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ABSTRACT Autonomous vehicles face significant challenges in adverse weather conditions, such as fog, which 
reduces visibility and degrades the quality of camera-captured images, making it difficult to detect targets and obstacles. 
Developing an effective image-defogging algorithm is crucial to enhancing the optical system’s ability to adapt to 
varying environmental conditions. In this work, we apply a denoising autoencoder-based approach to address the fog 
removal problem, as it has demonstrated fast and efficient results. Unlike traditional methods that train the model on the 
original data, this approach trains the model on the noise present in the input data, as noise is simpler to regenerate than 
the original data. Noise reduction is then performed by subtracting the extracted noise from the noisy input. To further 
enhance the model's performance, we focus on improving the feature extraction process by incorporating architectural 
optimizations, such as the use of skip connections and advanced data augmentation techniques. Various optimizers are 
also compared to achieve better accuracy. The model's performance is evaluated using SSIM and PSNR metrics, with 
results showing PSNR and SSIM values of 26.03 and 0.939, respectively, for the outdoor dataset, and 29.87 and 0.966 
for the indoor dataset when applied to the RESIDE dataset. 

INDEX TERMS Autonomous vehicles, Adverse weather conditions, Perception and sensing, Deep learning.

I. INTRODUCTION 

Autonomous  vehicles (AVs) are revolutionizing 
transportation through the integration of artificial 
intelligence (AI), advanced sensors, and real-time decision-
making systems. These vehicles offer the potential for 
safer, more efficient, and accessible mobility by 
minimizing human error, reducing traffic congestion, and 
providing transportation solutions for individuals with 
mobility limitations[1].  

Despite significant advancements, autonomous 
vehicles face critical challenges in adverse weather 
conditions, particularly fog. Fog reduces visibility, 
degrades image contrast, and severely impacts the 
performance of visual sensors, making object detection 
and scene understanding more difficult  [2], [3]. Such 
conditions can impair the reliability of autonomous 
driving systems (ADS), raising safety concerns. 

Although there have been significant advancements, 
adverse weather conditions, especially fog,  present 
serious challenges to autonomous driving systems 
(ADS). Fog can significantly degrade sensor 
performance and reduce the ability to accurately detect 
and classify objects, leading to impaired decision-
making capabilities [4],[5],[6],[7],[8].  

Poor visibility in fog results in low-contrast images, 
making it difficult to capture fine structural details[9]. 

To mitigate this, various dehazing techniques have been 
proposed, including Color Attenuation[10], non-local 
methods [11], end-to-end dehazing[12], Dark Channel 
Prior (DCP)[13], Adaptive dehazing method [14], [15].  

For heterogeneous fog, additional techniques based on 
multiscale convolutional neural networks [16]and the 
use of both color and grayscale images [16], [17], have 
been developed. Single-image dehazing approaches, 
such as AOD-Net [18], GFN [19], GridDehazeNet [20], 
and MSCNN-HED [21], have also been explored. 
Furthermore, adversarial learning has been employed to 
generate more realistic dehazed images, as seen in 
methods like DCPDN [22], [23], DehazeGAN [24], and 
EPDN [25], which build on the Pix2Pix framework [26]. 
Light-Invariant Dehazing Networks (LIDN)[27],  
integrate components such as feature extractors, 
atmospheric light estimators, and encoder-decoder 
architectures to handle varying lighting conditions. 

Dehazing not only improves image quality but also 
enhances vision-related applications by producing 
denoised images with higher clarity. In foggy images, 
low-intensity RGB pixels can be processed via fog 
transmission maps to generate clearer visuals. This 
process typically requires high-capacity training models, 
for which convolutional neural networks (CNNs) are 
well-suited due to their parameter efficiency and 
compatibility with GPU acceleration [3]. 



                                                                                      Shimaa  et al.: Perception Enhancement for Autonomous Vehicles in Foggy Conditions 

 

2 VOLUME 1, NUMBER 2, 2025 

 

This paper proposes a refined autoencoder-based 
image-defogging technique, emphasizing enhanced 
feature extraction. Unlike traditional models that 
reconstruct full images, our method focuses on 
identifying and learning noise patterns, simplifying the 
noise regeneration and removal process. The 
effectiveness of the proposed model is evaluated using 
the RESIDE dataset, demonstrating notable 
improvements in fog removal and image clarity. 

The paper is structured as follows: Section 2 presents a 
literature review; Section 3 describes the proposed 
technique and model architecture. Section 4 details the 
training procedure. Section 5 reports the results and 
discusses comparisons with existing methods. Finally, 
Section 6 concludes the study. 

II. Literature Review 

This section presents key research efforts addressing 
advancements in image defogging, particularly within the 
context of autonomous vehicle vision systems under foggy 
conditions. Given the safety-critical nature of object 
recognition in adverse weather, this domain has received 
considerable attention. 

Chen et al. [28], proposed a Convolutional Autoencoder 
(CAE) for single-image defogging, leveraging densely 
connected networks for both encoding and decoding. 
Unlike traditional methods based on atmospheric scattering 
models, CAE was trained on paired clean and foggy 
images, outperforming eight state-of-the-art approaches 
while maintaining computational efficiency. 

Paven et al. [29].  introduced LCA-Net, a lightweight 
convolutional encoder-decoder network designed for image 
dehazing. By balancing network complexity and image 
quality, LCA-Net enables real-time dehazing without 
relying on atmospheric models, using convolutional layers 
for feature extraction and deconvolutional layers for image 
reconstruction. 
  Yifei Zhang [30], compared simple autoencoders (SAE) 
with convolutional autoencoders (CAE) in image 
processing, finding that CAE achieved superior denoising 
performance and lower MSE loss, producing sharper 
images. The study concluded that CAE offers distinct 
advantages over SAE in noise reduction tasks. 

Despite their promise, traditional autoencoders exhibit 
limitations, such as difficulty controlling hidden-layer 
representations, overemphasis on relational structures, and 
loss of key data relationships. To overcome these Qinxue 
Meng et al. [31], proposed the Relational Autoencoder, 
designed to capture both feature-level and relational data 
characteristics. They further extended this architecture to 
variants including Variational, Sparse, and Denoising 
Autoencoders, demonstrating improved classification and 
robustness across common datasets.  

Fazlali Hamidreza et al. [32], presented a deep 
convolutional autoencoder approach that separates the 
dehazing process into encoder and decoder stages. They 

introduced artificial cloud-like data via a multi-scale super-
pixel method. Compared to DCP, NLD, DehazeNet, and 
AOD-Net, their method produced higher quality outputs 
and avoided excessive image darkening, preserving detail 
in low-intensity regions. 

Akshay Juneja et al. [33], developed Aethra-Net, a fog-
removal algorithm for images and videos. It uses a vessel 
enhancement filter and an autoencoder to estimate 
transmission maps, then applies Airlight compensation. 
Aethra-Net achieves notable performance with low 
computational complexity, making it suitable for real-time, 
software-based applications.  

To address limitations in deep learning dehazing models, 
K. Liu et al. [34], proposed a hybrid architecture combining 
DenseNet and Denoising Autoencoders (DAE). Their 
DAE-DenseNet model significantly improved image 
reconstruction quality, achieving a PSNR of 22.6, 
surpassing conventional methods while avoiding color 
oversaturation. 

A.Ray et al.[35], Introduced an encoder-decoder model 
inspired by the Tiramisu architecture for deep learning-
based dehazing. They evaluated its performance using the 
NTIRE 2018 Dehazing Challenge’s SOTS dataset, 
reporting competitive results for both indoor and outdoor 
scenes. 

While previous methods have made significant strides in 
fog and noise removal, the Noise Learning Denoising 
Autoencoder (NLDAE) model offers unique features that 
enhance its performance, particularly in real-time 
applications.  Unlike traditional methods that rely on 
training models with clean images to restore noisy inputs, 
the NLDAE model is trained directly on the noise (fog) 
itself. This allows the model to learn the specific 
characteristics of fog and efficiently extract it from the 
noisy image. By subtracting the learned fog from the input, 
the model can recover a cleaner image with higher 
accuracy. This novel approach not only improves denoising 
performance but also makes the model highly adaptable for 
real-time usage, as it eliminates the need for additional 
clean image data, making it more efficient and suitable for 
dynamic, real-world scenarios. 

Table 1 summarizes the reviewed fog and haze removal 
techniques. Traditional approaches such as DCP and color 
attenuation models offer simplicity and efficiency but 
struggle under dense fog and lack real-time capability. 
Deep learning models, including CNNs, autoencoders, and 
GANs, have significantly improved dehazing quality, yet 
often come with high computational costs. Recent advances 
leverage lightweight architectures (e.g., LCA-Net, 
AETHRA-Net) and vision transformers to achieve real-
time performance while maintaining high visual quality. 
However,  many methods still face challenges in 
generalizing varying fog densities, complex scenes, or low-
light conditions, highlighting the ongoing need for 
efficient, robust, and  scalable solutions. 
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Table 1: Comparative Summary of Related Dehazing and Denoising Methods 

 

III. Methodology 

 In this study, we employ the Noise Learning-based 
Denoising Autoencoder (NLDAE) framework [36], to 
tackle the complex task of image restoration in foggy 
conditions. This work utilizes the NLDAE framework, 
which builds upon and modifies the traditional Denoising 
Autoencoder (DAE) [37], architecture. We focus on 
enhancing its feature extraction capabilities. Notable 
improvements include architectural optimizations, the 
integration of skip connections, and effective data 
augmentation techniques. The accuracy and effectiveness 
of the restoration process eventually increased as a result of 
these improvements, which enabled the framework to 
capture the crucial characteristics required for dehazing 
more accurately.  

The NLDAE concentrates on learning the noise 
characteristics (haze) from the input data, in contrast to the 

traditional DAE[38], which maps noisy images to clean 
ones directly. By deducting the predicted noise from the 
hazy observation, the trained model eliminates the haze and 
restores the clear image. This method makes use of the 
presumption that the haze has simpler statistical 
characteristics than the original image, allowing for more 
accurate and efficient restoration. 

A. Traditional Denoising Autoencoder 
Feature extraction, dimensionality reduction, and 

unsupervised learning are the main applications of the 
conventional Autoencoder (AE) [38], a deep learning 
model. The AE is made up of two primary parts when it 
comes to image denoising: 

 
• Encoder: A series of convolutional layers (kernel 

size = 3×3, stride = 1) with ReLU activation, 
followed by max-pooling (2×2) to downsample 

Year Ref. No. Model  Advantages Limitations 

2015 Q. Zhu  et al. [10] Color Attenuation Enhances dehazing using color and contrast 
separation Less effective in dense fog 

2016 Berman et al. [11] Non-local Method Utilizes non-local information Computationally intensive 

2018 Cai et al.  [12] Deep Learning  End-
to-End Dehazing Fully automatic dehazing using neural networks Requires large datasets 

2009 He et al.    [13] DCP Popular and interpretable approach May produce halo artifacts 
2017 Li et al.[15] Adaptive Dehazing Adapts to variable fog densities Complex to implement 
2016 Ren et al. [16] Multi-scale CNN Handles heterogeneous fog well Deep network needed 

2010 Tarel et al.[18] Color& Grayscale 
Input Uses multiple image types for better accuracy Increased complexity 

2017 Wang et al.[18] AOD-Net Direct end-to-end fog removal Limited under variable 
lighting 

2018 Zangh et al.[19] GFN Guided dehazing with good quality Needs large training sets 
2020 Chen et al. [20] GridDehazeNet  Grid-based processing improves accuracy Complex structure 
2020 Pan et al[21] MSCNN-HED Better structural detail preservation Resource-intensive 
2019 Goodfellow et al.[22] DCPDN Combines classic and adversarial learning Complicated training 
2018 Zhu et al.[24] GAN Generates realistic outputs Needs careful tuning 
2019 Qu et al.[25] EPDN Handles lighting variation Sensitive to training quality 
2021 Ghosh et al.[27] LIDN Deals with lighting issues effectively High complexity 

2020 Chen et al. [28] Dense Convolutional 
Autoencoder 

Outperformed 8 SOTA methods while maintaining 
efficiency 

Requires paired fog/clean 
images 

2021 Paven et al. [29] Lightweight CNN 
Autoencoder Real-time dehazing without atmospheric model May trade off some quality 

2019 Yifei Zhang [30] CAE vs SAE 
Comparison CAE achieved lower MSE, sharper images SAE had weaker denoising 

2022 Qinxue Meng [31] Advanced 
Autoencoder Variants 

Better representation learning with improved 
robustness Complexity in architecture 

2021 Fazlali Hamidreza [32] Deep Convolutional 
AE 

High output quality; preserved details vs DCP, 
NLD, AOD-Net 

Introduced synthetic data 
complexity 

2022 Akshay Juneja [33] AE + Vessel Filter Suitable for videos; low computational cost May have domain-specific 
limitations 

2022 K. Liu [34] DAE + DenseNet 
Hybrid 

High PSNR (22.6), better reconstruction, no 
oversaturation Increased model complexity 

2019 A. Ray [35]35] Encoder-Decoder 
(Tiramisu-based) Strong results on NTIRE 2018 dataset Generalization to real-world 

scenes not discussed 



                                                                                              E. Shehab et al.: Chemical Toxicity Prediction Based on Artificial Intelligence: A 
Review 

4 VOLUME 1, NUMBER 2, 2025 

spatial dimensions. Batch normalization is applied 
after each convolution, while removing less 
important information, including noise, the encoder 
preserves the image's most important properties [39]. 
 

• Latent Space:  The bottleneck layer compresses the 
input into a 256-dimensional vector. 
 

• Decoder: Transposed convolution (kernel size = 3×3, 
stride = 1) with ReLU activation, followed by 
upsampling, aims to produce an output image that 
nearly resembles the original clean image.  
 

 The DAE[37] is trained to minimize the Mean Squared 
Error (MSE) loss between the associated clean image and 
the noisy input image in denoising tasks. 

 
• Loss Function: Mean Squared Error (MSE) between 

the clean ground truth and the reconstructed image. 
 
As shown in Figure 1, the encoder and decoder work in 

harmony to effectively remove noise and reconstruct a 
clean image, where X represents the blurred image and Y 
represents the image after dehazing. However, non-random 
noise with defined patterns and dependencies, such as haze, 
is difficult for typical DAEs to handle. The NLDAE was 
created to address this constraint.  

  
• Optimizer: Adam (learning rate = 0.001, β₁ = 0.9, 

β₂ = 0.999). 
 

• Limitation: Struggles with structured noise (e.g., 
haze) due to direct image reconstruction. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Traditional Denoising Autoencoder 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Proposed Model Architecture Diagram 

B. Proposed Method 
NLDAE [36]introduces an innovative approach to 

dehazing. Instead of reconstructing the entire clean image, 
as in traditional DAEs, NLDAE is specifically trained to 
learn and regenerate the haze (noise) from foggy input 
images. The haze is then subtracted from the noisy image 
to produce a clean version. As illustrated in Figure 2, the 
architecture implements a systematic haze removal process 
through four key components:   
• Encoder: (five convolutional blocks with max-pooling) 

progressively extracts and downsamples multi-scale 
features while separating haze patterns from clean 
components . 
 

• Bottleneck (Latent Space): The latent space provides a 
compressed representation of the image, embedding 
crucial spatial and structural patterns[40], including 
haze characteristics. This stage facilitates learning the 
unique statistical properties of the haze. 
 

• Decoder: The decoder reconstructs the haze 
component from the latent space using transposed 
convolutional layers (five transposed convolutional 
blocks) for upsampling. Skip connections retain spatial 
details lost during downsampling, ensuring accurate 
haze reconstruction. 

 
• Haze Subtraction Module: Generates the final clean 

image (Î = I_input - ĥ). The model is trained using a 
composite loss function (MSE + λ·SSIM, λ=0.1) with 
AdamW optimization (initial LR=1e-4, cosine decay), 
achieving superior dehazing through targeted noise 
estimation while maintaining computational efficiency 
for real-time applications. 

Input Hazy Image Extracted Haze  

Convolution 
Batch normalization 
Max pooling 
Up sampling 

L
atent space 
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In this case, the target output is the haze component, and 

the network is optimized to predict haze from the noisy 
input. The final clean image is obtained by subtracting the 
predicted haze from the blurry image, providing a practical 
and effective solution for image dehazing. 

C. Dataset 
In this study, the suggested NLDAE for fog removal in 

autonomous vehicle applications was trained and evaluated 
using the RESIDE [41], dataset [42], which offers a 
comprehensive collection of foggy images captured in both 
indoor and outdoor settings. This dataset enables the 
evaluation of dehazing algorithms under diverse conditions. 
To further assess the model’s generalization ability in real-
world scenarios, additional experiments were conducted on 
the Foggy Cityscapes dataset[43], which contains synthetic 
fog applied to real-world urban driving scenes. This 
evaluation highlights the model's robustness across 
different domains and fog densities. 

1) Data  
 Both interior and outdoor photos taken in different foggy 

circumstances are included in the RESIDE [41], Two 
subgroups were used for this study. With 13,900 photos 
captured in various indoor situations with different fog 
levels, lighting, and interior configurations. The outside 
dataset comprises 62,212 photos that show outdoor 
sceneries under foggy circumstances, including rural 
landscapes, highways, and urban streets.  

Furthermore, two test sets were used to assess the trained 
model's performance. SOTS (Synthetic and Outdoor Test 
Set), 500 photos from the RESIDE dataset, is used to 
evaluate how well the model generalizes to synthetic and 
outdoor foggy photographs. Particularly pertinent to 
autonomous driving applications is the HSTS (Highway 
and Street Test Set), a smaller collection of 20 photos that 
concentrates on outside landscapes taken in highway and 
street settings. 

2) Data Characteristics 
A wide range of photos representing different fog 

densities and conditions is included in the dataset. The 
model can comprehend how fog acts in constrained areas 
with varying sight and lighting levels. The outdoor photos, 
on the other hand, show intricate real-world situations with 
a variety of fog intensities, lighting conditions, and scene 
compositions, such as urban traffic, highways, and rural 
places.  

3) Data Preprocessing 
We implemented a rigorous preprocessing pipeline 

involving: Firstly, pixel normalization to the [0,1] range . 
Secondly, comprehensive data augmentation including 
geometric transformations (±15° rotation, horizontal 
flipping) and photometric adjustments (±20% 
brightness/contrast variations), and finally, strategic dataset 

partitioning (80% training, 10% validation, 10% testing) 
with fog-density stratification (mild/moderate/heavy). The 
SOTS (500 images) and HSTS (20 images) subsets were 
reserved exclusively for benchmarking, while Foggy 
Cityscapes data was incorporated to enhance domain 
generalization. All preprocessing operations were 
implemented using TensorFlow's data pipeline with 
deterministic seeding to ensure reproducibility across 
experiments. 

IV. Model Training 

The training procedure, optimization parameters, and 
evaluation approach for the suggested Noise Learning-
based Denoising Autoencoder are described in this part. 

A. Training Setup 
The foggy photos from the RESIDE dataset were used to 

train the NLDAE model, and the setup for the training 
procedure was as follows. The pixel-by-pixel difference 
between the ground truth haze and the expected haze was 
computed using the Mean Squared Error (MSE) loss 
function. To reduce overfitting, the Adam optimizer was 
used with weight decay, momentum parameters (β1 = 0.9, 
β2 = 0.999), and an initial learning rate of 0.0001. In order 
to balance model convergence and computing performance, 
a batch size of 16 was used. Early stopping was used to 
check validation loss and avoid overfitting during the 50 
epochs of training. 

B. Data Augmentation 
Data augmentation methods were used during training to 

improve the model's generalization and resilience. These 
included resizing photographs by random scale factors to 
replicate varied object sizes, rotating the images randomly 
within a range of ±15 degrees to simulate different views, 
flipping the images horizontally to introduce variances, and 
varying brightness levels to simulate different lighting 
situations. 

C. Energy and Efficiency Optimization 
 To address the energy consumption of training deep 

neural networks, several efficiency strategies were adopted. 
The model was trained using Mixed Precision Training, 
which enables faster computation and reduced GPU 
memory usage by combining 16-bit and 32-bit floating-
point operations. Additionally, Early stopping was utilized 
to prevent unnecessary training epochs, and the batch size. 
was tuned to optimize GPU utilization while keeping 
memory demand low. These measures collectively 
contributed to reducing both training time and energy 
consumption.  

D. Hardware and Framework 
The model was implemented using Tensor Flow and 

Keras libraries and trained on an NVIDIA GPU (RTX 
4060) with 16 GB RAM, core i7 enabling efficient 
processing of high-resolution images. The training process 
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was conducted over several hours, depending on the dataset 
size and hardware capabilities.  

E. Evaluation Strategy 
After training, the model's performance was evaluated 

using two distinct test datasets: SOTS and HSTS. Key 
evaluation metrics included Peak Signal-to-Noise Ratio 
(PSNR) and Structural Similarity Index (SSIM). A higher 
PSNR value indicates better image restoration quality by 
measuring the fidelity between the original and dehazed 
images. Meanwhile, SSIM assesses the perceptual 
similarity between the restored and ground truth images, 
reflecting how closely the dehazed output resembles the 
original image from a human visual perspective. 

V. Results and discussions 
The results of the Noise Learning-based Denoising 

Autoencoder (NLDAE) on the RESIDE dataset are shown 
and examined in this section. 

A. Performance on Indoor Dataset 

Using the Indoor SOTS and HSTS subsets, the indoor 
testing was conducted with different fog densities. The 
model performed better than outdoor data on the SOTS test 
set, with a PSNR of 29.87 and an SSIM of 0.966. This is 
because indoor fog patterns are simpler and more 
predictable. The NLDAE obtained a PSNR of 25.61 and an 
SSIM of 0.945 on the HSTS test set in high-density indoor 
fog conditions. These measurements validate the model's 
capacity to successfully minimize haze and preserve 
important information in more difficult settings, even 
though they are marginally lower than the SOTS findings. 

B. Performance on Outdoor Dataset 

 With a PSNR of 25.14 and an SSIM of 0.930 on the 
SOTS test set, the NLDAE effectively removed haze while 
maintaining structural details. The model's ability to 
preserve important visual characteristics necessary for tasks 
like object detection in autonomous cars is demonstrated by 
its strong SSIM score. The model's performance on the 
HSTS test set, which concentrates on high-density fog 
scenarios, was somewhat better than that of the 
conventional outdoor test set, with a PSNR of 26.03 and an 
SSIM of 0.939, demonstrating its resilience in handling 
difficult conditions. 

 
C. Discussion 

The outcomes demonstrate how well the NL DAE model 
performs dehazing tasks in a variety of scenarios. Because 
indoor illumination and haze patterns are more consistent 
and predictable than outside ones, the model performed 
better on indoor photos in terms of PSNR and SSIM.  

On the other hand, because of their dynamic haze 
patterns, varied lighting, and intricate textures, outdoor 
photos posed further difficulties. With only a minor decline 

in performance when compared to the SOTS subsets, the 
NLDAE proved resilient in high-density fog scenarios 
(HSTS), demonstrating its versatility and capacity to 
successfully restore visibility under trying circumstances.  

The NLDAE model takes a novel approach in contrast to 
conventional methods by learning to remove haze instead 
of directly reconstructing the clear image. By reducing the 
statistical complexity of haze removal, this strategy helps 
the model avoid the overfitting and overcomplication 
problems that are common in traditional approaches, while 
still achieving better image clarity and increased 
computational efficiency. 

The strong performance on both indoor and outdoor 
datasets highlights its potential for real-world uses, 
especially in autonomous car systems where improved 
visibility is essential for tasks like object detection and bad 
weather navigation. 

 
Table 2: QUANTITATIVE COMPARISON OF TRADITIONAL DEHAZING 

METHODS ON HSTS AND SOTS OUTDOOR DATASETS. 

Method 
PSNR SSIM 

HSTS SOTS HSTS SOTS 
 

DehazeNet [12] 
    
 24.49 

 
22.46 

 
0.915 

 
0.851 

 
MSCNN[21]  

 
 18.29 

  
19.56 

 
0.841 

 
0.863 

AOD-Net[18]   21.58 20.29 0.922 0.876 
GFN .[19] 
 
Proposed Work (NLDAE) 

 22.49 
 
26.03 

21.55 
 
25.14 

0.874 
 

   0.939 

0.844 
 
    0.930    

 
Table 3:  QUANTITATIVE COMPARISON OF TRADITIONAL DEHAZING 

METHODS ON HSTS AND SOTS INDOOR DATASETS. 

Method 
PSNR SSIM 

HSTS SOTS HSTS SOTS 
 

DehazeNet[12] 
    
-- 

 
21.14 

 
-- 

 
0.847 

 
MSCNN[21]  

 
-- 

  
17.57 

 
-- 

 
0.810 

AOD-Ne[18]  -- 19.06 -- 0.814 
GFN .[19] 
 
Proposed Work (NLDAE) 

-- 
 
25.61 

22.30 
 
29.87 

-- 
 

   0.945 

    0.856 
 
    0.966    

 
Table 2 shows the results of our quantitative evaluation of 

many dehazing techniques using the HSTS and SOTS 
datasets' PSNR and SSIM values. The NLDE model 
outperformed deep learning-based techniques (like AOD-
Net[18] and GFN [21]) as well as more conventional 
techniques (like DehazeNet [12]) in terms of picture 
restoration quality. It obtained the highest PSNR and SSIM 
scores, which are indicated in red. This outcome shows 
how well NLDE works to improve visual quality and 
clarity. 
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Table 3 presents a detailed comparison of various 
dehazing methods, including DehazeNet[44], 
MSCNN[21], AOD-Net[18], GFN[19], and the proposed 
NLDE model, evaluated on the HSTS and SOTS indoor 
datasets. Notably, the methods DehazeNet, MSCNN, 
AOD-Net, and GFN did not report results for the HSTS 
dataset. On the other hand, the NLDE model outperforms 
all other methods on both datasets, achieving the highest 
PSNR and SSIM values, with 25.61 (PSNR) and 0.945 
(SSIM) on HSTS, and 29.87 (PSNR) and 0.966 (SSIM) on 
SOTS. These results demonstrate the superior dehazing 
performance of NLDE. 

In comparing the proposed model with autoencoder-
based dehazing approaches such as the Tiramisu Auto-
Encoder [35], UCL-Dehaze [45], IC-Dehazing [46], 
Convolutional AutoEncoder [28], LCA-Net[29], deep 
convolutional autoencoder [32], Aethra-net[33], DehazeNet 
[47],[48], and DenseNet [34], notable performance 
distinctions emerge. 

 
Table 4 presents a quantitative comparison of various 

dehazing methods based on their PSNR and SSIM scores 
on RESIDE datasets. The NlDE model demonstrates the 
highest performance with a PSNR of 29.87 and an SSIM of 
0.966, significantly outperforming both earlier and recent 
methods. Among recent approaches, Tiramisu Auto-
Encoder (2024) and VDNet (2024) [48] also achieve strong 
results, with PSNR values of 29 and 28.5, respectively. 
However, models like Aethra-net and UCL-Dehaze show 
notably lower performance, highlighting the effectiveness 
of advanced architectures like NlDE for dehazing tasks. 

In some studies, higher PSNR and SSIM values have 
been achieved; however, these improvements often come at 
the cost of significantly increased model complexity. This 
added complexity results in substantially longer processing 
times, making such approaches less suitable for real-time 
applications where speed is a critical factor. For instance, 
Y.cui et al.[49], and Y.wang et al.[50]. Demonstrate 
notable enhancements in image quality metrics but rely on 
deep architectures with extensive computations, leading to 
impractical latency for real-world deployment. Our model, 
by contrast, strikes an effective balance between high 
performance and computational efficiency, making it well-
suited for real-time systems. Therefore, while accuracy is 
essential, maintaining this balance is critical for practical 
applications. 

These examples highlight the inherent trade-off between 
model complexity and computational efficiency. 
Prioritizing techniques that balance speed and quality is 
crucial in real-world applications, particularly those that 
call for real-time processing, like surveillance, autonomous 
cars, or medical imaging. Despite having better 
measurements, overly complicated models could not be 
able to provide the responsiveness required in these 
situations, which would ultimately restrict their usefulness. 

 
Table 4: QUANTITATIVE COMPARISON OF DEHAZING METHODS 

BASED ON AUTOENCODER ON RESIDE DATASETS. 

Method PSNR SSIM 
 

CAE(2019) [28] 
 
24.56 

 
0.9126 

 
LCA-Net(2020) [29]  

  
24.734 

 
0.8951 

DCAE(2020) [33]  24.63 0.93 
Aethra-net(2023) [33] 
 
IC-Dehazing(2023) [46] 

16.408 
  
22.56 

 0.7 
    
    0.894 

   
UCL-Dehaze(2024) [45] 21.36 0.862 

DenseNet(2024) [34] 22.60 0.8633 

VDNet (2024) [48] 28.5     0.92 

Tiramisu Auto-Encoder(2024) [35] 29     0.94 

Proposed Work (NLDAE) 29.87 0.966 

 
Table 5: PERFORMANCE ON FOGGY CITYSCAPES DATASET UNDER 

DIFFERENT TRAINING SETTINGS AND FOG DENSITIES. 

Training data type Fog Density PSNR SSIM 
 

Indoor 
 

Moderate 
 

27.05 
 

0.934 
 
Indoor  

  
Dense  

 
 25.03 

 
0.925 

Outdoor  Moderate   24.07 0.897 
Outdoor Dense  21.06 0.880 

 

D. Real-World Foggy Cityscapes Dataset 

To evaluate the generalization capability of the proposed 
model under real-world scenarios, we conducted 
experiments on the Foggy Cityscapes dataset, which 
features urban outdoor scenes with synthetic fog that 
closely mimics natural fog. The assessment was performed 
using two training settings: in the first, the model was 
trained on indoor hazy images and tested on Foggy 
Cityscapes; in the second, it was trained on outdoor hazy 
images and similarly tested on the same dataset. 
Furthermore, to examine the model’s robustness under 
different fog conditions, we tested subsets of the dataset 
categorized by fog density (moderate and dense). The 
results, summarized in Table 5, indicate that the proposed 
approach maintains competitive performance across 
various fog levels, demonstrating strong generalization in 
challenging real-world environments. 

E. Computational Performance Evaluation 

To assess the real-time feasibility of NLDAE, latency and 
GPU memory metrics were measured. The model achieved 
an average latency of 107.35 ms per image, with a peak of 
292.42 ms and a minimum of 62.84 ms. GPU memory 
consumption remained within 6585 MB out of the available 
8188 MB, indicating that the model is well-suited for 
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deployment in real-time or near real-time autonomous 
driving systems. 

F. Limitations and Future Work 

While even Although the NLDAE model produced 
encouraging results, there are still some drawbacks. Using 
multi-scale feature extraction techniques or adding more 
contextual information could enhance its effectiveness in 
exceedingly complicated outdoor scenes. Furthermore, the 
model's performance in other weather scenarios, such as 
rain or snow, has not yet been assessed, underscoring the 
need for more research.  

VI. Conclusion 

In order to tackle the difficulties of dehazing, especially 
for autonomous cars operating in bad weather 
circumstances like fog, we applied the Noise Learning-
based Denoising Autoencoder (NLDAE) in this study. The 
NLDAE specifically concentrates on learning haze (noise) 
patterns and efficiently eliminating them to improve image 
visibility, in contrast to conventional denoising 
autoencoders.  

We implemented several feature extraction improvements 
to further boost the framework's efficiency, such as 
architectural optimizations, the incorporation of skip 
connections to maintain multi-level details, and 
sophisticated data augmentation methods to increase the 
training dataset. 

The RESIDE dataset, encompassing both indoor and 
outdoor scenes with dense fog, was used to train and 
evaluate the framework. The model achieved strong 
performance on the SOTS and HSTS test sets, with PSNR 
up to 29.87 and SSIM up to 0.966. It also showed 
robustness in dense fog and performed better on indoor 
scenes, reflecting the impact of scene complexity. 
Evaluation on the Foggy Cityscapes dataset confirmed the 
model’s generalization, achieving PSNR/SSIM of 
27.05/0.934 in moderate fog and maintaining competitive 
results in dense fog across various training scenarios. 
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