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ABSTRACT 
INTRODUCTION: Dental implants have transformed restorative dentistry, offering a reliable solution for tooth replace-
ment. Their success depends on primary implant stability, which is closely tied to bone density. Misch’s classification sys-
tem provides a precise method for assessing bone density. Cone Beam Computed Tomography (CBCT) has emerged as a 
preferred tool due to its lower radiation and cost-effectiveness. Recent advancements in deep learning, particularly Vision 

Transformers, show promise in analyzing CBCT images for bone density classification. 
AIM: This research focused on designing and evaluating Vision Transformer (ViT) models to classify jawbone density from 
CBCT scans. 
MATERIALS AND METHODS: A comprehensive dataset of 5,545 CBCT images, extracted from 500 scans, was orga-
nized into training, validation, and testing groups. Binary masks were utilized to isolate regions of interest, and the images 
were categorized into five density types following the Misch classification. Several ViT architectures were trained and as-
sessed, with performance evaluated using key metrics, including accuracy, sensitivity, specificity, loss, and area under the 
curve (AUC). 

RESULTS: The SwinV2 model delivered the best overall performance, achieving the highest accuracy (85.65%) and speci-
ficity (90.13%), along with a strong AUC (0.73) and the lowest loss (0.8905). The ViTamin model excelled in sensitivity, 
while the XciT model also performed well, showcasing its reliability. The integration of binary masks improves model out-
comes, emphasizing their value in refining classification tasks. 
CONCLUSIONS: The SwinV2 model proved to be the most effective for jawbone density classification. The use of binary 
masks significantly enhanced model accuracy. 
KEYWORDS: Artificial Intelligence, Cone Beam Computed Tomography, Convolutional Neural Networks, Deep Learning, Den-
sity Classification. 
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INTRODUCTION 
Dental implants have revolutionized restorative 

dentistry by providing a reliable solution for replac-

ing missing teeth (1). A critical factor in their suc-

cess is primary implant stability, which significant-

ly influences osseointegration; the process of bone 

integration that ensures the implant's long-term 

stability and functionality (2).  
Research has shown a strong link between 

primary implant stability and local bone density, 

with lower bone density often leading to higher 

failure rates, while higher density is associated with 

better outcomes (3). This relation allows surgeons 

to evaluate the potential success of the procedure 

before surgery and modify the treatment plan ac-

cording to the patient's bone quality  (4).  

To better understand bone density, Misch intro-

duced a classification system in 1988, dividing 

bone mineral density into four categories (D1-D4) 

based on the microscopic composition of compact 

and cancellous bone. The D1 type represents com-

pact bone with minimal cancellous bone, while the 

D4 type consists of mostly cancellous bone with 

little to no cortical bone (5). Later, Misch expanded 

this classification by incorporating Computed To-

mography (CT) scans and Hounsfield Units (HU) 
to provide a more precise assessment of bone den-

sity (6).  

Computed tomography scans are frequent-

ly employed as a preoperative tool for evaluating 

bone quality and quantity before implant place-

ment. Hounsfield Units (HU), derived from CT 

scans, measure bone density by calculating the de-
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gree of X-ray attenuation per voxel, providing a 

detailed representation of the bone's density (7). 

Based on these HU values, Misch categorized bone 

density into five groups: D1 bone, the densest, has 

values above 1250 HU; D2 ranges from 850 to 
1250 HU; D3 falls between 350 and 850 HU; D4 

spans 150 to 350 HU; and D5, the least dense, has 

values below 150 HU (6). 

Cone Beam Computed Tomography 

(CBCT) has become the preferred imaging modali-

ty for dental applications because it offers lower 

radiation exposure and is more cost-effective than 

conventional CT scanners (8). In CBCT scans, the 

grayscale, or voxel value, reflects the level of X-ray 

attenuation. As a result, CBCT manufacturers often 

convert grayscale values into Hounsfield Units 

(HU) for standardization (8, 9). 
Multiple studies have evaluated the preci-

sion of CBCT voxel values in measuring bone den-

sity (9-11). For example, a study by Parsa et al. 

(12) compared CBCT with multislice CT (MSCT) 

and micro-computed tomography (micro-CT), 

showing a strong agreement between CBCT and 

MSCT results. These findings indicate that CBCT 

is a reliable tool for evaluating bone density in po-

tential implant areas, making it a practical alterna-

tive to more advanced imaging techniques.  

Over the past few years, deep learning, a 
branch of artificial intelligence (AI), has become 

increasingly popular for analyzing radiographic 

images (13). Within the domain of deep learning, 

artificial neural networks (ANNs) have seen signif-

icant growth in use and recognition. ANNs consist 

of interconnected units known as neurons, which 

are structured into multiple layers. In medical and 

dental applications, convolutional neural networks 

(CNNs) and vision transformers (ViT), along with 

their variations, are among the most widely utilized 

types of ANNs (14).  

Vision transformers represent a major ad-
vancement in the field of deep learning, demon-

strating remarkable capabilities in processing both 

natural language and visual images. Although ef-

fective at transmitting and storing data, its most 

notable feature is its capacity to understand long-

range relationships within information (15). 

Vision transformers function by splitting 

an input image into smaller segments, which are 

treated as tokens, similar to how transformers pro-

cess words in textual data. These image segments 

are converted into fixed-length vectors through 
linear embedding and paired with positional em-

beddings to maintain spatial details (16). This ap-

proach allows ViTs to process visual information 

with high precision and efficiency (17). 

According to existing literature, no studies 

have explored the use of deep learning, particularly 

vision transformers, for classifying jawbone density 

using CBCT scans. To address this gap, the prima-

ry objective of this research was to design and im-

plement a deep learning model trained on a com-

prehensive dataset of CBCT images. The model's 

accuracy was evaluated to confirm its reliability 

and effectiveness in classifying bone density, en-

suring its potential for practical application in clini-
cal settings. 

The null hypothesis of this research was 

that there is no statistically significant difference 

between the developing vision transformer model 

and the manual method for bone density classifica-

tion using CBCT images.  

 

MATERIALS AND METHODS 
Sample size estimation 
Sample size was planned based on 95% confidence 

level to detect the accuracy of an artificial intelli-

gence model in CBCT-based implant planning. 

Roongruangsilp and Khongkhunthian (18) reported 

that the panoramic accuracy of the original model 

used on 300 images is 60% (6/10) [95% confidence 

interval= 75.83, 84.80]. The required sample size 

was calculated to be 455 CBCT scans, increased to 

500 to make-up for processing problems (19). 

Software  

MedCalc Statistical Software version 19.0.5 (Med-

Calc Software bvba, Ostend, Belgium; 
https://www.medcalc.org; 2019). 

Dataset Collection 

Following approval from the Research Ethics 

Committee of the Faculty of Dentistry at Alexan-

dria University (IRB NO: 00010556-

IORG0008839), a dataset comprising 500 CBCT 

scans was compiled. These scans were sourced 

from a private radiology center after ethical ap-

proval from the center's internal review board, en-

suring compliance with data privacy and patient 

confidentiality. Given the retrospective and anon-
ymized nature of the dataset, individual patient 

consent was waived in accordance with national 

ethical guidelines for non-interventional research. 

The scans were captured using the Green X CBCT 

machine (Green X Ct, Vatech, Hwaseong, Republic 

of Korea). The imaging process adhered to specific 

parameters: a voltage of 90kVp, current of 10mA, 

full 360° rotation, and an exposure time of 9 sec-

onds. The field of view varied between 8*5 cm and 

9*16 cm, with voxel sizes set at 120, 200, and 300 

microns. 

Each scan underwent a thorough evalua-
tion to ensure compliance with the study’s inclu-

sion criteria. Eligible scans included patients aged 

18 years or older, regardless of gender, who were 

free from systemic diseases and exhibited single or 

multiple edentulous spaces in either the maxilla or 

mandible, whether anterior or posterior. Scans were 

excluded if they displayed artifacts at the meas-

urement sites or revealed pathological lesions. 

Dataset Preparation 

All CBCT images were initially saved in the Digi-

tal Imaging and Communications in Medicine (DI-
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COM) format. These DICOM files were then im-

ported into Blue Sky Plan® version 4.12.13 soft-

ware (mdi Europa GmbH, Langenhagen, Germany) 

for analysis and to generate dental volume recon-

struction (DVR). A panoramic view was created by 
drawing a panoramic curve in the axial view, start-

ing from the right condyle, passing through the 

center of each tooth, and ending at the left condyle. 

Cross-sectional images were subsequently generat-

ed at the required positions. 

In the reconstructed panoramic view, all 

edentulous areas were identified and marked. Bone 

density measurements were manually performed on 

the cross-sectional images using the software’s 

measurement tools by two oral radiologists cali-

brated on the assessment method. To expand the 

dataset, a standardized measurement of six milli-
meters was taken for each edentulous space, with 

measurements conducted at the mid-center of the 

edentulous bone. The images were then exported in 

JPG format to ensure uniformity. 

Subsequently, bone density values were 

categorized into five classes based on the classifi-

cation system proposed by Misch (6) (Figure 1). 

The bone density class and its corresponding JPG 

image were recorded and prepared for use in train-

ing the model (Figure 2). 

Model Training 
The dataset consisted of 5,545 JPG images derived 

from CBCT scans, which were split into three sub-

sets: 4,645 (from 350 scans) images for training, 

300 (from 50 scans) for validation, and 600 (from 

100 scans) for testing. 

The training procedure involved several 

key steps. First, a binary mask was created for each 

input image to identify the specific region where 

bone density classification was required. Since 

bone density could vary within the same image, the 

mask served as a guide, directing the model to fo-

cus on the relevant area. This mask was integrated 
as a fourth channel alongside the original RGB 

image. To maintain uniformity, all images were 

resized to 336 × 336 pixels before processing. 

After preparing the training data, multiple 

pre-trained models were utilized to predict bone 

density classifications within the masked regions. 

Each model was trained independently on a P100 

GPU, using categorical cross-entropy loss as the 

objective function. The Adam optimizer was em-

ployed with a learning rate of 0.00003, and a batch 

size of 1 was used for training. The number of 
epochs ranged between 25 and 50, depending on 

the experiment. A variety of Vision Transformers 

models were applied to accomplish this task as 

follows:  

CaiT (Class-Attention in Image Transformers) 

(20): 

The CaiT model introduces significant advance-

ments to transformer-based architectures, making 

them more efficient for image classification tasks. 

By incorporating two key innovations, LayerScale 

and class-attention layers, it reduces both the num-

ber of parameters and computational complexity. 

LayerScale enhances the training of deeper models 

by integrating a learnable diagonal matrix into re-
sidual blocks, which stabilizes optimization and 

improves performance as the model's depth in-

creases. Meanwhile, the class-attention layers sepa-

rate the attention mechanisms for image patches 

and class embeddings, enabling more precise and 

effective class representation. These features col-

lectively enhance the model's efficiency and accu-

racy in handling image classification. 

XciT (Cross-covariance Image Transformer) (21): 

This model incorporates cross-covariance attention, 

a mechanism designed to enhance efficiency by 

focusing on feature channels instead of tokens. This 
approach significantly reduces computational com-

plexity, enabling the processing of high-resolution 

medical images without compromising scalability. 

By shifting attention to channels rather than tokens, 

the model achieves greater efficiency while main-

taining its ability to handle detailed and large-scale 

medical imaging data. 

Swin V2 (22): 

Swin Transformer V2 addresses limitations in the 

original Swin Transformer, particularly in terms of 

training stability and scalability. Key enhancements 
include the implementation of residual post-

normalization, which stabilizes training by regulat-

ing activation levels throughout the network layers. 

Furthermore, the model incorporates a log-spaced 

continuous position bias, enabling greater adapta-

bility to varying window sizes and improving its 

versatility for diverse tasks. The architectural de-

sign of the Swin V2 model is illustrated in (Figure 

3).  

CrossViT (Cross-Attention Vision Transformer) 

(23): 

The architecture of this model features a dual-
branch design, allowing it to analyze image patches 

at varying scales. This approach enables the simul-

taneous extraction of detailed local features and 

broader contextual information. By leveraging 

cross-attention between patches of different sizes, 

the model seamlessly merges local and global in-

sights, enhancing its ability to classify complex 

patterns. Furthermore, the integration of linear to-

ken fusion optimizes computational efficiency, 

making it an ideal choice for medical imaging ap-

plications where resource conservation is critical. 
ViTamin (Vision Transformer for Vision-Language 

tasks) (24): 

ViTamin represents a cutting-edge hybrid model 

specifically engineered to handle large-scale im-

age-text datasets with high efficiency. By integrat-

ing Mobile Convolution Blocks (MBConv) and 

Transformer Blocks, it effectively extracts high-

resolution features for image classification tasks. 

The model demonstrates exceptional generalization 
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capabilities, even with limited data, making it par-

ticularly well-suited for clinical applications where 

annotated datasets are often scarce. Additionally, 

the incorporation of GeGLU (Gated Linear Units) 

enhances parameter efficiency, delivering a balance 
of accuracy and computational performance that is 

ideal for analyzing intricate dental imaging pat-

terns.  

Model Testing 

Throughout model training, no instability or diver-

gence was observed. Training and validation losses 

decreased smoothly and consistently, and early 

stopping was employed where appropriate. This 

ensured that the training process was robust and 

free from overfitting. 

The models' ability to predict bone classes 

was evaluated by comparing their predictions on 
the test dataset against the actual class labels. Per-

formance metrics, including sensitivity, specificity, 

accuracy, loss, and area under the curve (AUC), 

were calculated to assess their effectiveness. These 

metrics were computed for each individual class 

and then averaged across all classes to determine 

the overall performance of the models. 

Sensitivity, calculated as TP/(TP+FN) 

×100, measured the models' capability to correctly 

identify each bone class. Specificity, calculated as 

TN/(TN+FP) ×100, evaluated their ability to avoid 
incorrect classifications. The AUC, derived using a 

one-vs-rest multiclass classification approach, 

summarized the balance between sensitivity and 

specificity across different classification thresholds. 

Accuracy, calculated as 

(TP+TN)/(TP+TN+FP+FN) ×100, represented the 

overall proportion of correct predictions made by 

the models. 

 The evaluation process utilized true posi-

tives (TP), true negatives (TN), false positives (FP), 

and false negatives (FN) obtained from the confu-

sion matrix. Data analysis was conducted using 
MedCalc Statistical Software version 19.0.5 (Med-

Calc Software bvba, Ostend, Belgium; 

https://www.medcalc.org; 2019). 

Reliability Assessment 

To ensure consistency in density classification, 

calibration was conducted for two examiners. Both 

inter-examiner and intra-examiner reliability were 

assessed, with the intraclass correlation coefficient 

(ICC) ranging from 0.833 to 0.998. This range in-

dicates a high level of reliability, demonstrating 

excellent agreement between the examiners as well 
as consistent performance over time. 

 
Figure 1: Misch Bone Density Classification. 
 

 
Figure 2: Composite Figure of Misch Density 

Classes on Cross-sectional CBCT Images. 

 

 

Figure 3: The Architectural Layers of the Swin V2 

Model. 
 

RESULTS  
Table 1 provides a detailed comparison of the per-

formance of various ViT models in classifying 

jawbone density using masked CBCT images. Each 

model was evaluated based on accuracy, sensitivi-

ty, specificity, AUC, and loss metrics to ensure a 

thorough assessment. Among the models, SwinV2 

emerged as the top performer, achieving the highest 

accuracy and specificity, the second-best AUC, and 
the lowest loss, establishing it as the most effective 

for this task. The ViTamin model recorded the 

highest sensitivity and AUC, while the XciT model 

demonstrated strong performance with the second-

best accuracy, specificity, and loss values. 

In contrast, Table 2 presents the results 

when the binary mask-indicating the region for 

dental bone density calculation was excluded. The 

removal of the mask led to a decline in all evalua-

tion metrics, highlighting its significant impact on 

model performance. Notably, the CrossViT model 
exhibited the best performance under these condi-

tions, though its results were still lower compared 

to those achieved with the mask. These findings 

underscore the critical role of the binary mask in 

enhancing the models' effectiveness. 
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Table 3 shows a classification report and confusion 

matrix for the best-performing model (SwinV2 

with the density mask input). Most misclassifica-

tions occur between adjacent classes (e.g., D2 mis-

classified as D3, D4 as D3 or D5), which is clini-
cally understandable due to the gradual nature of 

bone density transitions. D1 bone, while having 

perfect precision, suffers from low recall, indicat-

ing that although the few predictions made for D1 

are correct, the model is hesitant to classify sam-

ples as D1. D5 bone shows both high precision and 

recall, confirming it as the most confidently identi-

fied class. 

The average inference time for each architecture 

was recorded using a standardized setup and aver-

aged over multiple forward passes on the test da-

taset. The results are summarized as: CaiT model: 

0.0100 Sec, XciT model: 0.0260 Sec, SwinV2 
model: 0.0256 Sec, CrossViT model: 0.0125 Sec, 

and ViTamin model: 0.0086 Sec. These results 

demonstrate that ViTamin and CrossViT models 

are notably faster in terms of inference speed, mak-

ing them suitable for real-time or resource-

constrained clinical applications. However, 

SwinV2, despite slightly longer inference times, 

offers superior performance in terms of diagnostic 

accuracy and robustness. 
 

Table 1: Performance Comparison of Different Vision Transformer Models for Jawbone Density Classification 

on Test Dataset. 

Model Accuracy Sensitivity Specificity AUC Loss 

CaiT 83.04% 55.78% 88.39% 0.72 0.9459 

XciT 85.02% 49.86% 89.39% 0.7 0.9223 

Swin V2  85.65% 55.48% 90.13% 0.73 0.8905 

CrossViT 84.83% 54.71% 89.26% 0.72 0.9285 

ViTamin  84.25% 58.26% 89.22% 0.74 0.9299 

Bold values indicate the best score, while underlined values indicate the second-best score in each column. 
 

Table 2: Performance of different models where the input does not include the fourth channel representing the 

binary mask (the region where density is calculated). 

Table 3: Classification report and confusion matrix for the best-performing model (SwinV2 with the density 

mask input). 

 Precision Recall F1-score support 

D1 1 0.166667 0.285714 30 

D2 0.355932 0.456522 0.4 46 

D3 0.651822 0.712389 0.680761 226 

D4 0.457627 0.432 0.444444 125 

D5 0.810945 0.802956 0.806931 203 

Accuracy 0.64127 0.64127 0.64127 0.64127 

Macro avg 0.655265 0.514107 0.52357 630 

Weighted avg 0.65954 0.64127 0.635216 630 

 
DISCUSSION 
The integration of deep learning models and CBCT 

imaging for classifying jawbone density marks a 

major leap forward in dental diagnostics. This re-

search investigated the effectiveness of various 

vision transformer architectures in performing this 

classification task. Among the models tested, 

SwinV2 stood out with superior performance met-
rics, including the highest accuracy and specificity, 

along with the lowest loss. 

Jawbone quality plays a critical role in the success of 

dental implant treatments. Research has identified 

instances of cluster failures, which may be associat-

ed with inferior bone quality (25-27). The biome-

chanical condition of the alveolar bone influences 

key factors such as implant placement, number, 

abutment selection, and prosthesis design (28). As a 

result, adopting a quantitative scale, rather than rely-

ing on absolute values, could provide clinicians with 

a more efficient method for categorizing bone quali-

ty. 

Model Accuracy Sensitivity Specificity AUC 

CaiT 75.94% 39.84% 84.96% 0.53 

XciT 74.67% 36.67% 84.17% 0.51 

Swin V2  74.35% 41.90% 83.97% 0.55 

CrossViT  77.27% 43.17% 85.79% 0.52 

ViTamin  74.67% 36.67% 84.17% 0.5 

Bold values indicate the best score.     

file:///C:/Users/Owner/Desktop/papers%20DONE/ADJALEXU-2504-1614%20(R1)_files/Manuscribt.docx%23_ENREF_25
file:///C:/Users/Owner/Desktop/papers%20DONE/ADJALEXU-2504-1614%20(R1)_files/Manuscribt.docx%23_ENREF_28


Madian et al.  Deep Learning for Jawbone Density Assessment. 

Alexandria Dental Journal. Volume x Issue x                       6 

In this study, bone density quantification was based 

on the Misch classification system (6), which is cur-

rently the most widely adopted approach. Adhering to 

the ALADA (As Low As Diagnostically Accepted) 

principle (29) CBCT scans were utilized for bone 
density assessment instead of traditional CT scans. 

The effectiveness of CBCT for this purpose has been 

validated in numerous studies (8, 10, 12).  

In the field of dental implantology, CBCT 

scans have been widely studied for their role in 

evaluating alveolar bone density. Liu et al. (10) 

demonstrated that CBCT images offer reliable data 

on bone density, making them a valuable tool for 

preoperative assessments in implant procedures. 

While CBCT grayscale values (GVs) differ from 

traditional Hounsfield Units (HUs), they operate on 

a similar principle, where radiation attenuation cor-
relates with tissue density. This allows bone density 

to be effectively represented using CBCT GVs 

(10).  

Moreover, Ahmed et al. (30) explored the 

use of CBCT for measuring alveolar bone density 

in HUs, confirming its effectiveness as a preopera-

tive imaging tool. Their findings revealed signifi-

cant regional variations in bone density, consistent 

with the Misch classification system. These in-

sights assist clinicians in selecting appropriate im-

plant types, surgical techniques, loading protocols, 
and success rates. Additionally, Nomura et al. 

(31)  further noted that although CBCT GVs are 

generally higher than CT HUs, both metrics main-

tain a positive correlation with bone density, rein-

forcing their utility in clinical evaluations. 

Recent innovations in bone density assess-

ment include the work of Kwon et al. (2015) (32), who 

introduced a texture mapping technique using a graph-

cut algorithm to visualize alveolar bone density distri-

bution in CBCT images. This method segments bone 

regions based on predefined grayscale thresholds and 

applies texture patterns to these segments. However, its 
accuracy depends on precise threshold adjustments, 

which can be challenging due to patient-specific varia-

tions in bone density. Additionally, while effective for 

smaller datasets, the method's processing time increases 

with more segmentation levels, limiting its scalability 

for larger datasets. 

A study by Sorkhabi et al. (33) explored 

CNN-based methods for alveolar bone density clas-

sification. Their dataset consisted of 207 target 

areas extracted from CBCT scans of 83 patients, 

divided into training (110), validation (54), and 
testing (43) subsets. Although the results were 

promising, the study acknowledged limitations, 

including the small dataset size and dependence on 

subjective clinical annotations. 

Moreover, Xiao et al. (34) developed an 

AI model to classify jawbone density at implant 

sites using CBCT images. Their dataset included 

605 PNG images derived from DICOM files of 70 

patients. The model, built on the Nested-UNet ar-

chitecture, categorized bone density into five types 

based on Hounsfield Unit (HU) ranges: Type 1 

(1000–2000), Type 2 (700–1000), Type 3 (400–

700), Type 4 (100–400), and Type 5 (−200–100). 

While the model achieved high accuracy, closely 
matching expert classifications, the study was lim-

ited by its small sample size of only 605 images 

from 70 CBCT scans. A larger dataset would be 

necessary to evaluate the system’s reliability across 

diverse clinical scenarios. 

Another study by Luo et al. (35) investi-

gated the relationship between dataset size and the 

performance of deep learning models in classifica-

tion tasks. Their findings emphasized that larger 

datasets generally enhance classification accuracy. 

Aligning with this insight, the current study utilized 

a significantly larger dataset of 5,545 images from 
610 CBCT DICOM files. This dataset was divided 

into 4,645 training images, 300 validation images, 

and 600 testing images, ensuring a robust evalua-

tion of the model’s performance. 

During the training phase, several pre-

trained deep learning models were employed, with 

the SwinV2 model standing out due to its excep-

tional performance. It achieved the highest accura-

cy (85.65%), a strong AUC (0.73), and the lowest 

loss (0.8905), making it the most effective model in 

this study. These results are consistent with earlier 
research by Shamshad et al. (36) , which highlight-

ed the advantages of transformer-based architec-

tures in medical imaging. Similarly, a systematic 

review by Takahashi et al. (2024) (37) found that 

Vision Transformers (ViTs) outperform traditional 

convolutional neural networks (CNNs) in medical 

image classification tasks, further supporting the 

superior performance of the SwinV2 model ob-

served in this study. 

Notably, the ViTamin model demonstrat-

ed high sensitivity, suggesting its potential for iden-

tifying low-density areas, which is critical for early 
detection of conditions like osteopenia and osteo-

porosis. Meanwhile, the XciT model also per-

formed well, achieving the second-best accuracy, 

specificity, and loss values, indicating its reliability 

for similar tasks. 

Notably, a key finding was the significant 

impact of the binary mask in directing the model’s 

attention to relevant jawbone regions. This aligns 

with the work of Fu et al. (38), who demonstrated 

the importance of incorporating depth information 

as an additional mask in segmentation tasks. The 
noticeable decline in accuracy when the mask was 

excluded highlights the necessity of including re-

gion-specific information to achieve precise classi-

fications in medical imaging applications. 

Error analysis for different models re-

vealed that misclassifications predominantly oc-

curred between adjacent bone density categories, 

especially in borderline cases. These errors were 

often associated with subtle radiographic features, 
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image quality issues, or model attention to non-

diagnostic regions. This highlights the need for 

further refinement, including improved prepro-

cessing. 

Although the SwinV2 model achieved the 
highest overall accuracy and strong performance in 

our study, there remains substantial room for im-

provement in its ability to consistently differentiate 

between all five bone density classes, especially the 

less common ones. 

One major challenge is the imbalance in 

the dataset, where certain bone density classes 

(such as D4 and D5) are underrepresented. This 

likely led to lower classification accuracy for those 

categories. To address this issue, more targeted 

data augmentation methods could be applied to 

boost the model’s ability to learn from limited ex-
amples and generalize better. 

Another area for improvement involves 

enhancing feature extraction. More advanced tech-

niques that can capture fine-grained differences in 

bone texture and structure could improve classifica-

tion. For example, using a loss function that guides 

attention mechanisms toward clinically important 

regions of the jaw may help the model focus on 

relevant features and reduce errors caused by irrel-

evant image areas. 

Additionally, using ensemble methods, by 
combining outputs from different model versions or 

architectures, could help lower bias and variance in 

the predictions. However, computational con-

straints during this study limited the use of larger 

models or multiple ensembles. 

Moreover, increasing the size and diversi-

ty of the dataset, particularly by including more 

examples of the minority classes and patients from 

varied backgrounds, would greatly enhance model 

robustness. A more balanced and comprehensive 

dataset would allow the model to learn more accu-

rate representations for each bone density level. 
While the SwinV2 model demonstrated 

high classification performance, it is important to 

note that Vision Transformers are often regarded as 

"black box" models due to their complex internal 

mechanisms, such as self-attention and the use of 

query-key-value operations for capturing long-

range dependencies across input image regions, 

making their decision-making processes difficult to 

interpret. This can pose challenges in clinical adop-

tion, where model transparency is essential.  

It is important to note that, beyond diag-
nostic performance in dental implant planning, 

clinical integration is a key consideration for real-

world utility. The SwinV2 model could be embed-

ded within dental centers' systems to automatically 

assess bone density from radiographs as part of 

routine workflows. Such integration could facilitate 

early detection of osteopenia or osteoporosis, ena-

ble case prioritization, and function as a decision-

support tool to augment radiologist performance. 

Although the findings of this study are encourag-

ing, they are constrained by the limited diversity of 

the dataset, which may affect the generalizability of 

the results. To address this, future research should 

focus on incorporating more varied datasets, en-
compassing different demographic groups and 

CBCT imaging devices, to ensure the models' ap-

plicability across a wider range of cases. Further-

more, expanding the scope to include other imaging 

modalities, such as computed tomography (CT) or 

magnetic resonance imaging (MRI), could provide 

a more comprehensive evaluation of the models' 

capabilities. 

Another promising direction for future 

work is the development of hybrid models that lev-

erage the strengths of vision transformers and con-

volutional neural networks. By combining the 
global context capture of ViTs with the local fea-

ture extraction capabilities of CNNs, such hybrid 

approaches could potentially achieve even greater 

performance improvements in medical image anal-

ysis tasks. These advancements would not only 

enhance the robustness of the models but also 

broaden their applicability in clinical settings. 

 

CONCLUSIONS  
The findings of this study reveal that advanced 

Vision Transformer models are highly capable of 

classifying jawbone density when applied to CBCT 

images. A notable improvement in performance 

was observed with the inclusion of a binary mask, 

which helps the models concentrate on specific 

regions of interest. 
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