

International Journal of Physical Therapy Alsalam University Journal Home Page: https://ijtau.journals.ekb.eg

PREVALENCE OF SCAPULAR DYSKINESIS AMONG PHYSICAL THERAPY PRACTITIONERS AN EPIDEMIOLOGICAL STUDY

Reda A. Ibrahim¹, Soheir S. Rezkalla², Magda R. Zahran²

¹Department of Basic Science, Faculty of Physical Therapy, Cairo University

ABSTRACT

Objective: To determine the prevalence of scapular dyskinesis (SD) among Egyptian physical therapy practitioners and to examine its association with epidemiological factors, including age, sex, body mass index (BMI), musculoskeletal symptoms, and scapular stabilizer muscle strength.

Design: A cross-sectional observational study.

Methods: A total of 121 licensed Egyptian physical therapists aged 27–40 years were recruited and categorized into three age-based groups: Group A (27–31 years, 3–7 years of work experience), Group B (above 31–36 years, 7–12 years of work experience), and Group C (above 36–40 years, 12–16 years of work experience). Each participant was assessed for SD using the Scapular Dyskinesis Test (SDT) and the Lateral Scapular Slide Test (LSST). Pain intensity at the end of the ROM was measured by the Visual Analog Scale (VAS), and musculoskeletal symptoms were documented using the Nordic Musculoskeletal Questionnaire (NMQ). Shoulder range of motion (ROM) and the strength of scapular stabilizers (serratus anterior, middle trapezius, and lower trapezius) were evaluated through manual muscle testing. Statistical analysis included Chi-square tests and one-way ANOVA with a significance threshold of p < 0.05.

Results: Scapular dyskinesis was observed in all age groups, with subtle forms being more prevalent than obvious ones on SDT. No statistically significant differences in SD prevalence were detected among age groups. Right-sided pain and muscle weakness, particularly in the lower trapezius and serratus anterior, were commonly reported across groups. Although abnormal LSST was numerically more frequent in younger groups, this difference was not statistically significant.

Conclusion: Scapular dyskinesis is common among physical therapy practitioners, occurring independently of age and symptomatic presentation. Routine screening and preventive strengthening programs targeting scapular stabilizers are recommended to reduce the potential risk of future shoulder dysfunction.

Keywords: Scapular Dyskinesis; Physical Therapists; Shoulder Pain; Muscle Weakness; Rehabilitation; Ergonomics

1. Introduction

Work-related musculoskeletal disorders (WRMDs) are widespread across multiple professions and frequently involve the lower back, neck, shoulders, and upper extremities (Gorce & Jacquier-Bret, 2023). These disorders are highly prevalent among physical therapy practitioners, with a reported incidence of 69% in private and outpatient clinical settings where physical demands are substantial (Buddhadev & Kotecha, 2012).

Occupational activities with ergonomic risk factors—such as prolonged static positioning and repetitive upper limb use—are strongly linked to upper body pain. Examples include bus drivers, sewing machine operators, and mechanics. Risk factors for WRMDs include younger age (under 30 years), female gender, preexisting musculoskeletal or systemic conditions, extended work history, high physical exertion, and insufficient rest periods (Wang et al., 2007).

Scapular dyskinesis (SD) represents a specific form of altered scapular kinematics and is recognized as one of the most relevant WRMDs in physical therapy practice. It is frequently associated with prolonged forward head posture (FHP), which increases strain on cervical soft tissues and disrupts normal scapular control (Kashif et al., 2020; Silvian et al., 2011). SD is characterized by abnormal scapular motion during shoulder activity, impairing shoulder mechanics and often producing pain (Roche et al., 2015). Clinically, it may be identified by a prominence of the

²Department of Basic Science, Faculty of Physical Therapy, Cairo University

medial border or inferior angle of the scapula during movement, reflecting a loss of normal rhythm and stability (Moghadam et al., 2017; Sciascia & Kibler, 2022).

Repetitive arm motions can fatigue the scapular stabilizers, altering kinematics and promoting the onset of SD (Andres et al., 2020). This abnormal motion may present as SICK scapula syndrome—a cluster of findings including scapular malposition, inferior border prominence, coracoid tenderness, and dysrhythmic movement (Struyf et al., 2014). Various occupational and psychosocial factors contribute to SD in physical therapists, such as work-related stress, inadequate breaks, heavy workload, cold working environments, BMI increase with age, and frequent use of manual therapy techniques like massage (Adegoke et al., 2008; Anyfantis & Biska, 2018).

Scapular dyskinesis (SD) can both result from and contribute to shoulder pathologies including labral injuries, glenohumeral instability, and acromioclavicular joint separation. It is classified into three primary types: Type I—posterior displacement of the inferior angle; Type II—posterior displacement of the medial border; and Type III—early scapular elevation or dysrhythmia (Giuseppe et al., 2020). Its association with disability has been reported in occupations such as teaching and military training, where repetitive upper limb use leads to muscle fatigue, pain, and functional decline (Andres et al., 2020).

Previous studies have explored the prevalence of WRMDs and their risk factors in physical therapy practitioners but have not specifically examined scapular dyskinesis in this population. The present study aims to address this gap by determining the prevalence of SD among Egyptian physical therapy practitioners and identifying epidemiological factors associated with its presence.

2. Material and methods

2.1. Study Design

This study was a cross-sectional observational study designed to investigate the prevalence of scapular dyskinesis (SD) among physical therapy practitioners and to explore associated epidemiological factors. The study was conducted between December 2024 and August 2025. Ethical approval was obtained from the Research Ethics Committee of the Faculty of Physical Therapy, Cairo University (P.T.REC/012/005755).

2.2. Participants

- Sample Size: The sample size of 121 was calculated assuming a prevalence of 40% scapular dyskinesis, a margin of error of 8%, and power of 80% at $\alpha = 0.05$ using SPSS sample size calculation module, using a one-sample t-test. The generated sample size was 121 physical therapy practitioners.
- Selection Criteria:
 - o Inclusion Criteria:
 - Licensed physical therapy practitioners actively working in clinical settings (Soliño et al., 2024).
 - Age between 27 and 40 years (Jeong & Kim, 2023).
 - Minimum of one year of clinical experience or exposure to physical activity (Jeong & Kim, 2023).
 - No current shoulder pain or symptoms at the time of assessment (Soliño et al., 2024).
 - Willingness to participate and provide informed consent.
 - o Exclusion Criteria:
 - Acute shoulder or neck injury within the last month (Jeong & Kim, 2023).
 - History of upper body orthopedic surgery (Jeong & Kim, 2023).
 - Known neurological or musculoskeletal disorders affecting shoulder mechanics (Burn et al., 2016).
 - Participation in overhead or collision sports with high scapular loading (Burn et al., 2016).
 - Inability to complete assessment procedures due to physical limitations (Soliño et al., 2024).
- Subgroups: Participants were divided into three age-based groups:
 - o Group A (27–31 years, 3–7 years of work experience)
 - o Group B (above 31–36 years, 7–12 years of work experience)
 - o Group C (above 36–40 years, 12–16 years of work experience)

2.3. Instrumentation and Evaluation Procedures

- 1) Personal Data & Consent: Name, age, sex, weight, and height were recorded; informed consent obtained. (Abrantes et al., 2002).
- 2) Body Mass Index (BMI): Weight and height measured; BMI calculated as kg/m², with ≥30 considered obese (Romero et al., 2008).
- 3) Pain Assessment (VAS): Pain intensity at the end of the ROM rated on a 10 cm visual analog scale from 0 (no pain) to 10 (worst pain). (Begum et al., 2019).
- 4) Scapular Dyskinesis Test (SDT): Visual observation of scapular movement during repeated shoulder flexion and abduction; classified as normal, subtle and obvious. (Plummer et al., 2017, Jayasinghe, 2018).
- 5) Lateral Scapular Slide Test (LSST): Distance from scapula's inferior angle to spinous process measured in different arm positions; >1.5 cm side-to-side difference marked as abnormal. (Curtis et al., 2006, Jayasinghe, 2018).
- 6) Shoulder Range of Motion (ROM): Measured with a digital goniometer aligned to anatomical landmarks; passive ROM assessed for pain and end-feel. (Norkin & White, 2016).
- 7) Manual Muscle Testing (MMT): Strength of middle trapezius, lower trapezius, and serratus anterior graded on the Oxford scale (0–5). For analysis, results were grouped into three categories: Normal (Grade 5), Reduced (Grades 3–4), and Markedly Reduced (Grades 0–2) (Vijian et al., 2023).
- 8) Nordic Musculoskeletal Questionnaire (NMQ): Arabic-adapted version used to assess musculoskeletal symptoms in specific body regions. (Aldhabi et al., 2024, Smith et al., 2006).

2.4. Statistical Analysis

Data were expressed as mean \pm SD. The Shapiro–Wilk test was used for normality testing. ANOVA was applied to compare characteristics among the three subgroups, and the Chi-square test was used to compare categorical variables. Statistical analysis was performed using SPSS version 20 (SPSS Inc., Chicago, IL, USA), with significance set at p \leq 0.05.

3. Results

3.1. Demographic Characteristics

A total of three age-based groups of Egyptian physical therapy practitioners were analyzed Group A (27–31 years, 3–7 years of work experience), Group B (above 31-36 years, 7-12 years of work experience), and Group C (above 36-40 years, 12-16 years of work experience). There was a statistically significant difference in mean age between the groups (p = 0.001). No significant differences were observed for BMI or sex distribution.

Parameter	Group A (27–31 yrs)	Group B (>31-36 yrs)	Group C (>36– 40 yrs)	F / χ² value	p-value	Significance
Mean Age (yrs)	29.20 ± 1.16	33.83 ± 1.34	38.47 ± 1.00	F = 620	0.001	S
BMI (kg/m²)	29.88 ± 6.22	29.48 ± 4.87	29.62 ± 5.21	F = 0.06	0.945	NS
Sex Distribution (% male / female)	25 / 75	30 / 70	35 / 65	$\chi^2 = 0.952$	0.621	NS

Table 1. Demographic characteristics of study participants

3.2. Shoulder Pain at the end of the ROM and Range of Motion

No statistically significant differences were found between groups for shoulder pain (VAS) or shoulder range of motion (ROM).

	Group A	Group B	Group C	f- value	P-value
Shoulder Pain (cm)	2.63±1.67	2.85±1.8	3.1±1.52	0.810	0.447
Shoulder ROM (degrees)	176±7.44	176±7.44	176.25±7.05	0.02	0.985

Table 2. Shoulder pain and ROM

3.3. Scapular Dyskinesis

The distribution of scapular dyskinesis patterns did not differ significantly between groups.

Scapular dyskinesis	Group A N (%)	Group B N (%)	Group C N (%)	Chi square	P-value
Normal	12 (30%)	9 (22.5%)	10 (25%)		
Subtle	18 (45%)	23 (57.5%)	22 (55%)	1.43	0.840
Obvious	10 (25%)	8 (20%)	8 (20%)		

Table 3. Scapular dyskinesis distribution

3.4. Scapular Muscle Strength

No significant between-group differences were observed for middle trapezius, lower trapezius, or serratus anterior muscle strength.

Muscle test of middle Trapezius	Group A N (%)	Group B N (%)	Group C N (%)	Chi square	P-value		
Normal	14 (35%)	12 (30%)	13 (32.5%)				
Reduced	20 (50%)	22 (55%)	25 (62.5%)	3	0.557		
Markedly reduced	6 (15%)	6 (15%)	2 (5%)				
Muscle test of lower Trapezius							
Normal	12 (30%)	12 (30%)	11 (27.5%)				
Reduced	11 (27.5%)	14 (35%)	10 (25%)	1.56	0.816		
Markedly reduced	17 (42.5%)	14 (35%)	19 (47.5%)				
	Musc	le test of Serratus a	interior				
Normal	4 (10%)	11 (27.5%)	9 (22.5%)				
Reduced	20 (50%)	18 (45%)	19 (47.5%)	4.43	0.351		
Markedly reduced	16 (40%)	11 (27.5%)	12 (30%)				

Table 4. Middle trapezius, lower trapezius, or serratus anterior muscle strength.

3.5. Gleno-humeral Joint End Feel

No significant differences were found between groups.

Gleno-humeral joint end feel	Group A N (%)	Group B N (%)	Group C N (%)	Chi square	P-value
Normal	30 (75%)	31 (77.5%)	29 (72.5%)	0.27	0.875
Stiff	10 (25%)	9 (22.5%)	11 (27.5%)		

Table 5. Gleno-humeral joint end feel

3.6. Lateral Scapular Slide Test

No statistically significant differences were observed.

Lateral scapular	Group A	Group B	Group C	Chi	D value
slide test	N (%)	N (%)	N (%)	square	P-value
Normal	16 (40%)	15 (37.5%)	28 (70%)	0.942	0.624
Abnormal	24 (60%)	25 (62.5%)	12 (30%)		

Table 6. Lateral scapular slide test

3.7. Prevalence of Neck Dysfunction

Neck dysfunction prevalence was comparable between groups.

Neck		Group A N (%)	Group B N (%)	Group C N (%)	Chi square	P-value
Have you at any time during the last 12 months had trouble	Ye s No	23 (57.5%) 17 (42.5%)	27 (67.5%) 13 (32.5%)	32 (80%) 8 (20%)	4.69	0.095
Have you at any time during the last 12 months been prevented from doing your normal work	Ye s No	12 (30%) 28 (70%)	13 (32.5%) 27 (67.5%)	11 (27.5%) 29 (72.5%)	0.238	0.888
Have you had trouble at any time during the last 7 days?	Ye s No	12 (30%) 28 (70%)	14 (35%) 26 (65%)	13 (32.5%) 27 (67.5%)	0.228	0.892

Table 7. Neck dysfunction prevalence

3.8. Prevalence of Shoulder Dysfunction

No significant differences were found for shoulder dysfunction parameters.

		~ .		Group C	Chi	P-
Shoulder		Group A N (%)	Group B N (%)	N (%)	square	value
Have you at any	Yes right shoulder	15 (37.5%)	21 (52.5%)	18 (45%)		
time during the last	Yes left shoulder	6 (15%)	6 (15%)	6 (15%)	6.68	0.351
12 months had	Yes both shoulders	5 (12.5%)	3 (7.5%)	9 (22.5%)	0.00	0.331
trouble	No	14 (35%)	10 (25%)	7 (17.5%)		

Have you at any						
time during the last						
12 months been		7 (17 50/)	0 (22 59/)	8 (20%)	0.212	0.055
prevented from	Yes	7 (17.5%) 33 (82.5%)	9 (22.5%) 31 (77.5%)	32 (80%)	0.313	0.855
doing your normal	No					
work						
Have you had						
trouble at any time	**	0 (22 50()	14 (2.50()	8 (20%)	2.60	0.260
during the last 7	Yes No	9 (22.5%) 31 (77.5%)	14 (35%) 26 (65%)	32 (80%)	2.69	0.260
days?						

Table 8. Shoulder dysfunction prevalence

3.9. Summary

Significant differences were observed only for age. All other parameters, including BMI, sex distribution, shoulder pain, ROM, scapular dyskinesis, muscle strength, joint end feel, lateral scapular slide test, and prevalence of neck and shoulder dysfunction, showed no statistically significant differences between the age groups.

4.Discussion

This study investigated the prevalence of scapular dyskinesis (SD) and its associated epidemiological factors among Egyptian physical therapy practitioners. Participants were categorized into three age-based groups, and assessments included scapular dyskinesis classification, pain intensity at the end of the ROM, shoulder range of motion (ROM), glenohumeral joint end feel, and muscle strength of the middle trapezius, lower trapezius, and serratus anterior. Additional variables included BMI, history of shoulder and neck symptoms, and occupational characteristics.

Participants' ages were comparable between the three groups: Group A (27–31 years, 3–7 years of work experience), Group B (above 31–36 years, 7–12 years of work experience), and Group C (above 36–40 years, 12–16 years of work experience). Demographic characteristics such as sex distribution and BMI were similar across groups, ensuring that any differences in outcomes could be attributed to occupational or biomechanical factors rather than demographic disparities. Data were collected through clinical tests, questionnaires, and muscle strength measurements in various outpatient and clinical settings.

Regarding the prevalence of scapular dyskinesis:

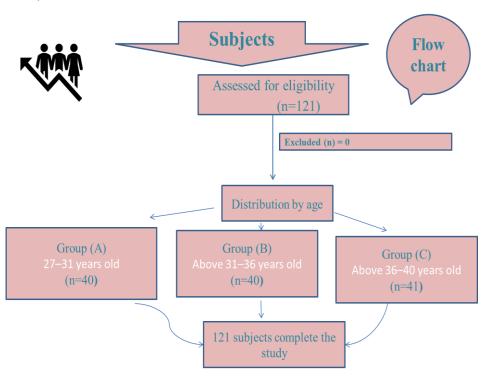
Scapular dyskinesis was highly prevalent across all age groups, was 70% (95% CI: 62–78%), with the subtle type being the most common presentation. Although prevalence varied slightly among groups, statistical analysis revealed no significant differences. These findings suggest that Repetitive occupational activities may contribute to scapular dyskinesis; however, the cross-sectional design prevents establishing causality. (Cools et al 2014)

Regarding pain intensity and shoulder range of motion (ROM):

Pain at the end of the ROM was assessed using the Visual Analog Scale (VAS). While shoulder and neck discomfort were reported in all groups, shoulder ROM—measured with a digital goniometer—remained relatively consistent across participants. This consistency suggests that SD can be present without obvious functional ROM deficits, likely due to muscular compensation masking underlying biomechanical inefficiencies. (Goetti et al 2020)

Regarding muscle strength deficits:

Deficits in the lower trapezius and serratus anterior were common in all age groups, with a considerable proportion of participants showing reduced or markedly reduced strength. No significant differences in strength measures were


found between groups, indicating that such imbalances are widespread within the profession and likely linked to occupational demands, poor postural habits, and insufficient scapular stabilizer training (Dickerson et al 2011)

Regarding glenohumeral joint end feel and scapular positioning:

The glenohumeral joint end feel was largely normal across all groups, indicating that capsular stiffness or mechanical restriction was not a major factor in scapular dyskinesis. Abnormal positioning on the Lateral Scapular Slide Test (LSST) was more common in younger practitioners (Groups A and B) than in Group C, though not statistically significant. This pattern may reflect that older practitioners adopt compensatory strategies, such as modifying posture or adjusting work demands, to limit static scapular malalignment (Snyder et al., 2019).

Regarding neck and shoulder symptoms:

Neck trouble in the past 12 months was frequent across groups, slightly higher in older participants, but differences were not statistically significant. Shoulder symptoms were also prevalent, with right-sided involvement more frequent—likely reflecting the handedness and repetitive upper limb use of practitioners during patient handling. (Greiner et al 2019)

Comparison with previous studies:

The high prevalence of SD observed aligns with Amin (2023), who reported similar findings in dentists, and Vongsirinavarat et al. (2023), who documented high rates of SD among office workers with neck and shoulder pain, often associated with forward head posture and rounded shoulders. These parallels support the role of repetitive movements and postural malalignment in the development of SD. The findings are also consistent with Depreli and Angm (2018) and Burn et al. (2016), who highlighted the role of occupational and repetitive load factors in scapular dysfunction across both professional and athletic populations. Notably, the link between SD and future shoulder pain risk—highlighted by Hickey et al. (2018)—reinforces the importance of early detection in clinical settings.

The clinical implications of these findings are considerable. The high prevalence of scapular dyskinesis among Egyptian physical therapy practitioners, regardless of age, highlights the urgent need for preventive screening in this professional population. Implementing early detection protocols—even for asymptomatic individuals—could help prevent the progression of SD to symptomatic shoulder or neck conditions. Targeted strengthening of scapular stabilizers, particularly the lower trapezius and serratus anterior, should be incorporated into workplace wellness programs and undergraduate training curricula for physical therapists.

Given that scapular dyskinesis often develops in response to repetitive occupational movements and sustained postures, ergonomic adjustments in treatment environments may reduce strain and improve musculoskeletal health. Because the assessment methods used (e.g., SDT, LSST, digital goniometer, and VAS) are cost-effective and easily implemented, they are especially suitable for routine clinical use in resource-limited settings. Moreover, early identification and correction of muscle imbalances could enhance practitioners' long-term work capacity, reduce sick leave, and improve quality of life.

Limitations:

Assessment:

Because scapular dyskinesis tests are subjective and no inter-rater reliability was formally assessed, this should be considered a study limitation

• Assessment Scope:

The study relied on clinical assessments without incorporating advanced objective measures such as three-dimensional motion analysis or electromyography. Including these tools in future research could yield deeper insights into scapular kinematics and neuromuscular control.

Bias:

selection bias (volunteer participants may not represent all PTs). bias from self-reported symptoms.

Cross-Sectional Design:

The cross-sectional nature of the study restricts the ability to establish causality between occupational factors and scapular dyskinesis. Longitudinal studies are required to monitor progression and identify predictive risk factors over time.

Sample Size:

A relatively modest sample size limits the statistical power and generalizability of the findings. Future studies with larger, multi-center cohorts are needed to provide a more representative understanding of scapular dyskinesis prevalence among physical therapy practitioners.

5.Conclusion

The results of this study demonstrate that scapular dyskinesis is highly prevalent among Egyptian physical therapy practitioners across all age groups, with subtle dyskinesis being the most common presentation. Widespread weakness in the lower trapezius and serratus anterior, along with frequent reports of neck and shoulder discomfort, highlight the occupational demands and postural stresses inherent in the profession. Overall, early screening, targeted strengthening, and ergonomic interventions appear to be practical, cost-effective strategies that can be readily implemented in clinical and workplace settings to preserve musculoskeletal health and enhance the longevity of practitioners' careers.

Acknowledgments

The authors would like to thank all the contributor authors in the study.

Disclosure

The authors have no conflicts of interest to declare.

References

Abrantes M, Lamounier J, Colosimo E: Prevalência de sobrepeso e obesidade em crianças e adolescentes das regiões Sudeste e Nordeste. J Pediatr (Rio J) 2002; 78 (4):335–40.

Adegoke B, Akodu A, Oyeyemi A: Work-related musculoskeletal disorders among Nigerian physiotherapists. BMC musculoskeletal disorders. 2008; 9, 1-9.

Aldhabi, R., Albadi, M., Kahraman, T., & Alsobhi, M. (2024). Cross-cultural adaptation, validation and psychometric properties of the Arabic version of the Nordic Musculoskeletal Questionnaire in office working population from Saudi Arabia. Musculoskeletal Science and Practice, 72, 103102.

Amin, M. (2023). Prevalence of Scapular Dyskinesis in Working Dentists: An Epidemiological Study. Egyptian Journal of Physical Therapy, 15(1), 27-37.

Andres, J., Painter, P. J., McIlvain, G., & Timmons, M. K: The Effect of Repeated Shoulder Motion on Scapular Dyskinesis in Army ROTC Cadets. Military medicine, 2020; 185 (5-6), e811-e817.

Anyfantis I and Biska A: Musculoskeletal disorders among Greek physiotherapists: Traditional and emerging risk factors. Safety and health at work. 2018; 9 (3), 314-318.

Begum, M. R., & Hossain, M. A. (2019). Validity and reliability of visual analogue scale (VAS) for pain measurement. Journal of Medical Case Reports and Reviews, 2(11).

Buddhadev N and Kotecha I: Work-related musculoskeletal disorders: a survey of physiotherapists in Saurashtra region. National journal of medical research. 2012; 2(02), 179-181.

Burn, M. B., McCulloch, P. C., Lintner, D. M., Liberman, S. R., & Harris, J. D. (2016). Prevalence of scapular dyskinesis in overhead and nonoverhead athletes: a systematic review. Orthopaedic journal of sports medicine, 4(2), 2325967115627608.

Cools A, Struyf F, De Mey K, Maenhout A, Castelein B, Cagnie B: Rehabilitation of scapular dyskinesis: from the office worker to the elite overhead athlete. British journal of sports medicine, 2014; 48 (8): 692-697.

Cools, A. M., Struyf, F., De Mey, K., Maenhout, A., Castelein, B., & Cagnie, B. (2014). Rehabilitation of scapular dyskinesis: from the office worker to the elite overhead athlete. British journal of sports medicine, 48(8), 692-697.

Correll, S., Field, J., Hutchinson, H., Mickevicius, G., Fitzsimmons, A., & Smoot, B. (2018). Reliability and validity of the halo digital goniometer for shoulder range of motion in healthy subjects. International journal of sports physical therapy, 13(4), 707.

Curtis, T., & Roush, J. R. (2006). The lateral scapular slide test: A reliability study of males with and without shoulder pathology. North American journal of sports physical therapy: NAJSPT, 1(3), 140.

Depreli, Ö., & Angın, E. (2018). Review of scapular movement disorders among office workers having ergonomic risk. Journal of back and musculoskeletal rehabilitation, 31(2), 371-380.

Depreli, O., Ender Angın, E., Yatar, I. G., Kirmizigil, B., & Malkoc, M. (2016). Scapular dyskinesis and work-related pain in office workers-a pilot study. Int J Phys Ther Rehab, 2(117), 2.

Dickerson, C. R., Brookham, R. L., & Chopp, J. N. (2011). The working shoulder: assessing demands, identifying risks, and promoting healthy occupational performance. Physical Therapy Reviews, 16(5), 310-320.

Giuseppe, L. U., Laura, R. A., Berton, A., Candela, V., Massaroni, C., Carnevale, A., ... & Denaro, V. (2020). Scapular dyskinesis: from basic science to ultimate treatment. International journal of environmental research and public health, 17(8), 2974.

Goetti P, Denard PJ, Collin P, Ibrahim M, Hoffmeyer P, Lädermann A. Shoulder biomechanics in normal and selected pathological conditions. EFORT Open Rev. 2020;5(8):508-517

Gorce P and Jacquier-Bret J: Global prevalence of musculoskeletal disorders among physiotherapists: a systematic review and meta-analysis. BMC Musculoskeletal Disorders. 2023. 24(1), 265.

Greiner, B. A., Nolan, S., & Hogan, D. A. (2019). Work-related upper limb symptoms in hand-intensive health care occupations: a cross-sectional study with a health and safety perspective. Physical therapy, 99(1), 62-73.

Hickey, D., Solvig, V., Cavalheri, V., Harrold, M., & Mckenna, L. (2018). Scapular dyskinesis increases the risk of future shoulder pain by 43% in asymptomatic athletes: a systematic review and meta-analysis. British journal of sports medicine, 52(2), 102-110.

Jayasinghe, G. S. (2018). Scapula dyskinesis: a review of current concepts and evaluation of assessment tools. Current sports medicine reports, 17(10), 338-346.

Jeong, J. H., & Kim, Y. K. (2023). Association of Scapular Dyskinesis with Neck and Shoulder Function and Training Period in Brazilian Ju-Jitsu Athletes. Medicina, 59(8), 1481.

Johnson MP, McClure PW, Karduna AR: New method to assess scapular upward rotation in subjects with shoulder pathology. Journal of Orthopedic & Sports Physical Therapy. 2001;31(2):81-9.

Kashif M, Anwar M, Noor H, Iram H, Hassan H: Prevalence of Musculoskeletal Complaints of Arm, Neck and Shoulder and Associated Risk Factors in Computer Office Workers. Phys Med Rehabil. Kurortmed. 2020; 30:299–305.

Kibler W and Sciascia A: Current concepts: scapular dyskinesis. British journal of sports medicine, 2010; 44 (5): 300-305.

Kibler W, LudewigP, McClure P, Michener L, BakK, Sciascia A: Clinical implications of scapular dyskinesis in shoulder injury. British journal of sports medicine. 2013; 47(14): 877-885.

Norkin C and White D: Measurement of joint motion. A guide to goniometry. 2016Nov 18.

Plummer, H. A., Sum, J. C., Pozzi, F., Varghese, R., & Michener, L. A. (2017). Observational scapular dyskinesis: known-groups validity in patients with and without shoulder pain. journal of orthopaedic & sports physical therapy, 47(8), 530-537.

Rahman N and Warikoo D: Association of blackboard teaching with scapular positioning and shoulder pain and disability among school teachers in Dehradun. International Journal of Pharmacy and Biological Sciences. 2013; 3 (2): 475-485.

Ravichandran, H., & Janakiraman, B. (2016). Assessment and rehabilitation of scapular dyskinesis: A case study. Archives of Medicine and Health Sciences, 4(2), 244-247.

Riddle D, Rothstein J, Lamb R: Goniometric reliability in a clinical setting: shoulder measurements. Physical therapy. 1987; 67 (5): 668-673.

Roche, S. J., Funk, L., Sciascia, A., & Kibler, W. B. (2015). Scapular dyskinesis: the surgeon's perspective. Shoulder & Elbow, 7(4), 289-297.

Romero-Corral, A., Somers, V. K., Sierra-Johnson, J., Thomas, R. J., Collazo-Clavell, M. L., Korinek, J. E. C., ... & Lopez-Jimenez, F. (2008). Accuracy of body mass index in diagnosing obesity in the adult general population. International journal of obesity, 32(6), 959-966.

Rothman K, Greenland S, Lash T: Modern Epidemiology, 3rd Edition. Philadelphia, PA.2008.

Salamh, P. A., Hanney, W. J., Boles, T., Holmes, D., McMillan, A., Wagner, A., & Kolber, M. J. (2023). Is it time to normalize scapular dyskinesis? The incidence of scapular dyskinesis in those with and without symptoms: A systematic review of the literature. International journal of sports physical therapy, 18(3), 558.

Sanchez, H. M., & Sanchez, E. G. M. (2018). Scapular dyskinesis: biomechanics, evaluation and treatment. Int Phys Med Rehab J, 3(6), 514-520.

Sattasuk, W., Sitilertpisan, P., Joseph, L., Paungmali, A., & Pirunsan, U. (2021). A clinical evaluation of scapular dyskinesis among professional bus drivers with unilateral upper quadrant musculoskeletal pain. Workplace Health & Safety, 69(10), 460-466.

Sciascia, A., & Kibler, W. B. (2022). Current views of scapular dyskinesis and its possible clinical relevance. International Journal of Sports Physical Therapy, 17(2), 117.

Scibek J and Carcia C: Validation of a new method for assessing scapular anterior-posterior tilt. Int J Sports Phys Ther. 2014;9 (5):644-56.

Scibek J, Carcia C: Assessment of scapulohumeral rhythm for scapular plane shoulder elevation using a modified digital inclinometer. World journal of orthopedics. 2012;3(6):87.

Shah N, Shimpi A, Rairikar S, Ashok S, Sancheti P: Presence of scapular dysfunction in dominant shoulder of professional guitar players. International Journal of Occupational Safety and Ergonomics 2016; 22 (3): 422-425.

Silvian S, Maiya A, Resmi A: Antecedents of work-related musculoskeletal disorders in software professionals. Int J EnterpNetw] Manag. 2011; 4:247.

Smith D, Leggat P, Clark M: Upper body musculoskeletal disorders among Australian occupational therapy students. British Journal of Occupational Therapy. 2006;69(8):365-72.

Snyder, J. J. (2019). A Comparison of the Effects of Shoulder Muscle Fatigue Caused by Sustained Overhead Activity on Scapulothoracic Kinematics in Younger and Older Populations (Doctoral dissertation, New York University).

Soliño, S., Raguzzi, I., Castro, L. V., Porollan, J. C., Aponte, B. G., de Ilzarbe, M. G., ... & Policastro, P. O. (2024). Prevalence of positive modified scapular assistance test in patients with shoulder pain with and without scapular dyskinesis: a cross-sectional study. Journal of Hand Therapy, 37(1), 136-143.

Struyf F, Nijs J, Mottram S, Roussel NA, Cools A, Meeusen R:Clinical assessment of thescapula: a review of the literature. British journal of sports medicine. 2014;48(11):883-90.

Studies Jensen M, Karoly P, Braver S: The measurement of clinical pain intensity: a comparison of six methods Pain. 1986;27 (1): 117-126.

Terzis, J. K., Karypidis, D., Mendoza, R., Kokkalis, Z. T., & Diawara, N. (2014). Morphometric analysis of the association of primary shoulder reconstruction procedures with scapular growth in obstetric brachial plexus paralysis patients. Hand, 9(3), 292-302.

Vijian, K., Cheng, Y. T., Idris, Z., Ghani, A. R. I., Halim, S. A., & Abdullah, J. M. (2023). Manual muscle testing of the scapula and the upper limb through bedside examination. The Malaysian journal of medical sciences: MJMS, 30(1), 198.

Vongsirinavarat, M., Wangbunkhong, S., Sakulsriprasert, P., & Petviset, H. (2023). Prevalence of scapular dyskinesis in office workers with neck and scapular pain. International Journal of Occupational Safety and Ergonomics, 29(1), 50-55.

Wandrey J D, Behnel N, Weidner E, Dummin U, von Dincklage F, TafelskiS:Behaviour-based pain scales: Validity and interrater reliability of BPS-NI and PAINAD-G on general wards. European Journal of Pain. 2023; 27 (2): 201-211.

Wang P, Rempel D, Harrison R, Chan J, Ritz B: Work-organisational and personal factors associated with upper body musculoskeletal disorders among sewing machine operators. Occupational and environmental medicine. 2007;64 (12):806-13.

Werner B ,KuenzeC,Griffin J ,Lyons M,Hart J , Brockmeier S: Shoulder range of motion: Validation of an innovative measurement method using a smartphone. Orthopaedic Journal of Sports Medicine. 2013; 1(4_suppl), 2325967113S00106.

Wilkes, T., Ben Kibler, W., & Sciascia, A. D. (2017). Anatomy of the Scapula. Disorders of the Scapula and Their Role in Shoulder Injury: A Clinical Guide to Evaluation and Management, 3-6.

Wylie, J. D., Beckmann, J. T., Granger, E., & Tashjian, R. Z. (2014). Functional outcomes assessment in shoulder surgery. World journal of orthopedics, 5(5), 623.

Yiannakopoulos, C. K., Vlastos, I., Kallinterakis, G., Gianzina, E., & Sachinis, N. (2021). Abnormal Scapular Kinematics In Symptomatic Acromioclavicular Arthritis. A Biomechanical Analysis Using Inertial Sensors. SCIREA Journal of Clinical Medicine, 6(6), 696-708.