRI), Assiut Lab, Agriculture Research Center (ARC), Egypt.

Received: 28 April 2025; Accepted: 8 July 2025

ABSTRACT

This study was designed to evaluate the antibacterial effect of pectin against Enteropathogenic Echerichia coli (EPEC) and Listeria monocytogenes (L. monocytogenes) in Balady yoghurt as a food model. Sensory properties including taste, odor, color and texture were evaluated. Syneresis, viscosity, adhesiveness and cohesiveness were applied as rheological evaluation. In addition, physico-chemical properties such as pH value, titratable acidity, moisture and total solids were measured. Pectin incorporated in yoghurt significantly reduced EPEC and L. monocytogenes populations. Pectin at the concentration of 0.6% and 1.2% was accompanied by a significant decrease in the average count of EPEC with a reduction in percentage varied from 94.2 to 97.7% and 97.3 to 99.3%, respectively, during the last four days of the experiment. Against L. monocytogenes, pectin was bactericidal at a concentration of 1.2% on the 4th day of the experiment. Moreover, pectin at the rate of 0.6% and 1.2% significantly improved color, odor and texture of the yoghurt, while the taste was significantly improved at the concentration 0.6%. The best overall acceptability (OAA) of yoghurt was obtained at 0.6% pectin, according to the panelist review. Pectin was found to a significant decrease in syneresis; and increase viscosity, adhesiveness and cohesiveness of the yoghurt. On the physico-chemical properties, pectin did not affect pH and titratable acidity; while it decreased the moisture and increased total solids of the yoghurt. In conclusion, our present study shows that pectin has the potential to control EPEC and L. monocytogenes in Balady yoghurt with beneficial effects on its sensorial, rheological and physico-chemical properties.

Keywords: Balady yoghurt, pectin, physico-chemical, reheological, antibacterial activity, Enteropathogenic *Echerichia coli*, *Listeria monocytogenes*.

INTRODUCTION

Food is a vital resource for human growth and health since it provides the body with the nutrients it needs (Ali *et al.*,

Corresponding author: Emam, Zeinab
E-mail address: zeinabemam@hotmail.com
Present address: Certified Food Hygiene
Department, Animal Health Research Institute
(AHRI), Assiut Lab, Agriculture Research Center
(ARC), Egypt.

2023). To preserve the highest possible level of food quality, the food industry has strictly embraced a number of new and standard strategies (Monteiro *et al.*, 2018). Dairy products have special chemical characteristics among a variety of food products. The texture, flavor, odor and nutritional value are all significantly influenced by these characteristics (deMan *et al.*, 2018).

Yoghurt is a popular dairy product because of its delicious flavor and texture, as well as its nutritional value and bioactive ingredients (Tiwari et al., 2021). In terms manufacturing and consumption, yoghurt, which is recognized as a functional food, has attracted a lot of worldwide. attention **Probiotics** functional foods have been increasingly combined in the dairy business in recent years, particularly with the creation of probiotic functional yoghurts (Munteanu-Ichim et al., 2024). The main component of yoghurt, milk, which is derived from animals like cows, goats, and sheep, has a significant impact on the product's inherent quality. Therefore, maintaining yoghurt's microbiological safety is crucial to its quality, since it includes controlling spoiling to preserve freshness, as well as avoiding the presence of dangerous organisms (Wang et al., 2025).

During the incubation and packaging of yoghurt, there are risks from airborne pathogens that cannot be easily managed at this point. Additionally, the materials used for packaging, along with workers and tools may also introduce microbial contam-ination. Pathogenic Escherichia coli (E. coli) that belongs to a group of facultative anaerobic bacteria may lead to illness in healthy people due to specific harmful factors, such as adhesins, invasins, toxins and capsules (Sora et al., 2021). Enterohemorrhagic E. coli (EHEC) is particularly resilient against acid and can thrive in yoghurt's low acidity (Yun et al., 2021). E. coli can endure the fermentation process and remains present for a long time during yoghurt storage (Curtrim et al., 2016). Listeria monocytogenes monocytogenes) is opportunistic an pathogen that grows with or without oxygen and thrives at temperatures between 0 and 45 °C. It can survive in environments with a pH range of 4 to 9.6 (Ryser, 2011) and can remain alive in yoghurt kept at cold storage temperature (Yang and Yoon, 2022). Notably, L. monocytogenes poses a serious risk to

vulnerable groups, such as immunocompromised people, infants, elderly individuals and pregnant women, as it is able to cross the blood brain and the fetoplacental barriers (Radoshevich and Cossart, 2018).

Today, buyers are increasingly focused on the quality of the items they purchase. To demand, this producers continually enhancing their product lines by adding various ingredients to yoghurts such as pieces of fruits and vegetables, nuts, dried fruits, herbs and grains (Farag et al., 2021). As the addition of dietary fiber to food products could yield nutritional advantages and improve their functional properties, the dairy industry is increasingly emphasizing the use of diverse additives known for their health benefits (Kaczmarczyk et al., 2012).

Numerous researchers have sought to plant-based additives discover positively impact human health. These additives frequently have a considerable influence on the physical, chemical and microbiological traits, as well as the texture and sensory qualities of yoghurt. The reviewed studies indicate that voghurts enhanced with additives hold greater value, particularly regarding their health-promoting components, such as fiber, phenolic compounds, vitamins, fatty acids and minerals (Wajs et al., 2023).

Pectin, a natural substance found in fruits and vegetables, is recognized as a safe food additive (E440) without a specified maximum daily intake (Khedmat *et al.*, 2020). Additionally, pectin has recently been referred to as "a universal medicine" due to its wide-ranging physiological effects (Zaitseva *et al.*, 2020). Research has also highlighted the antibacterial properties of new citrus pectins (Ciriminna *et al.*, 2021). Of particular note, adding pectin to a semi-solid food like yoghurt causes changes in rheological, sensory and tribological characteristics that depend on the size and concentration of the fiber

(Kieserling *et al.*, 2019). Thus, the current research focused on examining the impact of pectin against EPEC and *L. monocytogenes*, and also evaluating how pectin affects the sensory, rheological and physico-chemical properties of Balady yoghurt.

MATERIALS AND METHODS

1- Strains used

Enteropathogenic *E. coli* (ATCC®25922) and *L. monocytogenes* (ATCC®7644) reference strains were obtained from Animal Health Research Institute, Cairo, Egypt.

2- Yoghurt manufacture

Raw milk was homogenized and boiled for 15 min. Then, it suddenly cooled to 45°C and incubated with 2% yoghurt culture (Sfakianakis and Tzia, 2014).

The prepared boiled milk was subdivided into 9 parts (before the incubation) for the following additions:

- 1st part (without additives) as a negative control.
- 2nd part for addition of EPEC (10⁶/ml) as a positive control.
- 3^{rd} part for addition of *L. monocytogenes* (10⁶/ml) as a positive control.
- 4th part for addition of pectin (0.6%) plus EPEC (10⁶/ml).
- 5th part for addition of pectin (1.2%) plus EPEC (10⁶/ml).
- 6^{th} part for addition of pectin (0.6%) plus L. monocytogenes (10⁶/ml).
- 7^{th} part for addition of pectin (1.2%) plus L. monocytogenes (10⁶/ml).
- 8th part for addition of pectin (0.6%) to study sensory, rheological and physicochemical features.
- 9th part for addition of pectin (1.2%) to study sensory, rheological and physicochemical features.

All groups were incubated at 37°C until curdling (3-4 h) and then cooled and preserved at 4 °C. Sensory, rheological, physicochemical features and microbiological analysis were carried out daily for 7 days. Each experimental parameter was represented in triplicate.

3- Microbiological analysis

EMB agar media (OXOID) was used for enumeration of EPEC and Oxford agar media (Hi media) for *L. monocytogenes*.

Microbiological count data are expressed as colony forming units (cfu)/g of yoghurt.

4- Sensory evaluation

Samples were scored by a regular score panel, depending on a 9-point's hedonic scale (from 1 as dislike extremely to 9 as like extremely). The sensory properties were evaluated depending on 4 main attributes, such as color, taste, odor and texture. Furthermore, the results of the four main attributes were expressed in the overall acceptability (OAA). Sensory evaluation was performed by thirty researchers at Assiut Animal Health Research Institute.

5- Rheological examination5.1. Syneresis

Whey separation of yoghurt samples was estimated using the centrifugal method described by Parvarei *et al.* (2021), where 10 g of yoghurt sample was centrifuged at $260 \times \text{ g}$ for 10 min at 4°C . The quantity of whey separated at the top of the coagulum inside centrifuge tubes was recorded. The weight of separated whey was measured and the percentage of syneresis determined following the formula: Syneresis (%) = (whey separated/10) \times 100.

5.2. Viscosity, cohesiveness and adhesiveness

They were measured by 9-points hedonic scale (from 1 as dislike extremely to 9 as like extremely) with the help of thirty researchers from Animal Health Research

Institute, Assiut branch. They assessed viscosity by stirring the yoghurt with a spoon to gauge resistance and evaluating the thickness perceived during tasting.

Panelists assessed yoghurt cohesiveness by focusing on texture and mouth feel. Cohesiveness refers to the degree to which together yoghurt holds the consumption. Yoghurt adhesiveness was measured by using a spoon to scoop the yoghurt noting the force required to separate the yoghurt from the spoon. More adhesive yoghurt will cling to the spoon, requiring greater effort to detach. During tasting, panelists assessed how the yoghurt adheres to oral surfaces, such as tongue and palate.

6- Physical examination pH value

pH value was examined according to AOAC (2005), using a pH meter (AD11, Adwa, waterproof pH-Temp pocket tester with replaceable probe, Romania).

7- Chemical examination

7.1. Titratable acidity (TA) (AOAC, 2005)

A yoghurt sample (10 g) was added to 20 ml distilled water and mixed thoroughly, and then 1 ml of phenolphthalein (1% alcoholic solution) indicator was added to the mixture. The content was titrated against standard sodium hydroxide solution N/10 until faint pink color persisted for about 10-15 sec for complete neutralization. The total acidity was expressed as lactic acid% (normal value 0.7-0.8%).

Acidity %= 0.009 × volume of N/10 NaOH (ml) × 100/ Weight of sample (g), where 0.009 is equivalent to lactic acid normality.

7.2. Moisture content (AOAC, 2000)

Moisture % was estimated by drying in an oven at 100° C until constant weight was recorded. Moisture%= (W2 - W3)/(W2 -

W1) X 100, Where: W1 = weight of empty dish, W2 = weight of dish with the sample before drying, and W3 = weight of dish with the sample after drying.

7.3. Total solids%

Total solids = 100 - moisture %.

Statistical analysis

Data were obtained from three replicates and expressed as mean±SEM. They were statistically analyzed by one way ANOVA followed by Tukey post-hoc test for multiple comparisons. A SPSS program (version 16.0) was used for analysis. P<0.05 was considered significant.

RESULTS

Table 1: Effect of pectin on the survival rate of EPEC in the examined samples of yoghurt (count by log₁₀ cfu/g).

Day	Control	Pectin 0.6%	Pectin 1.2%
1	5.8±4.6	5.7±4	5.7±4
2	5.8±4.5	4.8±3.3	4.4±3.4
3	5.7±4.5	4.5±3.3	4.2±2.7
4	5.7±4.4	4.3±2.7	3.9±2.2
5	4.9±3.7	3.4±1.7	3.0±1.7
6	4.8±3.2	3.3±1.8	2.8±1.3
7	4.6±3.2	3.0±1.4	2.4±1.6

Table 2: Effect of pectin on the survival of L. *monocytogense* in the examined samples of yoghurt (count by log_{10} cfu/g).

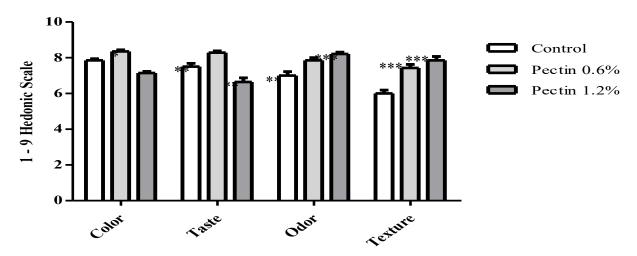

Day	Control	Pectin	Pectin
		0.6%	1.2%
1	6.8±5.0	5.7±4.0	5.4±4.4
2	6.7±5.0	3.6±2.7	2.8±1.2
3	5.5±3.7	3.5±2.4	2.4±1.7
4	5.4±4.0	3.3±2.0	<2
5	4.9±4.0	2.6±1.4	<2
6	4.6±4.0	2.4±1.7	<2
7	4.4±4.0	2.0±1.7	<2

Table 3: Reduction % of EPEC and L. monocytogenes count in Balady yoghurt samples after treatment with 0.6% and 1.2% pectin.

Day	EP	EC	L. monocytogenes		
	0.6 %	1.2%	0.6 %	1.2%	
1	20.2	23.1	91.6	96	
2	89.2	95.3	98.8	99.9	
3	94.2	97.3	99	100	
4	96.3	98.3	99.3	100	
5	96.5	98.6	99.4	100	
6	97.2	98.6	99.4	100	
7	97.7	99.3	99.6	100	

Table 4: Effect of pectin on sensory properties of yoghurt.

Day	Color				Taste			Odor			texture		
	Plai n	Pectin 0.6%	Pectin 1.2%	Plain	Pectin 0.6%	Pectin 1.2%	Plain	Pectin 0.6%	Pectin 1.2%	Plain	Pectin 0.6%	Pectin 1.2%	
1	7.5	8	7	7.5	8	7	7	8	8	6	7	7	
2	7.5	8	7	8	8.5	7	7	8	8	6	7	7.5	
3	8	8.5	7	8	8.5	7.5	7	8	8.5	6.5	7	8	
4	8	8.5	7	8	8.5	7	8	8	8.5	6.5	8	8.5	
5	8	8.5	7.5	7	8.5	6	7	8	8.5	6	8	8.5	
6	8	8.5	7.5	7	8	6	7	8	8	6	8	8	
7	8	8.5	7	7	8	6	6	7	8	5	7	7.5	

Figure 1: Sensory properties of Balady yoghurt inoculated with 0.6% and 1.2% pectin during 7 days of cold storage at 4 °C. Sensorial attributes scored by 9-point hedonic scale resulting from tasting panelists. Addition of pectin 0.6% has a significant effect on taste, odor and texture of Balady yoghurt with no significance on color. Pectin 1.2% has a significant effect on taste, odor and texture.

Table 5: The overall acceptability scores of yoghurt during 7 days of cold storage by 9-point hedonic scale resulting from tasting panelists.

Day	Plain	Pectin 0.6%	Pectin 1.2%
1	7	8	7.5
2	7	8	7.5
3	7	8	8
4	7.5	8.5	8
5	7	8.5	8
6	7	8	7
7	6.5	7.5	7

Table 6: Effect of pectin on syneresis of yoghurt (values are mean $\pm SE$).

Day	Plain yoghurt samples	Pectin 0.6%	Pectin 1.2%
1	35±1.1	20±0.5	9±0.2
2	36±0.5	20±0.5	9±0.5
3	36±0.5	23±1.0	9±0.5
4	43±1.1	25±0.5	10±0.2
5	43±0.5	25±0.5	10±0.5
6	45±1.0	25±0.5	10±0.2
7	45±1.0	26±0.5	10±0.2

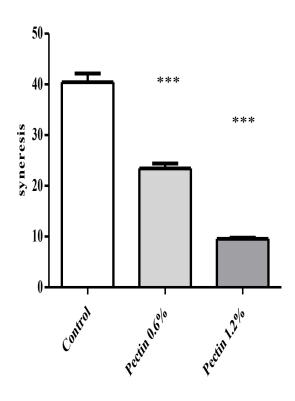
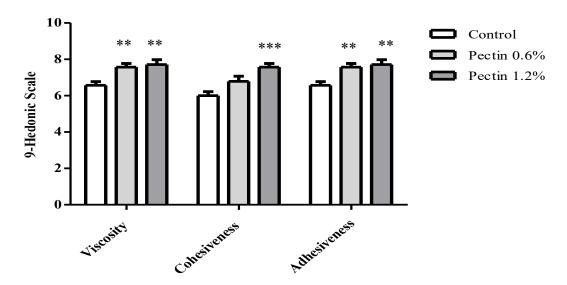



Figure 2: Effect of 0.6% and 1.2% pectin on syneresis of Balady yoghurt during 7 days of cold storage. Addition of pectin with both 0.6% and 1.2% has a significant effect on yoghurt syneresis with P value <0.001.

Table 7: Effect of pectin on apparent viscosity, cohesiveness and adhesiveness.

Day	Viscosity			C	Cohesiveness			Adhesiveness		
	Plain	Pectin 0.6%	Pectin 1.2%	Plain	Pectin 0.6%	Pectin 1.2%	Plain	Pectin 0.6%	Pectin 1.2%	
1	6	7	6	6	6	5	6	7.5	7.5	
2	6	7	6	5	6	5	6	7.5	7.5	
3	7	7	6	6	6	5	6	7.5	7.5	
4	8	8	7	6	7	6	7	8	8	
5	7	8.5	8	6	7.5	7	7.5	8	8	
6	7	8.5	8	6	7.5	7	7	8	8	
7	7	8.5	8	7	7.5	7	7	8	8	

Figure 3: Effect of 0.6% and 1.2% pectin on apparent viscosity, cohesiveness and adhesiveness during 7 days of cold storage of Balady yoghurt. Addition of 0.6% pectin has a significant effect on viscosity and adhesiveness with P value < 0.001. Addition of 1.2% pectin has a significant effect on the three parameters (P<0.001).

Table 8: Effect of pectin on yoghurt pH and titratable acidity % (values are mean ±SE).

		pН		TA				
Day -	Plain	Pectin 0.6%	Pectin 1.2%	Plain	Pectin 0.6%	Pectin 1.2%		
1	4.7±0.12	4.7±0.21	5±0.17	0.75 ± 0.02	0.76 ± 0.02	0.78 ± 0.01		
2	4.9±0.06	4.7±0.15	5±0.15	0.77 ± 0.02	0.76 ± 0.02	0.78 ± 0.01		
3	4.8±0.12	4.8±0.13	5±0.12	0.79 ± 0.03	0.75 ± 0.02	0.85 ± 0.03		
4	4.6±0.06	4.6±0.10	4.7±0.12	0.85 ± 0.02	0.93 ± 0.07	0.97 ± 0.07		
5	4.3±0.06	4.4±0.06	4.5±0.12	1.14±0.09	1.17±0.06	1.19±0.02		
6	4.4±0.06	4.5±0.06	4.5±0.17	1.17±0.04	1.19±0.07	1.19±0.02		
7	4.2±0.06	4.4±0.12	4.5±0.15	1.17±0.06	1.19±0.06	1.19±0.04		

Table 9: Effect of pectin on moisture content and total solids% (values are mean $\pm SE$).

		Moisture %	/ ₀		Total solids %	
Day	Plain	Pectin 0.6%	Pectin 1.2%	Plain	Pectin 0.6%	Pectin 1.2%
1	85±0.4	84±0.4	82.5±0.2	15±0.2	16±0.1	17.5±0.2
2	84.5±0.6	83.8±0.3	82.3±0.9	15.5±0.2	16.2±0.2	17.7±0.1
3	84.1±0.8	83.5±1	82.3±0.1	15.9±0.3	16.5±0.2	17.7±0.1
4	84 ± 0.4	83±0.9	82±0.2	16±0.4	17±0.4	18±0.2
5	83.6±0.7	82.7±0.3	82±0.7	16.4±0.4	17.3±0.4	18±0.2
6	83.5±1	82.5±0.8	82±0.6	16.5±0.4	17.5±0.2	18±0.1
7	83.4±0.9	82.3±0.7	82±0.8	16.6±0.2	17.7±0.2	18±0.1

DISCUSSION

In order to produce yoghurt with improved quality attributes, pectin was applied at a concentration of 0.6% based on a previous study (Arioui *et al.*, 2016), and the concentration was subsequently doubled to evaluate its impact on yoghurt quality.

Antibacterial activity

In the current study, pectin was examined as an edible supplement in Balady yoghurt. In relation to the microbiological analysis, Tables 1, 2 and 3 gave a picture of the pectin's impact on EPEC and monocytogenes. The data in Table 3 showed that adding pectin at a dose of 0.6% to yoghurt containing **EPEC** Balady significantly decreased (P < 0.001)the bacterial count by 20.20% compared to control at the first day of storage. While, at the dose of 1.2%, the reduction increased to dav. at the same refrigeration storage for 48 h, the effect of pectin (0.6%) showed a raise in the activity to 89.20% (Table 3). The increased antibacterial activity was observed by the end of 72 h reaching 96.30% and still significant. Then, the reduction increased to reach 97.70% by the end of the seventh day. On the other hand, at 1.2% pectin, the effect was significant and nearly steady, where the reduction was within the range of 95.30-99.30% (Table 3). Nearly similar results were obtained by Presentato et al. (2020) as they reported a powerful in vitro activity of lemon pectin against E. coli. According to Cirimnna et al. (2024), lemon pectin may have an antibacterial impact on E. coli because it induces an oxidative stress inside the bacterium by producing reactive oxygen species (ROS) at the bacterial surface, which damages and kills the bacteria. In contrast, Boudouaia et al. (2023) found a different finding, demonstrating that pectin had no antibacterial impact on E. coli. This discrepancy may result from a variety of reasons, including the molecular weight, ambient conditions and the degree of esterification of the pectin.

Against L. monocytogenes, pectin also emerged immediate action after addition (zero h). The bacterial count significantly decreased at a concentration of 0.6%, reaching 91.60%, then grew to 96% at a doubling concentration (Table 3). During refrigeration storage after 24 h, the reduction increased to 98.80% for 0.6% concentration and 99.90% by double concentration. At the end of 96 h of storage, the achieved reductions were 99.40 and 100% for 0.6% and 1.2% doses, respectively. In the same context, Huang et al. (2021) found that pectin added to packing film helped eradicate L. monocytogenes from fresh food. In a related study, Presentato et al. (2020) found that pectin extracted from lemon peel exhibits strong antibacterial activity against Staphylococcus aureus, a Gram-positive bacterium that readily contaminates food. According to Gao et al. (2023), the pectin oligosaccharide in seed melon had a strong antibacterial action toward Staphylococcus aureus and E. coli. Of note, pectin's inhibitory effect was primarily caused by the contraction or rupture of cell membranes, which resulted in bacterial cell necrosis or apoptosis.

Sensory analysis

This study also addressed the possible changes in physico-chemical properties and storage stability when yoghurt is enriched by pectin beyond the basic elements. The four main parameters of sensory evaluation (color, taste, odor and texture) were studied in this investigation. As shown in Table (4), the plain and pectin enriched yoghurt samples showed good scores for sensory attributes, especially in 0.6% pectin enriched yoghurt samples. In the present study, panelists revealed sensory significant differences in eating quality between pectintreated and untreated yoghurt (Figure 1). In this context, Arioui et al. (2016) found that a higher rate of pectin incorporation greatly enhanced yoghurt's sensory quality. The improvement of yoghurt taste when adding pectin may be due to the interaction between milk proteins and pectin, that leads to unfolding of protein, which makes hydrophobic groups accessible. According to Mao et al. (2014), these groups offer more locations for attaching volatile chemicals, which can reduce their release into the gas phase and enhance olfactory perception. Julmohammad et al. (2024) examined the effect of two types of pectin which are lowmethoxyl pectin (LMP) and high-methoxyl pectin (HMP) on low fat yoghurt. They concluded that 1% LMP gave the highest sensory evaluation by all panelists. Regarding OAA and according to data summarized in Table (5), yoghurt enriched with 0.6% pectin has the highest score of acceptance according to panelists review. Strikingly, yoghurt samples containing 0.6% pectin were rated significantly higher in OAA, than the plain yoghurt samples with p value < 0.001. Same results were obtained by Arioui et al. (2016), as they found that the best acceptance was obtained by yoghurt samples incorporated with 0.6% pectin.

In the same context, Julmohammad et al. (2024) reported that the highest OAA of yoghurt samples were recorded by 1.0% pectin. While, different results were obtained by Tobil et al. (2020), who observed that the OAA of yoghurt containing 0.6% pectin does not have the lowest rating of neither like nor dislike, while 0.2% pectin yoghurt samples recorded the highest acceptance. The high OAA of yoghurt samples could be due to better texture, enhancement of viscosity, reduction of syneresis, enhancement of taste and better visual appeal. Based on the results obtained, the utilization of pectin in dairy industries would lead to a better fermented milk products, that satisfies consumers and provide health benefits due to its great nutritional contents.

Syneresis

Table (6) showed the syneresis values, in which, the average syneresis value of the plain yoghurt samples was higher than those of pectin enriched yoghurt samples. The syneresis values along days of examination were of a minimum value of $35\pm1.1\%$ and a maximum value of $45\pm1.0\%$ for plain

yoghurt, while the minimum value was 20±0.5% and the maximum value was 26±0.5% for 0.6% pectin enriched voghurt samples. On the other hand, yoghurt enriched with 1.2% pectin showed lower values of syneresis, with a minimum of $9\pm0.2\%$ and a maximum of $10\pm0.2\%$. Interestingly, syneresis was significantly reduced due to the addition of pectin (Figure 2). Similar results were reported by Arioui et al. (2016) who found that the rise in pectin rates in yoghurt is inversely proportional to the whey exudation (P < 0.01). This could be due to pectin's absorption on the surface of milk casein micelles that boosts whey exudation when added to yoghurt, increasing the fermented milk's capacity to hold water (Everett et al., 2005). Related results were obtained by Julmohammad et al. (2024), as they reported that syneresis values decrease increasing pectin content. additional flavoring ingredients that raised the total solids and revealed inadequate whey drainage may be the cause of the variation in syneresis readings. In the same context, the increase in protein content and fiber amount may have caused the decrease in syneresis and increase in water holding capacity (WHC) in yoghurt with pectin added; that is, water separation in yoghurt decreased as a result of protein interactions and fiber (Marand et al., 2020). Pectin from okra improved water-holding capacity and decreased whey exudation when added to yoghurt, which improved customer acceptability (Tobil et al., 2020).

Viscosity evaluation

Regarding viscosity (Table 7), 0.6% pectin enriched yoghurt was more viscous than plain and 1.2% pectin enriched yoghurt along all days of the experiment with p value <0.001. In the same context, Arioui *et al.* (2016) reported that the viscosity of yoghurt added with pectin rose during the fermentation and post-acidification phases. The amount of galacturonic acid and the degree of esterification both raise the viscosity of pectin. Additionally, it is impacted by factors, like pH and the kind

and concentration of salt (Reichembach and Petkowicz, 2021). Particularly in dairy products and dairy analogs, pectin is known to display stabilizing mechanisms, increasing viscosity, establishing effective network structure that can sustain suspended particles without being noticeable in the mouth, and concealing potentially interactive elements in dispersed systems are some methods that can be used to attain stabilizing properties (Phillips and Williams, 2020; Guo et al., 2022; Wusigale et al., 2020). Bio macromolecules stabilizing agents, or stabilizers, can reduce the separation of dispersed or heterogeneous media or stop sedimentation (Guo et al., 2021; Rubinstein and Colby, 2003; Wusigale et al., 2020). Pectin has been shown to increase food's viscosity, which is helpful for producing a thick texture (Natalia and Mikhailo, 2023).

Cohesiveness and adhesiveness

During the post acidification period, the panelists qualified the experimental yoghurt added, with 0.6% of pectin having better values of cohesiveness (Table 7). During the storage period, adhesiveness also increased when yoghurt supplemented with pectin. By concentration 1.2%, pectin had a significant effect on cohesiveness and adhesiveness with P value <0.001. Arioui *et al.* (2016) reported similar outcomes, that adding pectin improved the experimental yoghurt's cohesiveness and adhesiveness.

pH and acidity

The two used concentrations of pectin caused a slightly alkalizing effect to the examined yoghurt compared to control. That effect was non-significant, and the pH values were still within normal values (Table 8). The pH values of the three groups of the experiment were nearly similar (Table 8). During the storage time, there was a slight reduction in the pH in the plain, 0.6% and 1.2% pectin enriched yoghurt samples. The reduction in pH during storage can be attributed to the utilization of residual carbohydrate by viable microorganisms.

Moreover, the decline in pH values may also be due to increasing the fermentation time and the contribution of acidity of the added stabilizer (Marete et al., 2024). Of note, there was an insignificant increase in pH with increasing the pectin concentration. Tobil et al. (2020) reported nearly identical results, as they showed an insignificant rise in pH over the course of 14 days of cold storage for yoghurt samples enhanced with two forms of pectin at varying amounts (0.2, 0.4, and 0.6%). While slightly different results were obtained by Arioui et al. (2016), who found the decrease in pH was slow and progressive mean values of 4.13, 4.12 and 4.05 at 7th, 14th and 21st days of storage at 4°C, respectively.

Titratable acidity

Regarding titratable acidity that affects the product's flavor and measures the total amount of acid present, (Table 8) showed the average values of titratable acidity for the plain, 0.6% and 1.2% pectin enriched yoghurt. For plain yoghurt samples, the lowest value was 0.75±0.02 while the highest value was 1.17±0.06. It was obvious that after adding pectin, there was an insignificant effect on titratable acidity. As it is clear in Table (8), titratable acidity of yoghurt fortified with 0.6% pectin ranged from 0.76±0.02 to 1.19±0.06 during 7 days of cold storage. Nearly similar values were obtained after adding 1.2% pectin, ranged from 0.78 ± 0.01 to 1.19 ± 0.04 . In a related study, Arioui et al. (2016) recorded that there was a highly significant increase in acidity (P<0.01) on average of 70.29°D at 2 h and reach 90.5°D after 4 h. In addition, during this phase, a progressive increase in lactic acid of the experimental yoghurt, as 95.12 °D on average after 7 days of storage at 4°C. Additionally, it seemed that the rise in lactic acid throughout the fermentation period was proportionate to the rise in pectin addition to 0.6% (P<0.01). However, the evaluation of lactic acid in yoghurt was not significantly impacted by the addition of pectin during the post-acidification stage. were Different results obtained

Julmohammad *et al.* (2024) who examined the pH and titrable acidity of the low-fat yoghurt fortified with pectin from the 1st day to the 14th day. From the 1st to the 14th day, the titratable acidity gradually increases as the yoghurt's pH gradually drops. 0.67 ± 0.38 was the highest value, and 0.56 ± 0.32 was the lowest.

Moisture

The water-holding capacity of yoghurt can be described as the ability of the food to hold and retain moisture, such as water, during the application of force, pressure, centrifugation or heating (Hamad, 2021). Importantly, moisture content of yoghurt affects texture and thickness.

According to the obtained results in Table (9), the addition of pectin in a ratio of 0.6% has a significant effect on yoghurt moisture with P value of <0.05. While 1.2% pectin showed a highly significant impact on yoghurt moisture (P<0.001). From the obtained data, pectin doesn't raise the moisture level in yoghurt but improves water retention and helps maintain moist texture, which enhances the product quality.

In a related study, Julmohammad *et al.* (2024) indicated that elevating the pectin content enhances water retention capacity. This phenomenon occurs due to the interplay between proteins and water.

Total solids

Data in Table (9) revealed that addition of pectin in concentrations of 0.6% and 1.2% increased the total solids of yoghurt samples, compared to the control. Addition of pectin in a concentration of 1.2% has a highly significant effect on yoghurt's total solids (P<0.001). Similar results were obtained by Khubber *et al.* (2021), who demonstrated that addition of pectin increased soluble solids content in the examined yoghurt samples. The increase in total solids may be due to the nature of pectin, as it is a soluble fiber that contributes directly to the total solids content when added to yoghurt.

CONCLUSION

In conclusion, the current study investigated that the addition of pectin to milk for manufacturing of Balady yoghurt can be used as a preventive measure to inhibit EPEC and *L. monocytogenes*, as well as improving the sensorial, rheological and physico-chemical properties of the obtained product. Additionally, pectin in a ratio of 0.6% has the best evaluation.

REFERENCES

Ali, S.; Rezende, V.T.; Ullah, S.; De Paiva, E.L.; Tonin, F.G.; Abdullah, Corassin, C.H. and De Oliveira, C.A. F. (2023): Food processing and challenges in the food production and quality: The foodomics approach. Food bioscience, 56, 103217.

Anvari, M.; Rezaei, M. &Kim, S. M. (2012):

Effects of previous gutting on biochemical changes and profile of long-chain polyunsaturated fatty acids in cold-smoked kutum (Rutilusfrisii kutum) stored at room temperature (25 ± 2 °C). J. Food Biochem, 37, 742-747.

AOAC (Association of Official Analytical Chemists) (2000): Official Methods of Analysis. 18th ed. Washington DC, USA, pp. 188-189.

AOAC (Association of Official Analytical Chemists) (2005): Official Method of Analysis.17th ed. Benjamin Franklin Station Washington DC, USA.

Arioui, F.; Saada, D.A. and Cheriguene, A. (2016): Physicochemical and sensory quality of yogurt incorporated with pectin from peel of Citrus sinensis. Food sci. nutr, 5, 358-364.

Boudouaia, N.; Bendaoudi, A.; Benykhlef, S.; Bengharez, Z. and Cantarero, A. (2023): Antibacterial Action, Antioxidant Activity and Anticoagulant Effect of Pectin Extracted from Peels of Algerian Citrus Sinensis. Chem. Proc, 14, 69.

Ciriminna, R.; Picone, P.; Albanese, L.; Meneguzzo F.; Laura M.

- Ilharco; Nuzzo, D. and M. Pagliaro (2024): Antibacterial Activity of Lemon IntegroPectin Against Escherichia coli. Chemistry Select, 9, 47.
- Ciriminna, R.; Albanese, L.; Meneguzzo, F. and Pagliaro, M. (2021): IntegroPectin: A new citrus pectin with uniquely high biological activity. Bio. Life Sci. Forum, 6, 76.
- Cutrim, C.S.; De Barros, R.F.; Da Costa, M.P.; Franco, R. M.; Conte-Junior, C.A. and Cortez M.A.S. (2016): Survival of Escherichia coli O157:H7 during manufacture and storage of traditional and low lactose yogurt. LWT, 70, 178-184.
- deMan, J.M.; Finley, J.W.; Hurst, W.J. and Lee, C.Y. (2018): Principles of Food Chemistry. Springer International Publishing. https://doi.org/10.1007/978-3-319-

63607-8

- Everett, D.W. and McLeod R.E. (2005): Interactions of polysaccharides stabilizers with casein aggregates in stirred skim-milk yoghurt. Int. Dairy J. 15, 1175-1183.
- Farag, M.A.; Saleh, H.A.; El Ahmady, S. and Elmassry, M.M. (2021): Dissecting yogurt: The impact of milk types, probiotics, and selected additives on yogurt quality. Food Rev. Int., 38, 634–650.
- Gao, M.; Wang, X.; Lin, J., Liu, X.; Qi, D.; Luo, Y.; Aheyeli-kai, Y. and Ma, H. (2023): Separation, structural identification and antibacterial activity of pectin oligosaccharides derived from seed melon. Food bioscience, 53, 102616.
- Guo, Q.; Bayram, I.; Shu, X.; Su, J.; Liao, W.; Wang, Y. and Gao, Y.(2022): Improvement of stability and bioaccessibility of β-carotene by curcumin in pea protein isolate-based complexes-stabilized emulsions: Effect of protein complexation by pectin and small molecular surfactants. Food Chemistry, 367, 130726.

- Guo, Y.; Wei, Y.; Cai, Z.; Hou, B. and Zhang, H. (2021): Stability of acidified milk drinks induced by various polysaccharide stabilizers: A review. Food Hydrocolloids, 118, 106814.
- Hamad, A.M.A. (2021): Evaluation of dietary fiber and the effect on physicochemical properties of foods. International Journal of Scientific Research in Science and Technology, 421–433.
- Huang, J.; Hu, Z.; Hu, L.; Li, G.; Yao, Q. and Hu, Y. (2021): Pectin-based active packaging: A critical review on preparation, physical properties and novel application in food preservation. Trends in Food Science & Technology, 118, 167-178.
- Julmohammad, N.; Rayang, D.O.
 A.; Maklin, S.N. and Tan, E. (2024):
 Effect of different types of pectin on the physicochemical, rheology, and sensory properties of low-fat yogurt.
 Earth and Environmental Science, 1377, 012066.
- Kaczmarczyk, M.; Miller, M.J. and Freund, G. (2012): The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism. 61. 1058-66.
- Khedmat, L.; Izadi, A.; Mofid, V. and Mojtahedi, S.Y. (2020): Recent advances in extracting pectin by single and combined ultrasound techniques: A review of techno-functional and bioactive health-promoting aspects. Carbohydrate Polymers, 1, 229.
- Khubber, S.; Chaturvedi, K.; Thakur, N.;Sharma, N. and Yadav, S.K. (2021):

 Low-methoxyl pectin stabilizes low-fat set yoghurt and improves their physicochemical properties, rheology, microstructure and sensory liking. Food Hydrocolloids, 111, 106240.
- Kieserling, K.; Vu, T.M.; Drusch S. and Schalow, S. (2019): Impact of pectin-rich orange fibre on gel characteristics and sensory properties

- in lactic acid fermented yoghurt. Food hydrocolloids, 94, 152-163.
- Mao, L.; Bioteux L.; Roos Y.H. and Miao S. (2014): Evaluation of volatile characteristics in whey protein isolate-pectin mixed layer emulsion under different environmental conditions. Food Hydrocolloids, 41, 79-85.
- Marand, M.A.; Amjadi, S.; Marand, M.A.; Roufegarinejad, L. and Jafari, S. M. (2020): Fortification of yogurt with flaxseed powder and evaluation of its fatty acid profile, physicochemical, antioxidant, and sensory properties. Powder Technology, 359, 76-84.
- Marete, P.K.; Mariga, A.M.; Huka, G.; Musa lia, L.; Marete, E.; Mathara, J.M.J. and Arimi, J. M. (2024): Effects of optimizing fermentation time and stabilizers using response surface methodology on physicochemical properties of camel milk yoghurt. Applied Food Research, 4, 100469.
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C. and Jaime, P.C. (1018): The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutrition, 21, 5-17.
- Munteanu-Ichim, R.; Canja, C.; Lupu, M.; Bădărău, C. and Matei, F. (2024):
 Tradition and Innovation in Yoghurt from a Functional Perspective—A Review. Ferment, 10, 357.
- Natalia, M. and Mikhailo, M. (2023):
 Analysis of the raw material base for pectin production. J. Animal Sci. Food Tech, 14, 57.
- Parvarei, M.M.; Fazeli, M.R.; Mortazavian, A.M.; Nezhad, S.S.; Ali Mortazavi, S.; Golabchifar, A.A. and Khorshidan, N. (2021): Comparative effects of probiotic and paraprobiotic addition on microbiological, biochemical and physical properties of yoghurt. Food Res. Int., 140, 110030.
- Philips, G.O. and Williams, P.A. (2020): Handbook of hydrocolloids,

- Woodhead Publishing Limited, Cambridge, 274-297.
- Presentato, A.;Scurria, A.; Albanese, L.: Lino C.: Sciortino M.: Pagliaro, F.; Meneguzzo, *M*.; Zabini. Nuzz, D.F.; Alduina, *R*.; and Ciriminna, R. (2020): Superior Antibacterial Activity of Integral Pectin Extracted Lemon Hydrodynamic Cavitation. Agricultural and Food Sciences, 9, 628-630.
- Radoshevich, L. and Cossart, P. (2018): Listeria monocytogenes. Towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol, 16, 32–46.
- Reichembach, L.H. and Petkowicz C.L. De O. (2021): Pectins from alternative sources and uses beyond sweets and jellies: An overview. Food Hydrocolloids, 118, 106824.
- Rubinstein, M. and Colby, R.H. (2003): Polymer physics OUP Oxford, Oxford (2003)
- Ryser E.T. (2011): Encyclopedia of Dairy Science (second edition), 81-86.
- Sfakianakis, P. and Tzia, C. (2014):
 Conventional and Innovative
 Processing of Milk for Yogurt
 Manufacture; Development of Texture
 and Flavor: A Review. Foods, 3, 176193.
- Singham, P.; Birwal, P. and Yadav, B.K. (2015): Importance of objective and subjective measurement of food quality and their inter-relationship. Food Sci. Tech, 6, 1.
- Sora, V-M.; Meroni, M.; Martino, P.A.; Soggiu, A.; Bonizzi, L. and Zecconi, A. (2021): Extra intestinal pathogenic Escherichia coli: Virulence factors and antibioltic resistance. Pathogens, 10, 1355.
- Tiwari, S.; Kavitake, D.; Devi, P.B. and Shetty, P.H. (2021): Bacterial exopolysaccharides for improvement of technological, functional and rheological properties of yoghurt. Int J Biol Macromol, 31, 1585-1595.

- Tobil, M.; Deh, C.; Agbenorhevi, J.; Sampson, G and Kpodo, F. (2020): Effect of Okra Pectin on the sensory, physicochemical and microbial quality of yoghurt. Food and Nutrition Sciences, 11, 442-456.
- Wajs, J.; Brodziak, A. and Jolanta Król, J. (2023): Shaping the Physicochemical, Functional, Microbiological and Sensory Properties of Yoghurts Using Plant Additives. Foods, 12, 1275.
- Wang, X.; Wang, L.; Wei X.; Xu, C.; Cavender, G.; Lin, W. and Sun, S. (2025): Invited review: Advances in yogurt development-Microbiological safety, quality, functionality, sensory evaluation, and consumer perceptions across different dairy and plant-based alternative sources. J Dairy Sci, 108, 33-58.
- Wusigale, Liang, L. and Luo, Y. (2020): Casein and pectin: Structures,

- interactions, and applications. *Trends* in Food Science & Technology, 97, 391-403.
- Yang, S.Y. and Yoon, K.S. (2022):

 Quantitative Microbial Risk
 Assessment of Listeria
 monocytogenes and
 Enterohemorrhagic Escherichia coli in
 Yogurt. Foods, 11, 971.
- Yun, Y-S.; Kim, N-O.; Chun, J-H.; Hwang, K.J. and Hong, S. (2021): The prevalence and characteristics of Shiga toxin-producing Escherichia coli isolated by the enteric pathogens active surveillance network (Enter-Net) in the Republic of Korea, 2009–2018. Microbial Pathogenesis. 158, 105005.
- Zaitseva, O.; Khudyakov, A.; Sergushkina, M.; Solomina, O. and Polezhaeva, T. (2020): Pectins as a universal medicine. Fitoterapia, 146, 104676.

محاولة تحسين الخصائص الفيزيوكيميائية و الجودة الميكروبية بالزبادي البلدي باستخدام البكتين

زينب محمد إمام ، أسماء محمد حنيتر

Email: zeinabemam@hotmail.com Assiut University web-site: www.aun.edu.eg

صممت هذه الدراسة لتقييم تأثير البكتين كمادة مضادة لبكتيريا الإشريكية القولونية والليستيريا المستوحدة في الزبادي البلدي كنموذج غذائي. تم تقييم الخصائص الحسية للزبادي المدعم بالبكتين بما في ذلك الطعم والرائحة واللون والملمس. كما تم تقييم كلا من التآزر واللزوجة والالتصاق والتماسك كتقييم ريولوجي. وأيضا تم قياس الخصائص الفيزيوكيميائية مثل الرقم الهيدروجيني والحموضة القابلة للمعايرة والرطوبة والمواد الصلبة الكلية. أدى دمج الزبادي مع البكتين إلى انخفاض كبير في أعداد بكتريا الإشريكية القولونية والليستيريا المستوحدة. إضافة البكتين بنسب %0.6 و %1.2 أدى إلى انخفاض كبير في اليوم في عدد الإشريكية القولونية بنسبة انخفاض تراوحت من ٩٤,٢ إلى ٩٧,٧ لو ٩٧,١ إلى ٩٧,٢ إلى ٩٥,٢ علوة على التوالي. في اليوم الرابع من التجربة، أظهر البكتين فعالية قاتلة للبكتيريا الليستيريا المستوحدة بتركيز ٢,١٪. علاوة على ذلك ، حسن البكتين طعم ورائحة وملمس الزبادي بشكل ملحوظ بتركيزي ٦,٠٪ و ٢,١٪. وكان أفضل قبول عام (OAA) للزبادي عند تركيز والكيميائية، فلم يؤثر البكتين على الرقم الهيدروجيني أو الحموضة القابلة للمعايرة، بل قلل من الرطوبة وزاد من إجمالي والكيميائية، فلم يؤثر البكتين على الروم الهيدروجيني أو الحموضة القابلة للمعايرة، بل قلل من الرطوبة وزاد من إجمالي المواد الصلبة في الزبادي. أظهرت الدراسة أن للبكتين تأثير مضاد لبكتريا الإشريكية القولونية والليستيريا المستوحدة في الزبادي البلدي، مع تأثيرات إيجابية على خصائصه الحسية والريولوجية والفيزيائية والكيميائية .