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BICOMPLEX BLOCH AND LITTLE BLOCH SPACES

S. DOLKAR, S. KUMAR

Abstract. In this paper, we study Bloch and little Bloch spaces in bicomplex

setting. We also discuss the Möbius invariance of the bicomplex Bloch space

and study the bicomplex Bergman projection onto the little Bloch space.

1. Introduction and Preliminaries

The Bloch space in complex analysis is interesting in its own right. In fact, the
Bloch space was studied much earlier than the Bergman space, which has its own
importance and stands as a very signicant function space. For more details, see
[13, 3].

Throughout this paper, we denote the set of bicomplex numbers by BC. The
theory of bicomplex holomorphic functions has seen substantial development; see
[1, 2, 6, 8, 11, 12] and the references therein.
In the classical theory of holomorphic functions, one usually works on the unit
disk, whereas in the bicomplex setting, we deal with the bidisk. Let UBC = U1×U2

denote the bidisk in BC. More generally, a bidisk UBC centered at (a1, a2) with
associated radii (r1, r2) is dened as

UBC =

Z ∈ BC : Z = eη1 + e†η2, ∥η1 − a1∥k < r1, ∥η2 − a2∥k < r2


. (1)

The bicomplex Bloch space was rst introduced by Reséndis and Tovar in [10].
They studied the bicomplex Bergman projection onto the bicomplex Bloch space
and also proved the decomposition

BBC = eB+ e†B.

In this paper, we extend their work by dening the little Bloch space in the bicom-
plex setting. We denote the bicomplex Bloch and little Bloch spaces by BBC and
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B0,BC, respectively. We also discuss the Möbius invariance of the bicomplex Bloch
space, which follows directly from the idempotent decomposition of the space. Fur-
thermore, we dene the bicomplex little Bloch space B0,BC on the bidisk UBC and
show that B0,BC can be decomposed into two classical little Bloch spaces on the
unit disk. In addition, we study the bicomplex Bergman projection onto the little
Bloch space.

We begin by recalling the denition of bicomplex numbers.

Denition 1.1. The set of bicomplex numbers is dened as

BC = η1 + jη2 : η1, η2 ∈ C(i),
where i and j are two imaginary units such that ij = ji and i2 = j2 = −1, and
C(i) denotes the set of complex numbers with imaginary unit i. The set BC forms
a commutative ring with addition and multiplication dened by

Z +W = (η1 + jη2) + (w1 + jw2) = (η1 + w1) + j(η2 + w2),

and

ZW = (η1 + jη2)(w1 + jw2) = (η1w1 − η2w2) + j(η1w2 + η2w1).

Another important fact about bicomplex numbers is their idempotent decompo-
sition. That is,

Z = eγ1 + e†γ2, ∀Z ∈ BC,
where γ1 = η1 − iη2 and γ2 = η1 + iη2, and where

e = 1+ij
2 , e† = 1−ij

2

are mutually annihilating idempotents, i.e., e+e† = 1 and e e† = 0. The pair e, e†
forms the idempotent basis of BC.

The representation of bicomplex numbers as pairs of complex numbers leads to
three notions of conjugation: the bar -conjugation, the dagger -conjugation, and the
star -conjugation (see [1]). Among these, we use the ∗-conjugation, dened by

Z∗ = η1 − jη2 = e γ1 + e† γ2.

A bicomplex number Z is invertible if ∥Z∥k ̸= 0. In this context, we dene the
hyperbolic-valued modulus, also called the k-modulus, as

∥Z∥2k = ZZ∗, Z−1 =
Z∗

∥Z∥2k
.

Taking the positive square root, we obtain

∥Z∥k = eγ1+ e†γ2.
For details, see [1]. The exponential and logarithmic representations of bicomplex
functions yield the following remark.

Remark 1. For α ∈ R and γ1, γ2 > 0, we have

eγ1 + e†γ2

α
= eγα

1 + e†γα
2 .

In particular,

1− ∥Z∥2k

α
=


e(1− γ12) + e†(1− γ22)

α
= e(1− γ12)α + e†(1− γ22)α.



JFCA-2025/16(2) BICOMPLEX BLOCH AND LITTLE BLOCH SPACES 3

Next, we continue with the bicomplex holomorphic functions and their deriva-
tives. Likewise the bicomplex numbers, the bicomplex functions also had its decom-
positions in terms of e and e† and is unique in nature. That is, F : Ω ⊂ BC −→ BC,
of one bicomplex variable Z is represented as follows:

F (Z) = eF1(β1) + e†F2(β2),

where F ′
is; i = 1, 2 are usual complex valued functions.

Denition 1.2. Let F : Ω ⊂ BC −→ BC and let Z0 ∈ Ω. The derivative of F at
Z0 is dened as

F ′
h(Z0) = lim

H→0
H/∈W0

F (Z0 +H)− F (Z0)

H
,

where H = Z − Z0 is invertible and W0 denotes the set of hyperbolic zero divisors
(i.e., the null cone together with 0 ∈ BC).

If F is hyperbolically derivable at each Z ∈ Ω, then F is called bicomplex holo-
morphic in Ω.

For further details, see [1, 9, 7].

Next, we dene the bicomplex weighted Bergman space. For Bergman spaces
with complex scalars, we refer to [1, 3, 4, 13].

Denition 1.3. Let 0 < p < ∞ and −1 < α < ∞. The bicomplex weighted
Bergman space

Ap
α(dVα)(UBC)

of the bidisk UBC is the space of bicomplex holomorphic functions F : UBC −→ BC
that belong to the complete space Lp

k(UBC, dVα(Z)), i.e.,


UBC
∥F (Z)∥pk dVα(Z) < ∞,

where ∥F (Z)∥k denotes the hyperbolic modulus of F (Z), and the weighted measure
dVα(Z) is given by

dVα(Z) =
α+ 1

4
(1−∥Z∥2k)α dx1dy1dx2dy2 = e dAα(γ1)dA(γ2)+e† dA(γ1)dAα(γ2),

with e, e† being the idempotent components and dAα the usual weighted area measure
on the unit disk.

Lemma 1.1. [10] Let A ∈ UBC and dene the bicomplex Möbius transformation
S : UBC −→ UBC by

S(Z) = ζ
A− Z

1− A∗Z
, with ∥ζ∥k = 1.

Then

(1− ∥Z∥2k)∥S′(Z)∥k = 1− ∥S(Z)∥2k.
In particular, ∥S(Z)∥k = 1 if and only if ∥Z∥k = 1, i.e. Z belongs to the distin-
guished boundary of UBC.

Recall that the Poincaré metric on UBC is denoted by ρk and dened by

ρk(Z,W ) = 1
2 log

1 + ∥ΥZ(W )∥k
1− ∥ΥZ(W )∥k

,
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where ΥZ : UBC −→ UBC is a Möbius transformation and is given by

ΥZ(W ) =
Z −W

1− Z∗W
.

Denition 1.4. The operator Pk,α denotes the weighted Bergman projection on
UBC. For any bicomplex-holomorphic function F ,

Pk,αF (Z) =



UBC

F (W )

1− ZW ∗2+α dVα(W ).

2. BICOMPLEX BLOCH SPACES

The bicomplex Bloch space was rst introduced by Resendis and Tovar in [10].
The bicomplex Bloch space, denoted by BBC in UBC, is dened as the space of all
holomorphic functions F on UBC such that

∥F∥BBC = sup

(1− ∥Z∥2k) ∥F ′(Z)∥k : Z ∈ UBC


< ∞,

and the hyperbolic norm is dened by

∥F∥ = ∥F (0)∥k + ∥F∥BBC .

With this norm, BBC is a Banach space.

Moreover, by Lemma 1.1, the Möbius invariance of ∥ · ∥BBC can be established.
Indeed, let F ∈ BBC and Φ ∈ Aut(UBC). Then

∥F ◦ Φ∥BBC = F ◦ Φ(0)+ sup

(1− ∥Z∥2k) ∥(F ◦ Φ)′(Z)∥k : Z ∈ UBC



= F (Φ(0))+ sup

(1− ∥Z∥2k) ∥F ′(Φ(Z))∥k ∥Φ′(Z)∥k : Z ∈ UBC



= F (Φ(0))+ sup

(1− ∥Φ(Z)∥2k) ∥F ′(Φ(Z))∥k : Φ(Z) ∈ UBC



= ∥F∥BBC .

Also, the bicomplex Bloch space has idempotent decomposition BBC = eB +
e†B, where B is the one-dimensional complex Bloch-space. So, any F ∈ BBC has
idempotent decomposition F (Z) = eG1(γ1) + e†G2(γ2). Then

∥F∥BBC =sup(1− ∥Z∥2k)∥F ′(Z)∥k ;Z ∈ UBC
=sup(e(1− γ12) + e†(1− γ22))(eG′

1(γ1)+ e†G′
2(γ2)); γ1 ∈ U1, γ2 ∈ U2

=supe(1− γ12)G′
1(γ1)+ e†(1− γ22)G′

2(γ2); γ1 ∈ U1, γ2 ∈ U2
=e sup(1− γ12)G′

1(γ1) ; γ1 ∈ U1+ e† sup(1− γ22)G′
2(γ2) ; γ2 ∈ U2

=e∥G1∥B + e†∥G2∥B.

The next proposition shows that every bounded holomorphic function on UBC be-
longs to the bicomplex Bloch space.

[10] H∞
BC ⊂ BBC. Moreover, for all F ∈ H∞

BC,

∥F∥BBC ≤ ∥F∥k,∞.

Let F ∈ BBC and Z,W ∈ UBC. Then

∥F (Z)− F (W )∥k ≤ 1
2 ∥F∥BBC log

1 + ∥ΥZ(W )∥k
1− ∥ΥZ(W )∥k

,
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where ΥZ : UBC −→ UBC is the Möbius transformation

ΥZ(W ) =
Z −W

1− Z∗W
.

Proof. Since F is bicomplex holomorphic, we have

F (Z)− F (0) =

 1

0

d

dl
F (lZ) dl =

 1

0

F ′(lZ)Z dl.

Taking k-modulus,

∥F (Z)− F (0)∥k ≤ ∥Z∥k
 1

0

∥F ′(lZ)∥k dl.

By the denition of the Bloch norm,

∥F (Z)− F (0)∥k ≤ ∥F∥BBC

 1

0

∥Z∥k
1− l2∥Z∥2k

dl.

Evaluating the integral gives

∥F (Z)− F (0)∥k ≤ 1
2 ∥F∥BBC log

1 + ∥Z∥k
1− ∥Z∥k

,

for all Z ∈ UBC (with W = 0).
Now replacing F by F ◦ΥZ and Z by ΥZ(W ), and using the Möbius invariance

of the Bloch norm, we obtain

∥(F ◦ΥZ)(ΥZ(W ))− (F ◦ΥZ)(0)∥k ≤ 1
2 ∥F∥BBC log

1 + ∥ΥZ(W )∥k
1− ∥ΥZ(W )∥k

.

This is equivalent to

∥F (W )− F (Z)∥k ≤ 1
2 ∥F∥BBC log

1 + ∥ΥZ(W )∥k
1− ∥ΥZ(W )∥k

.

□

Theorem 2.1. Let F : UBC −→ BC be a bicomplex holomorphic function such that
F ∈ BBC. Then

∥F∥BBC = sup
Z,W∈UBC
Z ̸=W

Z−W /∈W0

∥F (Z)− F (W )∥k
ρk(Z,W )

.

Proof. Since F : UBC −→ BC is holomorphic, for any Z ∈ UBC we have

F (Z)− F (0) = Z

 1

0

F ′(tZ) dt.

Hence

∥F (Z)− F (0)∥k ≤ ∥Z∥k
 1

0

∥F ′(tZ)∥k dt

≤ ∥F∥BBC

 1

0

∥Z∥k
1− t2∥Z∥2k

dt

= 1
2 ∥F∥BBC log

1 + ∥Z∥k
1− ∥Z∥k

= ∥F∥BBC ρk(Z, 0).
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Now replace F by F ◦ΥZ and Z by ΥZ(W ). Using the Möbius invariance of both
the Bloch norm and the Poincaré metric, we obtain

∥F (W )− F (Z)∥k ≤ ∥F∥BBC ρk(Z,W ), Z,W ∈ UBC.

Thus

sup
Z,W∈UBC
Z ̸=W

Z−W /∈W0

∥F (Z)− F (W )∥k
ρk(Z,W )

≤ ∥F∥BBC .

Conversely, dene

A = sup
Z,W∈UBC
Z ̸=W

Z−W /∈W0

∥F (Z)− F (W )∥k
ρk(Z,W )

,

and suppose A < ∞. Then for each Z ∈ UBC,

lim
W→Z

∥F (Z)− F (W )∥k
ρk(Z,W )

= (1− ∥Z∥2k)∥F ′(Z)∥k ≤ A.

Therefore

∥F∥BBC = sup
Z,W∈UBC
Z ̸=W

Z−W /∈W0

∥F (Z)− F (W )∥k
ρk(Z,W )

.

□

Corollary 2.1. [10, Theorem 4.3] Let F be a bicomplex holomorphic function.
Then F ∈ BBC if and only if there exists a constant C > 0 such that

∥F (Z)− F (W )∥k ≤ C ρk(Z,W ), Z,W ∈ UBC.

The bicomplex little Bloch space of UBC is denoted by Bo,BC, and it is a closed
subspace of BBC consisting of holomorphic functions F such that

lim
∥Z∥k→1−

(1− ∥Z∥2k) ∥F ′(Z)∥k = 0.

Moreover, Bo,BC is Möbius invariant, i.e., if F ∈ Bo,BC and Υ ∈ Aut(UBC), then
F ◦Υ ∈ Bo,BC.

Now we can prove the following theorem.

Theorem 2.2. Let F : UBC −→ UBC be a bicomplex holomorphic function with
F ∈ BBC. Then F ∈ Bo,BC if and only if

∥Fr − F∥BBC −→ 0 as r → 1−, (2)

where Fr(Z) = F (rZ) is the dilated function for all Z ∈ UBC, and r ∈ (0, 1)D.

Proof. Let Fr = eFr1,1 + e†Fr2,2 be the bicomplex dilated function in BBC, where
Fr1,1 and Fr2,2 are dilations in the classical little Bloch space Bo. Also, let F ∈ BBC
have the decomposition

F = eF1 + e†F2, (3)

with each F1, F2 ∈ B.
Suppose that equation (2) holds. Since each Fri,i ∈ Bo for i = 1, 2, and because

Bo,BC is closed in BBC, the convergence ∥Fr − F∥BBC → 0 as r → 1− implies that
F ∈ Bo,BC.



JFCA-2025/16(2) BICOMPLEX BLOCH AND LITTLE BLOCH SPACES 7

Conversely, suppose F ∈ Bo,BC. We need to show that (2) holds. From the
classical case, if Fi ∈ B, then Fi ∈ Bo if and only if

∥Fri,i − Fi∥B −→ 0 as r → 1−.

Now,

∥Fr − F∥BBC = ∥(eFr1,1 + e†Fr2,2)− (eF1 + e†F2)∥BBC

= ∥e(Fr1,1 − F1) + e†(Fr2,2 − F2)∥BBC

≤ e ∥Fr1,1 − F1∥B + e† ∥Fr2,2 − F2∥B.

As ∥Fr1,1 − F1∥B → 0 as r → 1− and ∥Fr2,2 − F2∥B → 0 as r → 1−, we conclude
that

∥Fr − F∥BBC −→ 0 as r → 1−,

for every F ∈ Bo,BC. □

Lemma 2.2. Let F (Z,W ) be a bounded and continuous bicomplex function on
UBC × UBC. Then, for α > −1 and Z0 ∈ ∂UBC, we have

lim
Z−→Z0



UBC

1− ZW ∗

(1− Z∗W )2+α
F (Z,W ) dVα(W ) =



UBC

1− Z0W
∗

(1− Z∗
0W )2+α

F (Z0,W ) dVα(W ).

(4)

Proof. Since F (Z,W ) is bicomplex holomorphic, we can write

F (Z,W ) = eF1(Z1,W1) + e†F2(Z2,W2).

As F (Z,W ) is bounded and continuous on UBC × UBC, it follows that F1 and F2

are bounded and continuous on U1 × U1 and U2 × U2, respectively.
Let Z0 = eZ0,1+ e†Z0,2 ∈ ∂UBC. From the classical case (see [13]), we know that

for i = 1, 2,

lim
Zi→Z0,i



Ui

1− ZiWi

(1− ZiWi)2+α
Fi(Zi,Wi) dAα(Wi) =



Ui

1− Z0,iWi

(1− Z0,iWi)2+α
Fi(Z0,i,Wi) dAα(Wi).

(5)
Therefore,

lim
Z→Z0



UBC

1− ZW ∗

(1− Z∗W )2+α
F (Z,W ) dVα(W )

= e lim
Z1→Z0,1



U1

1− Z1W 1

(1− Z1W1)2+α
F1(Z1,W1) dAα(W1)

+ e† lim
Z2→Z0,2



U2

1− Z2W 2

(1− Z2W2)2+α
F2(Z2,W2) dAα(W2)

= e



U1

1− Z0,1W 1

(1− Z0,1W1)2+α
F1(Z0,1,W1) dAα(W1)

+ e†


U2

1− Z0,2W 2

(1− Z0,2W2)2+α
F2(Z0,2,W2) dAα(W2)

=



UBC

1− Z0W
∗

(1− Z∗
0W )2+α

F (Z0,W ) dVα(W ).

□
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For any Zo ∈ ∂UBC, the above lemma together with the reproducing property of
the Bergman kernel gives

UBC

1− ZoW
∗

(1− Z∗
oW )2+α

dVα(W ) = lim
Z→Zo



UBC

1− ZW ∗

(1− Z∗W )2+α
dVα(W ) = lim

Z→Zo


1−∥Z∥2k


= 0.

(6)
Let C(UBC) denote the algebra of bicomplex-valued continuous functions on UBC,

the Euclidean closure of UBC. Furthermore, let Co(UBC) be the subalgebra of C(UBC)
consisting of functions F such that F (Z) → 0 as ∥Z∥k → 1−.

Theorem 2.3. For every F ∈ BBC and α > −1, the following conditions are
equivalent:

(a) F ∈ Bo,BC;
(b) F = Pk,αΦ for some Φ ∈ C(UBC);
(c) F = Pk,αΦ for some Φ ∈ Co(UBC).

Proof. (a) ⇒ (c) : First suppose F ∈ Bo,BC and write

F (Z) =

∞

n=0

CnZ
n, Z ∈ UBC.

Dene

Φ(Z) =

2m+1

n=0

Γ(n+ α+ 3)

(α+ 1)Γ(n+ α+ 2)
(1− ∥Z∥2k)CnZ

n

+
Γ(α+ 2)

(α+ 1)Γ(α+m+ 1)

∞

n=2m+1

Cn n(n− 1) · · · (n−m+ 1)Z n−m.

For m = 1 this becomes

Φ(Z) =

3

n=0

Γ(n+ α+ 3)

(α+ 1)Γ(n+ α+ 2)
(1− ∥Z∥2k)CnZ

n

+
(1− ∥Z∥2k)
(α+ 1)Z∗

∞

n=3

nCnZ
n−1

=(1− ∥Z∥2k)
α+ 2

α+ 1
C0 + (1− ∥Z∥2k)

α+ 3

α+ 1
C1Z

+ (1− ∥Z∥2k)
α+ 4

α+ 1
C2Z

2 +
1

α+ 1

∞

n=3

nCnZ
n−1

Z∗ (1− ∥Z∥2k). (7)

Thus Φ ∈ Co(UBC) and Pk,αΦ(Z) = F (Z), which gives (c), see [10].

(b) ⇒ (a) : Suppose that (b) holds, i.e., F = Pk,αΦ for some Φ ∈ C(UBC). Then

F (Z) =



UBC

Φ(W )

(1− ZW ∗)2+α
dVα(W ), Z ∈ UBC.

Dierentiating under the integral gives

F ′(Z) = (α+ 2)



UBC

W ∗Φ(W )

(1− ZW ∗)3+α
dVα(W ), Z ∈ UBC.

Hence

∥F ′(Z)∥k = (α+ 2)



UBC

∥W ∗Φ(W )∥k
∥1− ZW ∗∥3+α

k

dVα(W ).
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Multiplying both sides by (1− ∥Z∥2k), we obtain

(1− ∥Z∥2k)∥F ′(Z)∥k = (1− ∥Z∥2k)


UBC

∥Υ(W )∥k
∥1− ZW ∗∥3+α

k

dVα(W ),

where Υ(W ) = (α+ 2)W ∗Φ(W ).
Using a change of variables and applying Lemma 2.2, for Zo ∈ ∂UBC, we get

lim
Z→Zo

(1− ∥Z∥2k)∥F ′(Z)∥k = Υ(Zo)



UBC

∥1− ZoW
∗∥k

∥1− Z∗
oW∥2+α

k

dVα(W )

= 0,

which implies F ∈ Bo,BC.
(c) ⇒ (a) : This follows immediately. □

Theorem 2.4. For any F ∈ BBC, an integer n ≥ 2, and α > −1, the following
conditions are equivalent:

(a) F ∈ Bo,BC;
(b) (1− ∥Z∥2k)n∥Fn(Z)∥k ∈ Co(UBC);
(c) (1− ∥Z∥2k)n∥Fn(Z)∥k ∈ C(UBC).

Proof. (c) ⇒ (a) : Consider F (Z) =
∞

n=0 CnZ
n and dene

T (Z) =

2m+1

n=0

Γ(n+ 3 + α)

Γ(n+ 2 + α)(α+ 1)
(1− ∥Z∥2k)nCnZ

n

+
Γ(α+ 2)

(α+ 1)Γ(m+ 1 + α)
(1− ∥Z∥2k)mn

∞

n=2m+1

Cnn(n− 1) · · · (n−m+ 1)Z n−m

(Z∗)m
.

If (1− ∥Z∥2k)n∥Fn(Z)∥k ∈ C(UBC), then

Φ(Z) =
Γ(2 + α)

(α+ 1)Γ(m+ 1 + α)
(1−∥Z∥2k)mn

∞

n=2m+1

Cnn(n− 1) · · · (n−m+ 1)Z n−m

(Z∗)m
∈ C(UBC).

Then, by Theorem 2.3, F (Z) = Pk,αT ∈ Bo,BC.
(b) ⇒ (c) is trivial.
(a) ⇒ (b) : Let F ∈ Bo,BC. By Theorem 2.3, there exists Φ ∈ Co(UBC) such that

F = Pk,αΦ, i.e.,

F (Z) =



UBC

Φ(W )

(1− ZW ∗)2+α
dVα(W ), Z ∈ UBC. (8)

Taking the n-th derivative gives

Fn(Z) = (n+ 1)!



UBC

W ∗nΦ(W )

(1− ZW ∗)n+2+α
dVα(W )

=



UBC

Υ(W )

(1− ZW ∗)n+2+α
dVα(W ),

where Υ(W ) = (n+ 1)!W ∗nΦ(W ) ∈ Co(UBC). Then

∥Fn(Z)∥k =



UBC

∥Υ(W )∥k
∥1− ZW ∗∥n+2+α

k

dVα(W ).
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Multiplying both sides by (1− ∥Z∥2k)n, we get

(1− ∥Z∥2k)n∥Fn(Z)∥k = (1− ∥Z∥2k)n


UBC

∥Υ(W )∥k
∥1− ZW ∗∥n+2+α

k

dVα(W ).

If Zo ∈ ∂UBC, then Υ(Zo) = 0, and the bicomplex dominated convergence theorem
[?] implies

lim
Z→Zo

(1− ∥Z∥2k)n∥Fn(Z)∥k = 0.

Hence, (1− ∥Z∥2k)n∥Fn(Z)∥k ∈ Co(UBC). □

Remark 2. From [10, Theorem 3.11], a simple construction shows that if m is a

non-negative integer and F (Z) =

∞

n=2m+1

CnZ
n, then

Pk,α


(1− ∥Z∥2k)

Z∗m F (m)(Z)


= (α+ 1)

Γ(m+ α+ 1)

Γ(α+ 2)

∞

n=2m+1

CnZ
n.

Moreover,

Pk,α


(1− ∥Z∥2k)

Z∗m F (m)(Z)


=



UBC

(1− ∥W∥2k)mF (m)(W )

W ∗m(1− ZW ∗)2+α
dVα(W ),

which gives the formula

F (Z) = F (0) +



UBC

(1− ∥W∥2k)mF (m)(W )

W ∗m(1− ZW ∗)2+α
dVα(W ).

In particular, for m = 1, we have

F (Z) = F (0) +



UBC

(1− ∥W∥2k)F ′(W )

W ∗(1− ZW ∗)2+α
dVα(W ).

Dierentiating under the integral sign, we obtain

F ′′(0) = (2 + α)(3 + α)



UBC
W ∗(1− ∥W∥2k)F ′(W ) dVα(W ),

i.e., ∥F ′′(0)∥k ≤ (2 + α)(3 + α)∥F∥BBC .

Thus, the function dened in equation (7),

E(Z) = (1− ∥Z∥2k)

α+ 2

α+ 1
C0 +

α+ 3

α+ 1
C1Z +

α+ 4

α+ 1
C2Z

2 +
1

α+ 1

∞

n=3

nCnZ
n−1

Z∗


,

satises
∥E∥k,∞ ≤ M∥F∥ = M


∥F∥BBC + ∥F (0)∥k


,

where M is an absolute constant. Therefore, each F ∈ BBC implies F ∈ Bo,BC. We
can choose E ∈ L∞

k (UBC) (respectively in Co(UBC)), and using the linearity of the
Bergman projection, we have

Pk,αE(Z) = F (Z), and ∥E∥k,∞ ≤ M∥F∥.
Theorem 2.5. [10] Let Pk,α be the weighted Bergman projection with −1 < α < ∞.
Then:

(1) Pk,α maps L∞
k (UBC) boundedly onto BBC;

(2) Pk,α maps C(UBC) boundedly onto Bo,BC;
(3) Pk,α maps C(UBC) boundedly onto Bo,BC.
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Lemma 2.3. The bicomplex operator Tk = Tt,k,α dened by

TkF (Z) = (1− ∥Z∥2k)t


UBC

(1− ∥W∥2k)α
(1− ZW ∗)2+t+α

F (W ) dV (W ) (9)

has the following properties:

(a) TkPk,α = Tk;
(b) Tk = (α+ t+ 1)T 2

k ;
(c) Pk,α = (α+ t+ 1)Pk,αTk;
(d) Tk is a bounded embedding of BBC into L∞

k (UBC);
(e) Tk is an embedding of Bo,BC into Co(UBC).

Proof. We have

TkF (Z) = (1− ∥Z∥2k)t


UBC

(1− ∥W∥2k)α
(1− ZW ∗)2+t+α

F (W ) dV (W ). (10)

For Z = eγ1 + e†γ2 and W = eW1 + e†W2, we have

TkF (Z) = e(1− γ12)t


U1

F1(W1)

(1− γ1W1)2+α+t
dAα(W1)

+ e†(1− γ22)t


U2

F2(W2)

(1− γ2W2)2+α+t
dAα(W2)

= eT1F1(γ1) + e†T2F2(γ2). (11)

Using the decomposition in (11), properties (a), (b), and (c) follow easily. The
proof of (d) is analogous to the complex case.

For (e), let F ∈ Bo,BC. Then F = Pk,αE for some E ∈ Co(UBC). By Remark 2,
we can choose E such that

∥E∥k,∞ ≤ M

∥F∥BBC + ∥F (0)∥k


,

where M is an absolute constant. Dene H = E ◦ΥZ . Then

TkE(Z) =



UBC
E(ΥZ(W )) dVα(W ).

Since E(ΥZ(W )) → 0 as ∥Z∥k → 1− for each W ∈ UBC, the bicomplex dominated
convergence theorem implies TkE(Z) → 0 as ∥Z∥k → 1−. Hence TkE ∈ Co(UBC).
But

TkPk,αE = TkE = TkF,

so Tk maps Bo,BC into Co(UBC).
To see that Tk is bounded, observe from (9) that

∥TkE(Z)∥k ≤ (1− ∥Z∥2k)t∥E∥k,∞


UBC

1

∥1−W ∗Z∥2+t+α
k

dVα(W ),

and therefore

∥TkF∥k,∞ = ∥TkE∥k,∞ ≤ ∥E∥k,∞ ≤ M

∥F∥BBC + ∥F (0)∥k


.

Finally, using part (a) and Theorem 2.5, we have for all F ∈ Bo,BC:

∥F∥BBC + ∥F (0)∥k = ∥Pk,αF∥
= (α+ t+ 1)∥Pk,αTkF∥
≤ (α+ t+ 1)∥Pk,α∥ ∥TkF∥∞.

Hence Tk is bounded below and maps every function in Bo,BC into Co(UBC). □
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3. DUAL OF LITTLE BLOCH SPACE

In this section, we introduce the dual of the bicomplex little-Bloch space. The
dual space of a Banach space X is denoted by X∗ and consists of all bounded linear
functionals on X. Each F̂ ∈ X∗ has the norm

∥F̂∥k,α = sup
∥F∥k=1

∥F̂ (F )∥k.

We denote the space of all bounded linear functionals F̂ on the bicomplex little-
Bloch space by B∗

o,BC. A linear functional F̂ on Bo,BC is bounded if there exists a
positive constant C such that

∥F̂ (F )∥k ≤ C∥F∥k,α, ∀F ∈ Bo,BC.

The next theorem shows that the dual of the little-Bloch space is the weighted
bicomplex Bergman space A1

α(dVα)(BC).

Theorem 3.6. We have

B∗
o,BC ∼= A1

α(dVα)(BC), α > −1,

under the integral pairing

⟨F,G⟩α,BC =



UBC
F (Z)(G(Z))∗ dVα(Z). (12)

Proof. Let F ∈ A1
α(dVα)(BC). Then, by (12),

⟨F,G⟩α,BC =



UBC
F (Z)(G(Z))∗ dVα(Z)

= e



U1

F1(γ1)G1(γ1) dAα(γ1) + e†


U2

F2(γ2)G2(γ2) dAα(γ2),

where Gi →

Ui

Fi(γi)Gi(γi) dAα(γi), i = 1, 2, denes a bounded linear functional

on the classical little-Bloch space Bo. Since

Bo,BC = eBo + e†Bo,

it follows that G →

UBC

F (Z)(G(Z))∗ dVα(Z) also denes a bounded linear func-

tional on Bo,BC.
Conversely, let F ∈ B∗

o,BC. Then we need to show that there exists F ∈
A1

α(dVα)(BC) such that

F(G) =



UBC
G(Z)(F (Z))∗ dVα(Z), ∀G ∈ Bo,BC.

Since F is bicomplex linear, it admits the decomposition

F = eF1 + e†F2,

where each Fi is a bounded linear functional on the classical little-Bloch space Bo.
Therefore, for each i = 1, 2, there exists Fi ∈ A1

α(dAα) such that

Fi(Gi) =



Ui

Gi(γi)Fi(γi) dAα(γi), ∀Gi ∈ Bo.

Dene F ∈ A1
α(dVα)(BC) by

F (Z) = eF1(γ1) + e†F2(γ2).
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Then, for G = eG1 + e†G2 ∈ Bo,BC, we have

F(G) = eF1(G1) + e†F2(G2)

= e



U1

G1(γ1)F1(γ1) dAα(γ1) + e†


U2

G2(γ2)F2(γ2) dAα(γ2)

=



UBC
G(Z)(F (Z))∗ dVα(Z),

which completes the proof. □
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