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ABSTRACT This study presents a real-time framework for swimmer talent identification that integrates state-of-the-art 
pose estimation and machine learning classification techniques. To address the limitations of traditional pose estimation 
methods in aquatic environments, RTMPose is employed to extract reliable 2D joint keypoints. Temporal consistency 
across sequences is achieved using the RIFE interpolation model, selected for its efficiency in standardizing frame 
counts while avoiding the computational overhead of temporal deep learning models such as LSTMs or 3D CNNs. The 
dataset, consisting of underwater breaststroke footage, was augmented and balanced using SMOTE, with sensitivity 
analysis highlighting both its benefits for minority classes and the risk of overfitting. A comprehensive evaluation of 
twelve classifiers demonstrated that ensemble methods, particularly LightGBM, achieved superior results, yielding a 
cross-validation F1 score of 93.6% and a test F1 score of 96.8%. While the framework shows strong promise for 
practical use in sports analytics, its current evaluation is limited to breaststroke and underwater footage. Future work 
will expand to multiple swimming styles, above-water perspectives, and diverse pool environments to ensure broader 
generalization. 

INDEX TERMS Object Detection, Pose estimation, RTMPose, Swimmer, Talent and Machine Learning.

I. INTRODUCTION 

Swimming is a globally recognized sport and a central 
discipline in international competitions. Talent 
identification and performance evaluation in swimming are 
critical for both athlete development and competitive 
success. Unlike land-based sports, swimming presents 
unique challenges for performance analysis, as the aquatic 
environment complicates visual observation. Coaches and 
analysts frequently struggle to perceive detailed 
biomechanical patterns in real time, while post-event 
evaluations rely heavily on replaying video recordings and 
manually tracking athletes’ motions. Such methods are not 
only labor-intensive but also limited in precision, delaying 
feedback and hindering systematic talent development [1]. 

Over the past decade, advances in digital imaging and 
computer vision have transformed performance monitoring 
in aquatic sports. Automated algorithms can now interpret 
swimmer behavior with higher accuracy, minimizing 
dependence on manual observation. A key technology 
driving this progress is pose estimation, which provides a 
structured representation of human motion through skeletal 

keypoints [2, 3]. In swimming, pose estimation supports a 
wide range of applications, including athlete tracking, 
stroke recognition, biomechanical correction, and even 
drowning detection and rescue systems. Importantly, 
underwater imaging enhances the quality of pose 
estimation by reducing surface distortions such as splashing 
and reflections, offering clearer visualization of torso and 
limb movements [4, 5].  

Despite these advances, current methods still face 
substantial challenges. Early attempts relied on graph-based 
models such as Deformable Part Models (DPMs) to capture 
swimmer poses. These approaches used handcrafted 
descriptors like Histogram of Oriented Gradients (HOGs), 
which were computationally expensive and rigid, often 
failing to adapt to large variations in human posture [6, 7]. 
With the rise of deep learning, regression-based models 
attempted direct coordinate prediction but often suffered 
from spatial generalization issues and overfitting in 
dynamic aquatic environments. In contrast, heatmap-based 
approaches, which encode joint probabilities as pixel 
intensities, have demonstrated superior accuracy and 
robustness. Yet, their systematic application in swimming, 
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especially for talent identification rather than stroke 
recognition, remains underexplored [8-10]. 

Another gap lies in temporal modeling of swimmer 
motion. Swimming strokes are cyclic and require consistent 
temporal representation for meaningful analysis. 
Traditional temporal models, such as Long Short-Term 
Memory (LSTM) networks and 3D Convolutional Neural 
Networks (3D CNNs), have been applied in other sports 
domains but are often unsuitable for aquatic analytics. They 
demand large, annotated datasets and impose high 
computational costs, limiting their feasibility for real-time 
deployment. This motivates the use of efficient 
interpolation methods such as Real-Time Intermediate 
Flow Estimation (RIFE) [11], which can normalize video 
length across samples while preserving temporal 
consistency at a fraction of the computational burden. 

Furthermore, swimmer talent datasets often suffer from 
class imbalance. Highly skilled athletes (elite-level or 
“Talent A”) are much rarer than average or non-talented 
swimmers, creating skewed distributions. This imbalance 
biases classifiers toward majority classes and risks 
overlooking minority talent groups. To address this, 
resampling strategies such as Synthetic Minority 
Oversampling Technique (SMOTE) have been introduced 
in machine learning. While SMOTE enhances 
representation of minority classes, it also raises the risk of 
overfitting, particularly when the original sample size is 
very small. Thus, careful sensitivity analysis is necessary to 
validate its impact in talent detection tasks. 

Taken together, these limitations underscore the need for 
an integrated framework that combines robust pose 
estimation, efficient temporal normalization, and strategies 
for handling imbalanced data to support swimmer talent 
identification. Existing studies have primarily focused on 
biomechanical stroke analysis or performance monitoring; 
few have tackled the problem of systematic talent 
classification using pose-based machine learning. 

This study addresses these challenges by introducing a 
real-time framework for swimmer talent detection. The 
framework integrates RTMPose for accurate underwater 
keypoint extraction, RIFE for temporal interpolation, and a 
comparative analysis of twelve machine learning 
classifiers. Special attention is given to ensemble methods 
such as LightGBM, which achieve superior accuracy and 
efficiency, as well as the role of SMOTE in mitigating class 
imbalance. 

The main contributions of this study are as follows: 
• Develop an end-to-end framework that 

integrates RTMPose-based pose estimation 
with machine learning classifiers for swimmer 
talent detection. 

• Employ RIFE for temporal normalization, 
ensuring consistent video sequence length while 
avoiding the computational burden of LSTMs 
and 3D CNNs. 

• Conduct a comparative evaluation of twelve 
classifiers, demonstrating the superior 

performance of ensemble-based models, 
particularly LightGBM. 

• Apply SMOTE for class balancing and include 
a sensitivity analysis to examine its effects on 
minority classes, highlighting both benefits and 
potential risks. 

• Construct and analyze a novel underwater 
breaststroke dataset, laying the groundwork for 
future research on multi-stroke and multi-
environment swimmer analytics. 

The remainder of this paper is structured as follows: 
Section 2 reviews related work on pose estimation and 
swimming analytics; Section 3 details the proposed 
framework, including preprocessing, temporal 
normalization, and classification; Section 4 presents the 
experimental results; and Section 5 concludes with 
limitations and directions for future research. 

II. Literature Review 

Human pose estimation and action recognition in 
computer vision play a critical role in sports science, 
physical assessment, and talent identification. With the 
integration of deep learning techniques—such as Graph 
Convolutional Networks (GCNs) combined with 
spatiotemporal architecture, pose estimation technologies 
have become increasingly accurate, robust, and practical. 
As a result, biomechanical insights can be conveyed in real 
time, personalized training programs can be developed, and 
individual performance can be quantitatively assessed. 
Consequently, athletes, patients, and workers are 
increasingly encountering these technologies in sports 
coaching, rehabilitation, and safety evaluation. 

This section reviews recent methodological advances, 
practical applications, and persisting challenges in pose 
estimation, with a particular focus on its role in athlete 
identification, swimming biomechanics, and sports 
performance enhancement. 

A. Human pose estimation 
Consequently, the use of pose estimation technologies in 

athletic coaching, rehabilitation, and ergonomic hazard 
assessment has continued to grow. This section provides an 
overview of recent methodological developments, practical 
applications, and open challenges in the field, with 
particular emphasis on athlete identification, swimming 
biomechanics, and sports performance analysis [12, 13]. 
Deep learning has significantly advanced pose estimation 
by enabling models that rely on monocular image inputs, 
making the technology more accessible and scalable. For 
example, Convolutional Pose Machines (CPMs), 
introduced in  [14], addressed the vanishing gradient 
problem in deep neural networks through the use of 
intermediate supervision layers. Similarly, the Stacked 
Hourglass Network proposed in [15] improved posture 
prediction accuracy by capturing joint properties at 
multiple spatial resolutions. 
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Pose estimation has also proven useful in evaluating 
athletic activity and improving performance outcomes. In 
[6], a hybrid approach was introduced that combined object 
detection and human posture estimation on sports-specific 
datasets. The method employed Gaussian Mixture Models 
(GMMs) together with the YOLO framework to identify 
human–object interactions (HOI). Skeleton-based models 
and GMM-driven elliptical fitting algorithms were used for 
body posture representation. The findings demonstrated the 
value of pose estimation in advancing sports analytics, 
particularly for athlete assessment and performance 
enhancement. 

B. Recognition of actions 
The precise detection of human posture and motion is 

essential for accurate action recognition, particularly in 
sports scenarios. Deep learning architecture has often 
enabled this progress. For example,  [16] introduced a 
Spatial-Temporal Long Short-Term Memory (ST-LSTM) 
model to capture both spatial relationships among skeletal 
joints and temporal dynamics across video frames. 
Similarly, [17] developed an enhanced LSTM architecture 
with a spatiotemporal attention mechanism, which allowed 
the network to focus on the most informative joints and 
frames during action recognition tasks. 

In [18] , a two-stage human posture estimation system 
was proposed to improve action recognition. The method 
combined Convolutional Pose Machines (CPM) with an 
improved Single Shot Detector (SSD) to generate skeletal 
heatmaps. This approach proved effective in recognizing 
command actions in human–robot interaction scenarios, 
demonstrating the real-world utility of skeleton-based 
recognition. The integration of heatmap representations 
with convolutional neural networks improved accuracy and 
robustness, especially in demanding and dynamic 
environments. 

Pose estimation has also become a fundamental method 
for sports performance analytics, supporting the 
quantitative assessment of athletic techniques. Beyond 
competitive sports, it has applications in personal health 
and fitness. For instance, in [19] , researchers compared 
four deep learning models—MediaPipe, PoseNet, 
OpenPose, and EpipolarPose—for yoga pose recognition. 
Using data from the S-VYASA dataset, which included 
five common yoga poses (e.g., warrior pose, and tree pose), 
the study showed that MediaPipe achieved the highest 
accuracy, up to 90.9%. This performance was attributed to 
its optimized two-stage detector–tracker architecture. These 
findings highlight the potential of pose estimation systems 
in supporting yoga practitioners by providing real-time 
feedback to ensure proper alignment and safety. 

Pose estimation in swimming presents additional 
challenges caused by water refraction and frequent 
occlusions. In [20] , researchers addressed these difficulties 

by introducing a method adapted to different swimming 
styles, which improved joint localization accuracy by 16%. 
Their approach focused on continuous position estimation 
using swimming channel footage that included both above- 
and underwater views. They enhanced CPM models by 
incorporating contextual information such as swimming 
style (backstroke, freestyle, etc.) and temporal correlations 
across frames. The integration of activity-specific and time-
dependent features yielded significant improvements, with 
the Percentage of Correct Keypoints (PCK) increasing by 
up to 16% compared to the baseline. This demonstrates the 
importance of domain-specific knowledge for overcoming 
visual complexities in aquatic environments. 

Further contributions to the swimming domain were 
made by [21] who proposed a method for identifying key 
postures in cyclic swimming motion. Their framework used 
a pictorial structure model supplemented with “poselets” 
derived from Histogram of Oriented Gradients (HoG) 
features. This configuration enabled the detection of 
distinctive postures within repetitive stroke cycles. To 
estimate the most relevant key poses—critical for 
parameters such as stroke frequency—the authors applied a 
maximum likelihood framework that leveraged temporal 
consistency. 

More recently, [22] employed the High-Resolution 
Network (HRNet) to predict swimmer poses from 
underwater video surveillance. Unlike conventional graph-
based methods, HRNet preserved spatial detail by 
maintaining high-resolution feature maps throughout the 
pipeline. Using the HRNet-W48 variation, their model 
achieved an Average Precision (AP) of 95.6%. This study 
highlights the effectiveness of advanced deep learning 
frameworks in diverse aquatic contexts and emphasizes the 
advantages of underwater monitoring for full-body motion 
analysis. 

Building on these findings, the current work integrates 
RTMPose with ensemble-based machine learning 
techniques to develop a real-time system for swimmer 
talent identification. Several key advancements influenced 
this framework: [20] ’s integration of swimming style and 
temporal dynamics, [21]’s cyclic motion modeling strategy 
for identifying critical postures, [22] ’s application of high-
resolution deep learning models for underwater monitoring, 
and [19] ’s demonstration of pose estimation in fitness and 
wellness contexts. By addressing aquatic challenges such 
as occlusion, light refraction, and dynamic movement, our 
work advances human posture estimation in swimming. 
This study contributes to the growing use of pose 
estimation in athlete performance evaluation and talent 
discovery by developing accurate, real-time monitoring 
techniques. 
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III. Methodology 

Figure 1 shows the general structure of the suggested 
method, which includes a comprehensive machine learning 
pipeline intended for motion analysis-based swimming 
talent classification. In order to increase temporal 
granularity, the procedure starts with raw video data that 
has been temporally normalized using the RIFE method to 
interpolate frames and modify each sequence to 70 frames. 
The dataset is then supplemented in order to increase 
variability and enhance model generalization. Important 
joint coordinates in two dimensions (X and Y axes) that 
form the basis of the feature set are then extracted using the 
RTMPose-based architecture for pose estimation. Several 
preprocessing methods are applied to these features, such 
as class balancing, dataset partitioning, and normalization. 
Cross-validation is used to ensure model resilience and 
prevent overfitting. A series of machine learning classifiers 
are then trained using the revised feature data, classifying 
swimmers into four groups: Not Talent, Talent A, Talent B, 
and Talent C. This comprehensive solution combines state-
of-the-art methods in machine learning and computer 
vision to provide accurate and scalable talent assessment in 
competitive swimming. 

 
Figure 1 Overall architecture of the proposed Talent 

Discovering Framework. 

A. Dataset Collection 
A dedicated dataset was constructed by capturing high-

definition video recordings of swimmers using a Full HD 
camera set to a resolution of 1280×720 pixels. This 
resolution enabled the acquisition of detailed visual data, 
including fine-grained biomechanical movements and joint 
angles, serving as a reliable input source for model 
development. The dataset comprises approximately four 
hours of continuous footage, specifically targeting 
breaststroke techniques. To ensure comprehensive 
representation, swimmers across a broad range of 
proficiency levels—from novices to high-performance 
athletes—were included. Classification of swimmer 
expertise was carried out by experienced coaches, ensuring 

both accuracy and consistency in labeling based on their 
execution of the breaststroke stroke. 

While this dataset provides a reliable foundation for 
model development, it is limited to breaststroke swimmers 
and underwater footage. This restriction narrows the 
generalizability of the findings, as the current framework 
has not yet been evaluated across other swimming strokes 
or environmental conditions. Future work will therefore 
expand the dataset to include multiple swimming styles 
(e.g., freestyle, butterfly, and backstroke), above-water 
perspectives, and recordings from different pool 
environments. Such extensions will allow for more 
comprehensive validation and ensure broader applicability 
of the proposed framework. 

 
Figure 2 Distribution of frame counts across the collected 

video samples. 

Achieving uniformity in the number of frames across 
video samples is crucial for consistent model training. In 
this study, an inconsistency in frame counts was identified 
among the collected video clips (see Figure 2), prompting 
the need for temporal standardization. The maximum 
observed frame count of 70 frames was used as the 
reference length to completely capture the swimming 
motion within each sample. To achieve this, we normalized 
all data using RIFE, an interpolation method based on 
neural networks [11]. 

RIFE estimates motion flows, including optical flow, 
between adjacent frames by warping and blending the 
inputs to produce new intermediate frames. The 
Intermediate Flow Network (IFNet) refines motion 
predictions using a hierarchical, coarse-to-fine strategy and 
generates smooth, high-quality interpolations with a fusion 
mask. This enables the upsampling of all video sequences 
to a consistent 70-frame format, ensuring temporal 
synchronization across the dataset and improving the 
effectiveness of subsequent machine learning applications 
[11]. 

Compared with alternative temporal models such as Long 
Short-Term Memory (LSTM) networks or 3D 
Convolutional Neural Networks (3D CNNs), RIFE offers 
several advantages. LSTMs and 3D CNNs require large 
amounts of labeled data to capture motion dynamics, are 
computationally intensive, and introduce significant 
latency, which makes them impractical for real-time 
swimmer analytics. By contrast, RIFE achieves temporal 
consistency through interpolation rather than recurrent 
training or spatiotemporal convolution, making it both 
data-efficient and computationally lightweight. This 
reduces the risk of overfitting on small, imbalanced 
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datasets while still producing temporally coherent 
sequences [11]. 

Additionally, the use of a privileged distillation 
framework in RIFE’s training phase improves interpolation 
accuracy by allowing a teacher network to provide 
advanced supervisory signals to a student network. As a 
result, RIFE can synthesize intermediate motion frames 
with higher fidelity, accelerating convergence while 
maintaining efficiency during inference. Its lightweight 
design and real-time performance make it ideal not only for 
video-based sports analytics but also for use cases such as 
live video feeds, slow-motion rendering, and high frame 
rate display technologies. For these reasons, RIFE was 
selected as the temporal normalization method in this 
framework, ensuring both practical deploy ability and high-
quality temporal alignment in swimmer talent detection 
systems [11]. 

B. Feature extraction 
Three fundamental techniques were investigated in order 

to create a reliable model for identifying swimming talent: 
pose estimation-based analysis, swimmer-specific tracking, 
and holistic video classification. The first strategy allows 
the model to assess the swimmer's movements in addition 
to contextual elements by analyzing the entire video 
without selecting particular segments. Although this 
technique records a great deal of visual information, it may 
be impacted by unrelated background activity, such as 
other swimmers or environmental objects. Additionally, 
analyzing entire video frames—especially those with high 
resolution—can require a significant amount of processing 
power. The small and unevenly distributed dataset 
exacerbates these issues and restricts the model's 
applicability. 

The second strategy locates and tracks the swimmer 
using object detection algorithms; YOLOv8 is employed 
because it has a higher accuracy and inference speed than 
earlier versions like YOLOv3.  This method improves the 
model's capacity to concentrate on the swimmer's 
technique by limiting the study to the region of interest 
(ROI). However, it significantly depends on the tracking 
algorithm's accuracy and adds more computing load during 
preprocessing. Errors in object tracking can lead to 
incorrect motion interpretation, which impairs 
classification performance. This problem is especially 
important when there is a shortage of training data. 

This work uses RTMPose, a real-time, top-down deep 
learning architecture designed for effective multi-person 
keypoint recognition, for posture estimation. To start, a 
pre-trained object detector, like YOLOv3 or RTMDet, is 
used to identify the people in a frame. However, the 
extraction of relevant features for keypoint prediction is 
carried out by a specialized backbone network known as 
CSPNeXt. Once individuals are detected, their 
corresponding regions are cropped and passed through the 
CSPNeXt module, which captures detailed spatial features 
from the input image. These features are subsequently 

forwarded to SimCC—a compact coordinate classification 
component—which reformulates the 2D keypoint 
estimation task as a classification problem, diverging from 
traditional regression-based or heatmap-based approaches. 
The entire feature extraction and pose inference workflow 
is managed internally by RTMPose’s integrated backbone 
and supporting modules. [23] (see Figure 3) 

 
Figure 3 Illustration of the keypoint extraction process 

using RTMPose. 

C. Pre Processing 
 
Each video was meticulously segmented to encompass 

the full execution of the breaststroke, capturing the stroke 
cycle from initiation to completion. This segmentation 
facilitated a granular examination of the swimmer’s 
technique throughout the motion. Following this, the 
segmented clips were classified into four distinct categories 
based on performance level: (see Figure 4) 

 
Figure 4 Number of videos in each swimmer talent class 

(Talent A, Talent B, and Talent C) within the breaststroke 
dataset prior to augmentation. 

The classification into distinct categories was based on 
the swimmers’ proficiency and effectiveness in performing 
the breaststroke technique. To ensure consistency and 
reliability, experienced coaches conducted the labeling 
process. 

Given the limited size of the original dataset, video 
augmentation strategies were implemented to enhance 
variability and expand the data volume, effectively tripling 
the dataset. Each source video was augmented into eight 
distinct versions (see Figure 5) using a combination of 
transformations, including rotation, brightness modulation, 
and horizontal flipping. Rotational adjustments within a 
range of –15° to 15° introduced perspective variation, 
allowing the model to better accommodate different 
viewing angles. Alterations in brightness simulated a range 
of lighting scenarios, improving the model’s ability to 
function under diverse illumination conditions. Flipping 
was applied to diversify the orientation of motion, 
promoting the learning of direction-invariant features and 

Pose Estiamtion (RTMPose)

Augmented data Keypoints data
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thereby enhancing overall model generalization and 
performance. (see Figure 6) 

 
Figure 5 Distribution of videos across swimmer talent 

classes (Talent A, B, and C) in the breaststroke dataset after 
augmentation. This figure highlights the initial class 

imbalance and the role of augmentation in improving class-
level representation prior to training 

 
Figure 6 Example frames from the augmented dataset, 
demonstrating variations in brightness, rotation, and 

scaling. These augmentations increase data diversity and 
improve the robustness of the classifiers against visual 

distortions. 

Splitting 
Following the augmentation process, the dataset was 

partitioned into training and testing subsets, with 80% 
allocated for model training and the remaining 20% 
reserved for evaluation. Consequently, 349 testing samples 
and 1,395 training samples were produced. 

 
Scaling 

Standard scaling was applied to normalize the dataset. 
This technique transforms feature values by subtracting the 
mean and dividing by the standard deviation, thereby 
producing a distribution with zero mean and unit variance.  

 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

      (1) 
 
Cross Validation 

By splitting the dataset into five separate and roughly 
equal groups, this method guarantees a consistent 
distribution of class labels across all folds; I use five folds. 

 
Balanced SMOTE 

The dataset exhibited a clear imbalance across swimmer 
categories, with underrepresentation in high-talent groups 
such as Talent A. To mitigate this issue, we employed the 

Synthetic Minority Oversampling Technique (SMOTE), 
which generates synthetic samples of minority classes by 
interpolating between existing samples. This method 
reduces bias toward majority classes, improves class-level 
representation, and enhances overall model accuracy 
compared to naïve oversampling. 

performance measure 
A range of performance criteria were used to assess the 

machine learning models' ability to detect swimming talent 
after the training phase. The evaluation framework's 
integration of accuracy, precision, recall, and F1-score 
allowed for a thorough analysis of overall performance. 

 
Evaluation Metrics 

Accuracy: By figuring out the proportion of accurately 
classified events relative to all predictions. [24]   

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐= 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹 (2) 

 
Precision: Precision quantifies the accuracy of the 

model's positive predictions by dividing the number of true 
positives by the total number of expected positives.[24] 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
  (3) 

 Recall: Recall, also known as sensitivity, gauges how 
well the model can detect every real positive instance. [24] 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
  (4) 

F1-Score: The F1-score, which represents the harmonic 
means of precision and recall, offers a comprehensive 
evaluation of a model's performance, particularly when 
working with unbalanced datasets. [24] 

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ×
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

  (5) 
To assess machine learning models for identifying 

swimming talent, a number of performance metrics, 
including accuracy, precision, recall, and F1-score. 

  
Classification models 

To create a useful framework for identifying swimming 
talent, this study assessed a range of machine learning 
algorithms, including both traditional  (SVM, KNN, 
Logistic Regression) and ensemble-based (CatBoost, 
LightGBM, XGBoost). Joint coordinate sequences 
acquired through pose estimation were used to create the 
structured data that the models were trained on. Because 
ensemble models can handle high-dimensional, noise, and 
incomplete data, they performed well, especially CatBoost  

 and LightGBM. Interpretable baselines were provided by 
conventional classifiers. Notably, ensemble approaches 
also provided biomechanical insights into swimmer 
performance by highlighting important joint movements 
that affect classification. 

Model Hyperparameter Settings 
Table 1 below lists all the machine learning models used 

in this study, along with the corresponding 
hyperparameters that were set up for each model during 
training and evaluation: 
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 Table 1 Parameters of Machine Learning Models 

IV. Results and discussions 
The performance of machine learning models was 

evaluated on the dataset. The results were compared 
between training and testing datasets using metrics 
including Cros validation F1 score, Accuracy, Precision, 
Recall, and F1 Score. The results are detailed in Table 2 

Table 2 Evaluation of Machine Learning Models on 
Training and Testing Sets Using Benchmark Metrics 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 
 

Models  Parameters 

CatBoost iterations=500 

random_state=0 

Hist Gradient 
Boosting loss='log_loss' max_iter=100 learning_rate=0.1 

Extra Trees n_estimators=100 criterion='gini' max_features='sqrt' 

LightGBM boosting_type='gbdt' num_leaves=31 learning_rate=0.1 n_estimators=100 

Random Forest n_estimators=100 criterion='gini' max_features='sqrt' 

Bagging n_estimators=10 

AdaBoosting n_estimators=50 learning_rate=1.0 

XGBoost use_label_encoder=True eval_metric='logloss' 

Logistic Regression penalty='l2' C=1.0 solver='lbfgs' max_iter=100 

K Nearest 
Neighbors n_neighbors=5 weights= 'uniform' algorithm='auto' 

Support Vector 
Machine C=1.0 kernel='rbf' gamma='scale' 

Decision Tree criterion='gini' splitter='best' 

Models 
Cross 
Validation 
F1 Score 

Training Testing 

Accuracy  Precision  Recall  F1 Score  Time (S) Accuracy  Precision  Recall  F1 Score  Prediction Time 
(S) 

LightGBM 93.6 100.0 100.0 100.0 100.0 15.071869 96.848 96.9 96.8 96.8 0.006209 
Hist 

Gradient 
Boosting 

94.6 100.0 100.0 100.0 100.0 29.568383 96.562 96.5 96.6 96.5 0.016641 

Extra Trees 93.6 100.0 100.0 100.0 100.0 0.416143 96.275 96.4 96.3 96.2 0.031903 

CatBoost 94.0 100.0 100.0 100.0 100.0 151.685011 95.702 95.8 95.7 95.7 0.008477 
Random 
Forest 91.7 100.0 100.0 100.0 100.0 1.368065 95.129 95.2 95.1 95.1 0.032688 

XGBoost 93.9 100.0 100.0 100.0 100.0 20.588125 95.129 95.4 95.1 95.1 0.005984 

Bagging 87.5 99.3 99.3 99.3 99.3 4.155604 91.117 91.2 91.1 91.1 0.158459 
Decision 

Tree 81.8 100.0 100.0 100.0 100.0 3.442314 87.966 88.4 88.0 88.0 0.001323 

Logistic 
Regression 81.9 91.6 91.7 91.6 91.6 2.088439 82.521 82.6 82.5 82.5 0.001000 

K Nearest 
Neighbors 74.9 90.5 91.6 90.5 90.7 0.098177 78.510 81.1 78.5 79.1 0.062718 

Support 
Vector 

Machine 
67.1 71.8 76.6 71.8 72.5 2.783184 71.920 77.4 71.9 72.5 0.470623 

AdaBoosting 43.1 45.2 59.1 45.2 41.8 25.687481 43.553 55.8 43.6 39.8 0.041550 
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The comprehensive evaluation of twelve machine 
learning algorithms, with a particular emphasis on 
ensemble learning techniques, revealed clear differences in 
performance, generalization, and computational efficiency. 
As summarized in the results table, models such as 
LightGBM, Hist Gradient Boosting, Extra Trees, and 
CatBoost consistently outperformed others across nearly 
all key metrics, including cross-validation F1 score, 
precision, recall, and inference latency. 

LightGBM emerged as a top performer. It achieved a 
cross-validation F1 score of 93.6%, perfect training 
accuracy, and a test F1 score of 96.8%. The model 
balanced accuracy and efficiency effectively, with a 
training time of just over 15 seconds and a prediction 
latency of 0.006 seconds. These characteristics make 
LightGBM particularly suitable for real-time systems that 
require both speed and reliability. 

Hist Gradient Boosting, although marginally slower in 
training (~30 seconds) and prediction (0.017 seconds), 
achieved the highest cross-validation F1 score at 94.6%. 
This suggests superior generalization to unseen data. Its 
performance closely paralleled that of LightGBM, making 
it well-suited for applications where a small improvement 
in generalization justifies the additional computational 
cost. 

Extra Trees offered a strong trade-off between accuracy 
and speed. Its test F1 score (96.2%) and cross-validation 
F1 score (93.6%) were comparable to the leading models. 
However, it excelled in efficiency, requiring only 0.42 
seconds for training and 0.031 seconds for prediction. 
These attributes make Extra Trees particularly appealing 
for deployment in resource-constrained environments or 
for iterative model testing pipelines. 

CatBoost also demonstrated strong predictive capability, 
with a cross-validation F1 score of 94.0% and a test F1 
score of 95.7%. It combined excellent accuracy with very 
low prediction latency (0.008 seconds). Its primary 
limitation, however, was the lengthy training time (151.69 
seconds), which may reduce its feasibility in scenarios 
requiring frequent retraining or real-time model updates. 

By contrast, traditional models such as Logistic 
Regression and Decision Trees performed substantially 
worse. Their test F1 scores were 82.5% and 88.0%, 
respectively. Although interpretable and computationally 
lightweight, these models lacked the predictive strength 
needed for structured and complex datasets. 

Overall, the evaluation highlights the superiority of 
ensemble-based methods, particularly LightGBM and Hist 
Gradient Boosting, for structured, keypoint-derived 
datasets such as those used in swimming talent detection. 
These models combine accuracy, scalability, and 
responsiveness, making them highly suitable for both 
academic exploration and practical deployment (see 
Figures 7, 8, and 9). 

From a hardware perspective, the complete inference 
pipeline—including pose keypoint extraction with 
RTMPose—was executed on an Intel i7-9750H CPU. The 

keypoint estimation process for a 70-frame video sequence 
required approximately 14–16 seconds, consuming only 
0.000271 kWh of energy. This corresponds to an estimated 
cost of 0.003 cents per sequence, underscoring the 
computational and economic efficiency of the proposed 
approach. 

 
Figure 7 Comparison of testing accuracy, precision, recall, 

and F1-score across twelve machine learning classifiers. The 
figure illustrates the relative performance of different 
models, highlighting the superior results achieved by 

ensemble-based methods such as LightGBM. 

 
Figure 8 Comparison of training and testing performance 
(accuracy, precision, recall, and F1-score) between the 

machine learning models. This comparison provides insights 
into model generalization and helps identify cases of 

potential overfitting or underfitting. 

 
Figure 9 training and testing time (in seconds) for each 

machine learning model. The figure emphasizes the trade-off 
between accuracy and computational efficiency, showing 
that LightGBM achieves both strong performance and 
reduced training time. 
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Figure 10 Confusion matrix and ROC-AUC curve for the 

LightGBM model on the testing dataset. These visualizations 
confirm the model’s ability to achieve high classification 

accuracy across all talent classes while maintaining robust 
discrimination between classes. 

Figure 10. Classification outcomes of the best-
performing model (LightGBM). The confusion matrix 
(left) shows strong predictive performance across all 
swimmer talent categories, with minimal 
misclassifications. The normalized confusion matrix 
(center) highlights near-perfect recall for Not Talent (0.98), 
Talent B (0.97), and Talent C (0.93), while Talent A 
achieved lower recall (0.75) but perfect precision, 
reflecting its small sample size (n = 8). The ROC-AUC 
curves (right) further confirm discriminative power, with 
AUC values ranging from 0.994 to 1.000. Together, these 
results validate the model’s robustness and suitability for 
pose estimation–based talent recognition. 

 
Table 3 Classification Performance Metrics by Talent 

Category 

Class Number Accuracy Precision Recall F1 Score 
Not 
Talent 210 98 % 97 % 98 % 97 % 

Talent A 8 75 % 100 % 75 % 86 % 

Talent B 117 97 % 96 % 97 % 97 % 

Talent C 14 93 % 100 % 93 % 96 % 

 
Table 3 presents the classification results for each swimmer 
category, including F1 score, recall, accuracy, and 
precision. The model achieved strong performance in most 
categories. For the Not Talent group, the F1 score was 97% 
with an accuracy of 98%, indicating highly reliable 
classification. Similarly, Talent B achieved 97% across all 
major evaluation metrics, confirming the model’s stability 
in recognizing this category. The Talent C class also 
performed well, with an F1 score of 96%, perfect precision 
(100%), and recall of 93%. In contrast, Talent A achieved 
lower results, with an F1 score of 86% and recall and 
accuracy of 75%, despite maintaining perfect precision. 
These variations are likely due to class imbalance and the 
smaller sample size of underrepresented categories such as 
Talent A. 
Overall, ensemble-based models—particularly LightGBM 
and Hist Gradient Boosting—demonstrated superior 
performance for swimmer talent classification. Both 
achieved high predictive accuracy (test F1 ≥ 96.5%) while 
maintaining inference speeds suitable for real-time 
deployment. Extra Trees provided a strong accuracy–
efficiency trade-off, whereas CatBoost achieved excellent 
accuracy but required significantly longer training. In 

comparison, traditional models such as Logistic Regression 
and Decision Trees, though computationally lightweight, 
lagged behind in predictive power and were less suitable 
for structured, keypoint-derived datasets. 

Class-wise analysis confirmed robust recognition of Not 
Talent, Talent B, and Talent C, with minor limitations for 
Talent A caused by imbalance. Furthermore, the complete 
pipeline, which integrated RTMPose for keypoint 
extraction, was computationally and economically 
efficient. These results reinforce the feasibility of 
deploying the proposed system for practical swimmer 
talent identification and broader applications in pose-based 
sports analytics. 

 
A. Discussion 

Comment 3: While SMOTE is mentioned for class 
balancing, its impact on performance is not analyzed, nor are 
potential overfitting risks for small classes (e.g., “Talent A”) 
addressed. Including a sensitivity analysis or an ablation 
study on the balancing method would enhance the robustness 
of the findings. 

SMOTE. As shown in Table 4, the overall effect was 
minimal for most categories. Not Talent, Talent A, and 
Talent C maintained almost identical performance across 
precision, recall, and F1. The main difference appeared in 
Talent B, where recall improved from 0.96 to 0.97, while 
precision decreased slightly from 0.97 to 0.96, resulting in 
a marginal F1 increase (0.96 → 0.97). These results 
suggest that SMOTE broadened the decision boundary to 
capture more true positives for Talent B, with only a minor 
cost in precision. For Talent A, performance remained 
unchanged, reflecting the limitations of oversampling when 
the original sample size is extremely small (n=8). 

Table 4 Classification performance of LightGBM before 
and after applying SMOTE 

 Before After  

Class Precision Recall F1 
Score Precision Recall F1 

Score Number 

Not Talent 96 % 98 % 97 % 97 % 98 % 97 % 210 
Talent A 100 % 75 % 86 % 100 % 75 % 86 % 8 
Talent B 97 % 96 % 96 % 96 % 97 % 97 % 117 
Talent C 100 % 93 % 96 % 100 % 93 % 96 % 14 

B. Limitations and Future Work 

Although the proposed framework demonstrates strong 
performance, its evaluation was limited to underwater 
breaststroke footage. This restriction constrains the external 
validity of the findings, as the model’s ability to generalize to 
other swimming strokes, above-water perspectives, and 
diverse pool environments has not yet been tested. To 
address this limitation, future work will extend the dataset to 
include freestyle, butterfly, and backstroke techniques, along 
with above-water recordings and data collected from multiple 
facilities. Such expansions will enable a more comprehensive 
evaluation of the framework’s robustness, scalability, and 
applicability, ultimately supporting its adoption in real-world 
swimming analytics. 
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V. Conclusion 

This study proposed an end-to-end framework for real-
time swimmer talent detection that integrates RTMPose-
based pose estimation with machine learning classifiers, 
supported by temporal normalization using RIFE and class 
balancing through SMOTE. The comparative evaluation of 
twelve classifiers demonstrated the advantages of 
ensemble-based methods, with LightGBM achieving the 
best trade-off between accuracy, computational efficiency, 
and interpretability. Sensitivity analysis further confirmed 
the benefits of SMOTE in improving recognition of 
minority classes, while also highlighting potential risks of 
overfitting in small groups such as Talent A. 

The results confirm that the proposed framework is both 
accurate and computationally efficient, making it a 
promising solution for practical deployment in aquatic 
sports analytics. Nevertheless, the framework’s external 
validity is currently constrained by its reliance on 
underwater breaststroke footage.  
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